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Introduction

VAUCANSON is a free software platform dedicated to the manipulation of finite state automata.
Here, ‘finite state automata’ is to be understood in the broadest sense: VAUCANSON supports
weighted automata over a free monoid, and even weighted automata on some non-free monoids
(currently only automata on products of two free monoids  also known as transducers are
supported).

The platform consists in a few components:

The Vaucanson library is a Ct++ library that implements objects for automata, rational
expressions, as well as algorithms on these objects. This library is generic, in the sense
that it makes it possible to write an algorithm once and apply it to different types
of automata. However this genericity is achieved in a way that should not cause any
slowdown at runtime: because the type of the automaton manipulated is known at
compile time, compiling an algorithm will generate code that is almost as efficient as
an algorithm written specifically for this type of automaton.

TAF-Kit is a command-line interface to the library that allows user to execute VAUCAN-
SON’s algorithms without any knowledge of C++. Because the VAUCANSON library
needs to know the type of automata at compile time, the TAF-KIT interface has been
instantiated for a predefined set of common automaton types.

TAF-KIT does not allow to write new algorithms nor to manipulate new types of
automata, but it makes it possible to combine without efforts a large set of algorithms
on common automata types.

A repository of automata that shows examples of automata of various types, and also
contains programs, called automata-factory, which create parametrized families of au-
tomata.

It is coupled with some other modules:

An XML format for automata and expressions, called FsmM XML. This format aims at be-
ing an interchange format for automata and thus at making possible, and hopefully easy,
the communication between various programs that input or output automata. So far,
this format is used as the normal, and default, input and output format for TAF-KiT.

A graphic user interface called VGi, especially dedicated to VAUCANSON is under devel-
opment at the EE Department of the National Taiwan University in Taipeh. It will
allow to describe automata and to visualize the result of operation on automata in a
graphical way. All functions defined in TAF-Ki1T will be called via the menu of VaGr.



Ideally, a user’s manual for VAUCANSON should document all of these components. We
decided not to do so, not so much because it is a lot of work, but also as this work would not
be so useful.

After several years of hard and complex developments, the evolution and progress of the
VAUCANSON platform are now stuck and we have reached the conclusion that we have to
undertake a thorough revision of the VAUCANSON library that will most probably change its
interface and the one of the associated API. These new developments will give rise to a new
series of versions of VAUCANSON, coined VAUCANSON 2.x.

However, we want to have a version of the platform that will serve as a landmark for
both functionalities and performance of the first phase of VAUCANSON. It will be coined
VAUCANSON 1.4. Moreover, there will be a TAF-KIT for the future versions of VAUCANSON,
its functionalities will include all those of the present one, and its interface will essentially be
the same as the TAF-KIT of VAUCANSON 1.4. TAF-KiT 1.4 will be the only documented
part of VAUCANSON 1.4.

A beta version of VAUCANSON 1.4 has been presented at the FSMNLP 2011 Conference,
held in Blois, France, from July 12 to July 15 2011. All users are encouraged to send us
remarks, comments, and bug reports. We shall make our possible to take them into account in
the minor revisions that will be made to VAUCANSON 1.4 until the release of VAUCANSON 2.0.
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Chapter 0O

Administrativia

0.1 Getting Vaucanson 1.4

The version 1.4 of the VAUCANSON platform can be downloaded from
http://www.lrde.epita.fr/cgi-bin/twiki/view/Vaucanson/Vaucansonl.4

Other previous versions of the VAUCANSON platform can be downloaded from
http://vaucanson.lrde.epita.fr/

Please note this manual is not meant to be backward compatible with VAUCANSON versions
prior to 1.4.

0.2 Licensing

VAUCANSON 1.4 is a free software released under the GNU General Public Licence version 2. If
you are unfamiliar with this license, please refer to http://www.gnu.org/licenses/gpl-2.0.txt
(a copy of this license is included in each copy of VAUCANSON in the file COPYING).

Beware that the license for the next versions of VAUCANSON will probably be different
(although VAUCANSON will stay an open and free software).

0.3 Prerequisites

C++ compiler G++ 4.x where x < 5.

XML The XML I/O system is based on the use of the Apache Xerces C++ library version 2.7+
(http://apache.org/xerces—c/). (On Ubuntu/Debian, install the following packages:
libxerces27 and libxerces28-dev, or libxerces28 and libxerces28-dev).

Boost Boost provides free peer-reviewed portable C++ source libraries (On Ubuntu/Debian,
install the following packages: libboost-dev, libboost-serialization-dev, libboost-graph,
libboost-graph-dev). VAUCANSON is compatible with Boost versions >= 1.34. It
shall be noted that with Boost 1.44, a special flag must be given to the compiler
through the configure file: CPPFLAGS=’-DB00ST_SPIRIT_USE_OLD_NAMESPACE’.

Ncurses needed for building TAF-KIT (On Ubuntu/Debian, install the following packages:
libncursesb, libncurses-dev).



Graphviz The display of automata is made using AT&T GraphViz application (On Ubuntu/Debian,
install the following package: graphviz).

0.4 Building Vaucanson

Detailed information is provided in both INSTALL and doc/README.txt files. The following
installation commands will install VAUCANSON in ’/usr/local’.

$ cd vaucanson-1.4
$ ./configure

$ make

$ sudo make install

Depending on your architecture, both Boost and Xerces might be located in non-standard
directories. If you are unsure of the location of your libraries, you may type in your shell:

$ whereis boost

These commands will return the paths to Boost headers. You can then specify this
directories to the configure file through the use of two environment variables: CPPFLAGS
for the header files and LDFLAGS for the library files. For instance, if your Boost headers
are located in ’/usr/user name/home/my_path_to_boost/include’ and its library files in
'/usr/user name/home/my_path_to_boost/1lib’ you will use the following configure line:

$ ./configure CPPFLAGS=’-I/usr/username/home/my_path_to_boost/include’
LDFLAGS=’/usr/user name/home/my_path _to_boost/1ib’

If VAUCANSON is not installed but simply compiled it, the TAF-KIT binaries are to be
found in the directory 'vaucanson-1.4/taf-kit/tests/’ (This directory contains wrappers
around the real TAF-KIT programs from 'vaucanson-1.4/taf-kit/src/’ that enable them
to run locally).

0.5 MacOSX specifics

The installation process of VAUCANSON and its dependencies on MacOS X is less straightfor-
ward than onto other Linux systems.

First, the MacOSX system should be up-to-date before going through the rest of the
installation process.

Second, the macports software will be used to get all the prerequisites and should be
installed first on the computer (see http://www.macports.org/). A complete guide to its
installation is available from http://guide.macports.org/. If macports is already installed,
it should be made up-to date by synchronising the local port tree with the global macports
ports by the following command.

$ sudo port selfupdate
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Three libraries are to be installed in order to build VAUCANSON (see Prerequisite for
details): Boost, Xerces, and Ncurses.

$ sudo port install ncurses
$ sudo port install boost
$ sudo port install xercesc

$

Note that executing each of these commands may take a while (especially when installing
Boost). By default, macports will install each of these three libraries in the /opt/local
directory, which is not standard with respect to the Unix organisation. In order to build
VAUCANSON, this directory is therefore to be specified to the configure command by the
following options:

$ ./configure CPPFLAGS=’-I/opt/local/include’ LDFLAGS=’-L/opt/local/lib’

Moreover, if the installed version of Boost is greater than or equal to 1.44 it is necessary
to add another option to the configure command:

$ ./configure CPPFLAGS=’-I/opt/local/include -DBOOST_SPIRIT_USE_OLD_NAMESPACE’
LDFLAGS=’-L/opt/local/lib’

The installation is then to be completed by the classical two lines:

$ make
$ sudo make install

The Graphviz application, which is used to displaying automata while looking for a ded-
icated graphic interface, is normally launched in an X11 window. It is to be acknowledged
that the call of Graphviz by TAF-KIT is not well tuned and that the output is rather poor.
It is not too difficult however for Mac users to get a rendering of automata of much better
quality (cf. Figure 1). This can be done in three steps.

First download the Graphviz application for Mac from www.pixelglow.com/graphviz/.
Although already old and outdated by the 2.xx versions, the 1.13 (v16) version is rec-
ommended as the settings is easier to handle in that version. Complete the installation by
putting the Graphviz.app folder in the Applications folder.

Second, write the following script in a file called dotty:

#! /bin/sh
if [ "x$1" = x- ]; then
cat >/tmp/tmpdotty$$.dot
open -W -a Graphviz /tmp/tmpdotty$$.dot
rm -f /tmp/tmpdotty$$.dot
else
open -W -a Graphviz "$1"
fi
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Finally, make this file executable, store it in a folder, and put the full name of this folder
in the PATH variable before /usr/local/bin: and /usr/X11/bin:. The appearance of the
automata will be determined by fixing the settings in the interface.

DOTTY

A
( zl@_eb‘;b

Il

alxml { 3 states, 6 transitions, #1=1,#T =1}

al.xml { 3 states, 6 transitions, #l = 1, #T =1}

Figure 1: Two versions of the Graphviz application
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Chapter 1

Presentation of TAF-Kit

TAF-KiT stands for Typed Automata Function Kit; it is a command-line interface to VAU-
CANSON. As stated in the introduction, the VAUCANSON platform is dedicated to the compu-
tation of, and with, finite automata, where ‘finite automata’ means weighted automata over
a priori arbitrary monoids.

In the static generic programming paradigm used in the VAUCANSON library, the types of
the automata that are treated have to be known at compile time. TAF-KIT, which is a set
of programs that should be called from the shell and that can be used to chain operations
on automata, has therefore been compiled for several predefined types of automata. It thus
allows to use already programmed functions on automata of predefined types. TAF-KIT gives
a restricted access to VAUCANSON functionalities, but it is a direct access, without any need
of programming skill. A basic familiarity with Unix command syntax only is sufficient to
make use of TAF-KIT.

In this chapter, we first give a series of examples of commands in the case of ‘classical
automata’. We then present the overall organisation of TAF-KiT, with the list of possible
instances and options. The following section describes the syntax of options that help define
the behaviour of the commands whereas the fourth section describes the syntax of rational
(that is, regular) expressions within VAUCANSON. The final section lists the input—output
commands of TAF-KIT; all other commands are presented in the next chapter.

1.1 First contact

Let us first suppose that VAUCANSON is fully installed (as explained in Section 0.4).! Any of
the following commands could be typed and their results observed.

We describe now (some of) the functions of the instance of TAF-KiT which deals with
‘classical automata’, that is, Boolean automata over a free monoid whose generators are
characters. These functions are called by the vesn-char-b command.

To begin with, we have to deal with an automaton of the correct type. There are several
means to build or define such an automaton, but the most direct way is to use one of those

If  VAUCANSON is only compiled without being installed, one should first go to the
‘vaucanson-1.4/taf-kit/tests/’ directory by a cd command, and type °‘./vcsn-char-b’ instead of
‘vcsn-char-b’ for each of the following commands.

11



whose definition comes with TAF-KiT. We choose the automaton A; shown at Figure 1.2
and whose description is contained in the XML file ‘al.xml’.

a a
. a M_b
)
b b

Figure 1.1: The Boolean automaton A; over {a,b}*.

The first command data will just make sure that TAF-KIiT knows about this automaton.
It will display the number of states, transitions, initial states, and final states of A;.

$ vcsn-char-b data al.xml
States: 3

Transitions: 6

Initial states: 1

Final states: 1

This automaton ‘al.xml’ can also be displayed with the command display:?
$ vcsn-char-b display al.xml

The displayed automaton won’t have a layout as pretty as in Figure 1.2, but it represents
the same automaton nonetheless.

al.xml { 3 states, 6 transitions, #1 = 1, #T =1}

Figure 1.2: Result of the command vcsn-char-b display al.xzml

The command aut-to-exp outputs a rational expression which denotes the language
accepted by A;. The command eval tells whether a word belongs to that language (answer
with 1 = yes, or 0 = no). This is not to be confused with a function with a Boolean answer...
c¢f. Section 2.1.3.5.

2If the GraphViz package is installed (see Section 0.3).

VAUCANSON 1.4 TAF-KIT Documentation -12 - September 28, 2011



$ vcsn-char-b aut-to-exp al.xml
(atb)*.a.b. (a+b) *

$ vcsn-char-b eval al.xml ’babab’
1

The automaton 4; is not deterministic and the determinize command will compute its
determinisation. As most TAF-KIT commands, determinize produces its output (an XML
file representing the automaton) on the standard output, an event which would hardly be of
interest. The normal usage is to divert the output by means of a shell redirection to a file
for subsequent computation with other commands.

$ vcsn-char-b determinize al.xml > aldet.xml
$ vcsn-char-b data aldet.xml

States: 4

Transitions: 8

Initial states: 1

Final states: 2

$ vcsn-char-b display aldet.xml

aldet.xml { 4 states, 8 transitions, #1=1,#T =2}

Figure 1.3: The determinisation of al.xml

The file ‘aldet.xml’ has been created into the current directory while ‘al.xml’ is a file
that is predefined in VAUCANSON’s predefined automata repository. We can call the command
data on either files using the same syntax because TAF-KIT will look for automata in both
places.

In the pure Unix tradition, we can of course chain commands with pipes. For instance,
the above two commands could be rewritten as:

$ vcsn-char-b determinize al.xml | vcsn-char-b data -
States: 4

Transitions: 8

Initial states: 1

Final states: 2
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where ‘=’ stands for ‘read from standard input’.

TAF-KIT actually supports a more efficient way of chaining commands: the internal
pipe. It is called internal because the pipe logic is taken care of by TAF-KIT itself, and not
using a Unix pipe at all: the commands are simply serialized in the same process, using the
automata object created by the previous one. It is more efficient because the automaton does
not have to be converted into an XML file for output, and then parsed back as input of the
next command in the chain. Here is how the above command would look using an internal
pipe; notice how the ‘|’ symbol is protected from its evaluation by the shell.

$ vcsn-char-b determinize al.xml \| data -
States: 4

Transitions: 8

Initial states: 1

Final states: 2

In the above command, ‘-’ does not designate the standard input, it denotes the result of the
previous command.

1.2 TAF-Kit organisation

TAF-KIT is indeed one program, and this same program is compiled for different types of
automata. The result of each compilation yields a command (with a distinct name) which
can be called from the shell. As we have seen in the preceding examples, every such command
essentially takes two arguments: the first one determines a function and the second one an
automaton which is the operand for the function.

1.2.1 Automata types

A (finite) automaton is a (finite) directed graph, labelled by polynomials in K(M), that is, by
(finite) linear combinations of elements of a monoid M with coefficients in a semiring K. The
type of an automaton is thus entirely determined (in VAUCANSON 1.4) by the specification
of K and of the type of M.

1.2.1.1 Semirings

The semirings that are instanciated in TAF-KiT 1.4 are shown in Table 1.1. All these
semirings are ‘numerical’ in the sense their elements are implemented as numbers, but for the
rationals: float for R, bool for B, int for the others. The rationals are pairs of integers and
implemented as pairs of an int and an unsigned. They all are commutative semirings.

1.2.1.2 Monoids

The monoids instanciated in TAF-KIT 1.4 are the free monoids and the direct products of
(two) free monoids. A free monoid is completely determined by the set of generators, called

3We add this precision as in the next version VAUCANSON 2, the ‘kind’ of labels will also be a criterion in
the definition of the (programming) type of an automaton.
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semiring mathematical symbol suffix in TAF-KiT

Boolean semiring B=(B,V,A) ‘b’
ring of integers Z = (Z,+,x) ‘-z’
field of reals R=(R,+,x) ‘-r’
field of rationals Q=(Q,+,x) ‘~q’
two element field Fo = ({0,1},+,%x) (with 1+1=0) ~f2’
min-tropical semiring  Zmin = (Z, min, +) ‘—zmin’
max-tropical semiring Zmax = (Z, max, + ) ‘-zmax’

Table 1.1: The semirings implemented in VAUCANSON TAF-KiT 1.4

alphabet. At compile time however, it is not necessary to know the alphabet itself: the type of
its elements, the letters, will suffice. Thus, for TAF-KIT, the type of letters of one alphabet
for a free monoid, of two alphabets for a direct product of two free monoids has to be defined.
In TAF-KIT 1.4, the following types of letters are considered:

1. the stmple letters, which may be characters: char, or integers: int;
2. pairs of simple letters.

The combinations that are instanciated in TAF-Ki1T 1.4 is shown in Table 1.2.

letter types free monoids free monoid products
characters char char-fmp
integers int int-fmp
pair of characters char-char
pair of integers int-int
pair of character and integer char-int

Table 1.2: The monoids implemented in VAUCANSON TAF-KIT 1.4

1.2.2 TAF-Kit instances

As the consequence of the preceding subsection, the type of an automaton is determined by
the following three data:

1. the type of the weight semiring;
2. the fact that the monoid is either a free monoid or a product of two free monoids.
3. the type of the letters that generate the free monoid(s).

Not all possible combinations derived from the types of semiring and free monoid listed
above are instanciated (it would amount to over 70 possibilities — even if one restricts oneself
to the same type for the input and output monoids in transducers). In VAUCANSON 1.4, ‘only’
18 combinations are instanciated; Table 1.3 shows these instances, their names (that is, how
they should be called from the shell), and the type of automata they allow to work with.
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program name

automaton type

alphabet type

weight semiring

vcsn-char-b automata characters (B,V,A)
vcsn-int-b automata integers (B,V,A)
vcsn-char-char-b automata pairs of characters (B, V,A)
vcsn-char-int-b automata pairs of character and integer (B,V,A)
vcsn-int-int-b automata pairs of integers (B, V,A)
vcsn-char-z automata characters (Z,+, x)
vcsn-int-z automata integers (Z,+, x)
vcsn-char-char-z automata pairs of characters (Z,+, x)
vcsn-int-int-z automata pairs of integers (Z,+, x)
vcsn-char-zmax automata characters (Z, max, +)
vcsn-char-zmin automata characters (Z, min, +)
vcsn-char-r automata characters (R, +, x)
vcsn-char-q automata characters (Q, +, x)
vcsn-char-£2 automata characters (Fa, +, x)
vcsn-char-fmp-b transducers characters (B,V,N)
vcsn-char-fmp-z transducers characters (Z,+, x)
vcsn-int-fmp-b transducers integers (B, V,A)
vcsn-int-fmp-z transducers integers (Z,+, x)

Table 1.3: The TAF-KIT instances in VAUCANSON 1.4

The first part of the table shows Boolean automata. The first instance, where the letters
are characters, corresponds to classical automata and has been used in the ‘First contact
section’. The next instance handles Boolean automata whose letters are integers; the three
others support alphabets of pairs. All of these are called Boolean automata because each
word is associated with a Boolean weight: either the word is accepted and its weight is true,
or it is not and its weight is false.

The instances for weighted automata are listed in the second part of Table 1.3. The first
four instances work with automata with weights in the ring of integers, and over free monoids
with different types of generators, the next five work with automata over a free monoid of
characters and with weights in different semirings. The third part shows the transducers,
instanciated in VAUCANSON 1.4; they are called fimp-transducers, where fmp stands for free
monoid products.*

1.2.3 Command options

Every TAF-KIT instance determines the weight semiring and the type of letters in the alpha-
bet(s). This is sufficient at compile time, but when a TAF-KIT command is ezecuted, some
more informations or data have to be known by, or given to, the command. They roughly fall
into three different classes:

4This name, or precision, comes from the fact that a transducer can be considered as well as an automaton
over the input monoid with weights in the rational series over the output monoid. In VAUCANSON, such type
of transducers is called rw-transducers, where rw stands for rational weights, to distinguish them from the
fmp-transducers. No rw-transducers are instanciated in TAF-K1T 1.4.
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1. the letters in the alphabet(s);

2. the informations concerning the input and output formats, which control the way the
arguments will be read and the results output by the command;

3. the data, called writing data, which control the way rational expressions are written or
read as symbol sequences; this is partly related with the letters in the alphabets.

The letters of the alphabets have to be given explicitely to the command. In many
cases however, this is transparent to, or unnoticeable by, the user: if a command calls an
automaton (or an expression) as a parameter and if this parameter is an XML file — under the
the Fsm XML format which is read by VAUCANSON—, the letters are contained in the file,
and nothing is to be added. In the other cases, the letters have to be listed in an option.

Data of the two other classes are given default values. They may be useful in order to
get the desired result, they are sometimes necessary to read the parameters as files under a
certain formats. All these options are described with more details in the next chapter.

1.2.4 TAF-Kit’s modus operandi

Each instance of TAF-KIT is a compiled program which offers a set of commands. All TAF-
KrT instances work identically. They differ on the type of automata they handle, and may
offer different commands because not every algorithms (and thus commands) work on any
automata type (c¢f. Chapter 3).

Any time an instance of TAF-KIT is run, it breaks its command line into command names
and arguments.

vcsn-char-b determinize al.xml\|minimize - \|data -
_—— | N N

vV
TAF-KIT instance name arg. name arg. name arg.
~ v ——
command 1 command 2 command 3

The internal pipe, ‘\|’, is used to separate commands. A command starts with a name,
it can be followed by several arguments (although only one is used in the above example).
These arguments can be very different depending on the command. So far, we have used
filenames as well as ‘=’ (to designate either the standard input or the result of the previous
command). Some commands will also accept plain text representing for instance a word or a
rational expression.

As explained in Section 1.2.3, the parameter(s) of a command may be completed and its
behaviour may be controlled by some options. We describe these options with more details
in the next section.

For each command, TAF-KIT will
1. parse the options,
parse all expected arguments (using indications that may have been given by options),

execute the algorithm,

=~ W N

print the result (in a format that can be controlled using options).

When commands are chained internally using ‘\|’ and ‘-’, the printing step of the com-
mand before the ‘\ |’ and the parsing step of the command after the ‘\ |’ are of course omitted.
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1.2.5 Automata repository and factory

Most of TAF-KIT functions allow to build automata from other ones. There are functions
which take a rational expression and yield an automaton that accepts the language denoted
by the expression, and a function edit that allows to define (or to transform) an automaton
element by element (cf. Section 2.3.5). Other features of TAF-Krr for the definition of
automata are the automata repository and the automata factory.

1.2.5.1 Automata repository

With our first example (¢f. Section 1.1), we mentioned that an automaton ‘al.xml’ is ready
and available to the functions of the instance ‘vcsn-char-b’. There exist some other automata,
for the same purpose, and such automata also exist for other instances of TAF-KIT 1.4; their
list is available via the option --list-automata:

$ vcsn-char-b --list-automata

The following automata are predefined:
- al.xml
- bl.xml
- div3base2.xml

double-3-1.xml

ladybird-6.xml

For every TAF-KIT instance vcsn-xxx-y, the XML files for these automata are located
at in a special directory, vaucanson-1.4/data/automata/xxx-y (c¢f. Section 2.3.0). More
details on these automata are given at Appendix A.

1.2.5.2 Awutomata factory

In the same directory as the automata quoted above, some programs have been compiled
which generate new automata, depending on parameters given to the program. The name
of the program is suffixed by the characteristic part of the name of the TAF-KIT instance.”
For instance, the program divkbaseb-char-b generates the automaton that accepts the rep-
resentation in base ‘b’ of numbers divisible by by ‘k’.

$ divkbaseb-char-b 5 3 > divbbase3.xml
$ vcsn-char-b data divb5base3.xml
States: 3

Transitions: 6

Initial states: 1

Final states: 1

We give another example of construction of an automaton with the factory at Section 2.1.4.
The list of automata factories is also given at Appendix A.

5If VAUCANSON is only compiled without being installed, one should first go to the
‘vaucanson-1.4/data/automata/char-b’ directory by a cd command, and type °./divkbaseb-char-b’
instead of ‘divkbaseb-char-b’ in the command of the example.
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Chapter 2

Specification of options
and IO functions

The list of possible options of a TAF-KIT command is obtained with the (classical) ‘~=help’
option. They fall in the following categories:

1. options that give information on the instance;
2. specifications of the alphabet(s);

3. determination of the input and output formats;
4. activation of benchmarking options;

5. and finally parametrization of the grammars for rational (that is, regular) expressions.

The description of the options of the first four categories is given in the next section; the
one of options controlling the rational expressions, called writing data, is postponed to the
following section.

2.1 Simple options

Along the Unix tradition, the options are given long names, called with the prefix ‘==,

together with short equivalent names, prefixed with a simple ‘=’, which, in practice, will often
be prefered.

2.1.1 Information options
They are listed in Table 2.1.

Caveat: The character ‘?’ being interpreted by the shell, it should be protected in order
to be given as an argument to a command. Without such a protection, the behaviour may
depend on the shell, and according to the files within the directory.

This option ‘?” should probably be suppressed, but it is necessary for the library ‘argp’
which is used for reading the options in the command line and it does not seem easy to get
around it. In any case, it should be avoided, and the ‘~-help’ option be used.

19



long option short purpose of the option

—--help -7 Give the help list

--usage Give a short usage message

--version -V Print program version

--list-commands -1 List usual commands

--list-all-commands -L List all commands, including debug commands
--list-automata List predefined automata

Table 2.1: Information options

2.1.2 Alphabet specification

The necessity of alphabet specification As we have seen (Section 1.2.2), every TAF-
K1t instance determines (or one could say, is determined by) the type of the letters that
generate the free monoid(s) over which the automata or the rational expressions are built.
And this is sufficient at compile time, that is, in order to generate TAF-KiT.

But VAUCANSON and the TAF-KIT functions are designed in such a way that they need
to know the complete type of an automaton or an expression in order to handle it, that is,
not only the type of weights and of letters, but also the set of letters that constitute the
alphabet(s).

The XML files which describe automata, or expressions, contain this information and are
so to say self-contained. For instance, when we read ‘al.xml’ in Section 1.1 and determinized
this automaton, we did not have to tell TAF-KIT that the alphabet was A = {a,b}. On
the contrary, when the automaton, or the expression, does not exist prior to the TAF-KiT
function, then specifying an alphabet is mandatory. For instance, the following commands!
end in error:

$ vcsn-char-b edit aut.xml

Error: alphabet should be explicitly defined using --alphabet
$

$ vcsn-char-b exp-to-aut ’aba+a’

Error: alphabet should be explicitly defined using --alphabet

In the latter case moreover, and as there is no a priori restriction on the characters that
can be used as letters, VAUCANSON needs to know the alphabet over which the expression is
built in order to parse the rational expression: there is no other way for guessing whether the
alphabet is A = {a,b} (and the ‘+’ is a rational operator) or if the alphabet is B = {a, b, +}
and the ‘4’ is just a letter.

Specifying the alphabet can be done by using ‘--alphabet=ab’ or its short equivalent
‘—aab’. For instance, the correct writing of the above command reads:

$ vcsn-char-b --alphabet=ab edit aut.xml

$ vcsn-char-b -aab exp-to-aut ’aba+a’ > aut.xml

!The function edit is described at Section 2.3.5, exp-to-aut which takes a rational expression and converts
it into an automaton at Section 3.1.5.2.
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$ vcsn-char-b display aut.xml

aut.xml { 5 states, 4 transitions, #1 = 1, #T =2}
Figure 2.1: Result of the command vcsn-char-b display aut.xml

Table 2.2 reviews the alphabet specification options. The different possibilities: characters,
integers, and pairs need to be described with more details.

long option short purpose of the option

--alphabet -a specify the alphabet of automata or rational expressions
--alphabet1 -a specify the first (or input) alphabet of transducers (fmp)
--alphabet?2 -A specify the second (or output) alphabet of transducers (fmp)

Table 2.2: Alphabet options

Character alphabets For characters alphabets (as with the ‘char’ TAF-KIT instances
used in the above examples), the letters of the alphabets can be arbitrary ASCII characters,
and need just to be listed after the ‘-—alphabet=" or ‘-a’ option. Some character alphabets
are predefined. These are:

‘letters’ for the lower case letters {a,b,...,z}.
‘alpha’ for the upper and lower case letters {a,b,...,2z, A, B,..., Z}.
‘digits’ for all digits {0,1,...,9}.
For instance, ‘-aletters’ is an abbreviation for ‘~aabcdefghijklmnopqrstuvwxyz’. The
above list of predefined alphabets is obtained by typing ‘vcsn-char-b --help’.
When specifying characters alphabets, the following characters have to be escaped with a
backslash:

L (SpaCe) R ‘n? C(? 4)7 () C,? .’\?

and in this case the list of characters has to be put within quotes. The same characters are
then used normally — without being escaped — in the expression. For instance, the following
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commands will create an automaton that recognize all ‘decimal’ numbers written in base 2,
and then display the quotient?.

$ vcsn-char-b -a’01\,’ exp-to-aut ’1(0+1)*+1(0+1)*,(0+1) (0+1)*’ > dec-bin.xml
$ vcsn-char-b quotient dec-bin.xml \| display -

dec-bin.xml { 4 states, 9 transitions, #1 = 1, #T =1}

Figure 2.2: Result of the command vcsn-char-b quotient dec-bin.xml \| display -

Integer alphabets The letters of an integer alphabet must be specified as signed integer
(they are represented by the C++ type int), and should be separated by commas. For instance,
the following command will construct an automaton that reads any sequence of coins of 1, 2,
5, 10, 20, or 50 cents, as long as the values are increasing.

vesn-int-b -a1,2,5,10,20,50 exp-to-aut ’1%2x5x10%20*50*’ > coins.xml
vcsn-int-b eval coins.xml ’1210°

vcsn-int-b eval coins.xml ’12105°

vcsn-int-b eval coins.xml ’121050°

= &6 O &6 = & &

Note that digits are characters and not integers, even if they look like the latter (for
integers between 0 and 9) and if, in VAUCANSON 1.4, no operations on integer letters are
implemented that could differentiate them. The only difference is thus the syntax when
listing them in the option.

Pair alphabets Pair alphabets should be specified using parentheses and commas to form
pairs — with types of letter that match the TAF-KIT instance, of course —, as in the following
example:

>The function quotient is described at Section 3.2.4.1; ‘dec-bin.xml’ is an automaton with 12 states and
27 transitions and diplaying it would have been messy.
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$ vcsn-char-int-b -a’(a,1) (a,-1) (b,2)’ exp-to-aut ’((a,-1)+(a,1))(b,2)’ > misc.xml
$ vcsn-char-int-b display misc.xml

misc.xml { 4 states, 4 transitions, #1 =1, #T =1}

Figure 2.3: Result of the command vcsn-char-int-b display misc.xml

Alphabets for transducers The products of two free monoids have two alphabets, one
for each monoid. The instances of TAF-KIT that handle transducers consequently support
two options ‘--alphabetl=’ and ‘--alphabet2=’, that can be abbreviated to ‘-a’ and ‘-A’
respectively. Table 1.3 gives the two possible choices for these alphabets in TAF-KiT 1.4:
both character, or both integer, alphabets. The following command calls for the interactive
construction of the right normaliser for numbers written in base 2 which is then shown below

(cf. [11)).

$ vcsn-int-fmp-b -a0,1,2 -A0,1 edit norm2.xml

norm2.xml { 2 states, 6 transitions, #1 =1, #T =1}

Figure 2.4: The normaliser in base 2

Caveat: The function exp-to-aut is not implemented in TAF-KIT 1.4 for the fmp instances
(cf. Section 3.5).

Unix usage The command line is first interpreted by the shell, which makes the characters
C4 T 97 ete. being given their meaning for the shell. In order to give them their
meaning in the current alphabet and in the writing of rational expressions, they have to be

protected by

) ‘in?
’,OI' n
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$ vcsn-char-b -aab cat-E aab
aab

$ vcsn-char-b -aab cat-E aa(b)
zsh: unknown file attribute

$ vcsn-char-b -aab cat-E ’aa(b)’
aa.b

$ vcsn-char-b -aab cat-E aabx*
zsh: no matches found: aabx*

$ vcsn-char-b -aab cat-E "aab*"
aabx*

The normal unix shell definition, allocation and utilisation of variables may be mixed
with the usage of TAF-KIT command lines. For instance, the following command will create
an automaton that recognize numbers of the form ‘12,456,789’, where a comma must be
used as thousand separator:

d=" (0+1+2+3+4+5+6+7+8+9)"
vcsn-char-b exp-to-aut -a’0123456789\,° "($d+$d$d+$d$d$d) (, $d$d$d)*" > numbers.xml
vcsn—-char-b eval numbers.xml 1,234,987

vcsn—char-b eval numbers.xml 1,24,987

O A = &fH &H &Ph

Note how the expression must be enclosed with ‘"’ rather than with ‘°’ in order to be correctly
interpreted.

$ d="(0+1+2+3+4+5+6+7+8+9)"
$ vcsn-char-b exp-to-aut -a’0123456789\,° ’($d+$d$d+$d$d$d) (,$d$d$d)*’> > numbers.xml
Lexer error, unrecognized characters: $d+$d$d+$d$d$d) (,$d$d$d) *

2.1.3 Input and output formats

The TAF-KIT commands are supposed to input and output objects of different sorts: au-
tomata, rational expressions, words, weights and Boolean results. Their formats are controlled
by the attributes of the input and output options. As shown on Table 2.3, there is one default
format when no format option is called.

These options are used not only to control and adequatly adjust the format of data handled
by TAF-KIT in order to process them but allow also to make TAF-KIT a translator between
different format for a given object.

2.1.3.1 Automata formats

Automata are always files; they are read from a file whose filename is specified on the com-
mand line, and the file is output on the standard output (or can be diverted to a named file
in the Unix way).

VAUCANSON can read automata in two formats: FsM XML (the default format), or in
a textual format, called fsm and which is close to the one used in OPENFST. It can write
automata in these two formats, as well as in the ‘dot’ format that can then be used for
graphical output afterwards.

VAUCANSON 1.4 TAF-KIT Documentation - 24 - September 28, 2011



long option short purpose of the option

--input -i  select input format for automata and rational expressions
—--output -0 select output format for automata and rational expressions
--verbose -v  select verbose option for Boolean results

-i values -o values format for automata format for rational expressions
(none) (none) Fsm XML text string
xml xml Fsm XML Fsm XML
fsm fsm ‘OPENFsT’ —
— dot dot —
exp exp — text string
fpexp fpexp text string

Table 2.3: Input and output options and formats

The xml format is the default format for input and output automata to and from VAU-
CANSON. It is defined by the Fsm XML format whose complete description will be given in
a forthcoming technical report (cf. also [10]).

The fsm format has been defined within the AT&T FSM Library™, Finite-State Machine
Library [2] and used in the OPENFST library [3].

vcsn—-char-b -ofsm cat bl.xml
0 a

0
1
1
1

o p T O
o O O O O

0

$
0
0
0
1
1
1
$ vcsn-char-z -ofsm cat bl.xml \| -ifsm eval - ’bab’
2

Caveat: The fsm format is not really implemented in TAF-KIT 1.4. It has been added in a
way which is more a feasibility proof. There are indeed two reasons for the limitations of the
fsm format within VAUCANSON.

First, the automata than can be described with the fsm format must meet several con-
ditions: one initial state only, labels are letters (or integers that refer to a symbol table).
Second, VAUCANSON does not code the weights correctly. It is thus inadequate to try to use
the £sm format for another automata than ‘letterized’” Boolean automata with a unique initial
state.

$ vecsn-char-z -ofsm cat c1.xml

011 O
000+1 O
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11 (20+21) 0

1 0

$ vcsn-char-z -ofsm cat cl.xml | vcsn-char-z -ifsm -ofsm cat -
01e O

000 O

1 0

The dot format produces dot files that can be processed and visualized using the GraphViz
package. The first two comand lines below are equivalent to the third one.

$ vcsn-char-b -odot cat bl.xml > bl.dot
$ dotty bl.dot
$ vcsn-char-b display bl.xml

2.1.3.2 Rational expression formats

Rational expressions are given either as character strings — default format — or XML files —
xml format.

By default, rational expressions are read as strings given on the command line, and output
as strings on the standard output. Both can be diverted in the Unix way, but a string written
in a file cannot be read by TAF-KIT in this file.

$ vcsn-char-b -aab cat-E ’(atb(a(b)*a)*b)*’

(atb. (a.b*.a)*.b)*

$ vcsn-char-b -aab cat-E ’(at+b(a(b)*a)*b)*’ > exp.txt
$ cat exp.txt

(atb. (a.b*.a)*.b)*

$ vcsn-char-b -aab cat-E exp.txt

Lexer error, unrecognized characters: exp.txt

$ cat exp.txt | vecsn-char-b -aab cat-E -

(atb. (a.b*.a)*.b)*

There are indeed two string formats for expressions, exp and fpexp, when they are made
explicit. The first one stands for expression, and is the default format, the second one for
fully parenthesized expression. They have both the same behaviour for the input. For the
output, the exp format gives an expression with as few parentheses as possible, the fpexp
format gives the expression with all parentheses made explicit.

$ vcsn-char-b -oexp -aab cat-E ’ax(b a)’
ax.b.a
$ vcsn-char-b -ofpexp -aab cat-E ’a*(b a)’

(((a)*.b).a)

Alternatively, rational expressions can be read from an Fsm XML file whose filename is
given on the command line, and output as an Fsm XML file as well.

$ vcsn-char-b -aab -oxml cat-E ’(a+b(a(b)*a)*b)*’ > exp.xml
$ vcsn-char-b -ixml cat-E exp.xml
(at+b. (a.b*.a)*.b)*
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2.1.3.3 Word formats

Words are always strings of letters, that are read on the command line, and written on the
standard output.

Caveat: Although words are, from a formal point of view, a (simple) instance of a rational
expression, TAF-KiT 1.4 handles them as objects of different and uninterchangeable types.
We come back to the subject in the next section.

2.1.3.4 Weight formats

Weights, that is, elements of the weight semiring, and such as the result of the evaluation of
a word in an automaton for instance, are simply output as strings on the standard output.

$ vcsn-char-z eval cl.xml ’101101°
45

The way they are input, as strings as well, as part of a rational expression, is described in
the next section.

2.1.3.5 Boolean result formats

Some TAF-KIT functions, such as which determines whether an automaton is empty or not,
yield Boolean results. In the default format, such results are returned using the status code
of the TAF-KIT instance, so that the correponding commands can be used as conditions in
shell scripts. According to Unix convention, the status code is 0 for true and any other
value for false. The shell makes this value available in the ‘$7’ variable.

The TAF-KIT option ‘--verbose’ or ‘-v’ can be used to request an explicit output of
this value.

$ vcsn-int-b is-empty coins.xml

$ echo $?

1

$ vcsn-int-b -v is-empty coins.xml
Input is not empty

2.1.4 Benchmarking options

The functions in VAUCANSON library are interspersed with instructions which trigger time
measurement in case some dedicated variables are set up in a certain way. This feature is
primarily intended to the adjustment and improvement of the programming of the library
rather than to the benefit of TAF-KIT users. It can nevertheless be activated through TAF-
KIT by instantiating some options. As they appear when the --help option is called, we
list them in Table 2.4 and briefly present them afterwards. We do not fully document these
options as they are anyway not yet finalized.
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long option short purpose of the option

--report-time [=VERBOSE DEGREE] -T Report time statistics
—--export-time-dot [=VERBOSE DEGREE] -D Export time statistics in DOT format
--export-time-xml [=VERBOSE DEGREE] -X Export time statistics in XML format
-—bench=NB_ITERATIONS -B  Bench
--bench-plot-output=0UTPUT FILENAME -0 Bench output filename

Table 2.4: Benchmarking options and formats

2.1.4.1 Time statistics

The --report-time option, -T for short, builds a file with some time statistics for the exe-
cution of the function it is called with, and outputs it on the standard error output. It is
recommanded to divert it (with the 2> redirection) to a file which will be exploited afterwards.
The example below shows only some lines (the most important ones) of this file.3

$ vcsn-char-b -T1 determinize ladybird-10.xml > 1dbl0Odet.xml 2> 1db10-time.txt
$ cat 1db10-time.txt
Taf-kit command bench

Charge 1id: <name> total self calls self avg. total avg.

100.0% O: _program 216.89ms 216.89ms 1 0.22s 0.22s
62.8% 9: automaton output 136.23ms 136.23ms 1 136.23ms 136.23ms
30.2% T: determinize 65.57ms 65.54ms 1 65.54ms 65.57ms

4.2% 1:CMD[0]: determiniz 80.51ms 9.1ims 1 9.11ms 80.51ms
2.5% 2: automaton input 5.50ms 5.50ms 1 5.50ms 5.50ms
0.1% 4: eps_removal 0.16ms 0.16ms 1 0.16ms 0.16ms
0.1% 3: cut_up 0.15ms 0.15ms 1 0.15ms 0.15ms
0.0% 8:is_realtime (autom 0.03ms  0.03ms 1 0.03ms 0.03ms
0.0%, 5: accessible_states 0.02ms 0.02ms 1 0.02ms 0.02ms
0.0% 6: sub_automaton 0.00ms 0.00ms 1 0.00ms 0.00ms

The content of the time statistics output is controlled by an integer called VERBOSE_DEGREE
and which can take the values 1, 2, or 3. Default value is 2.

The -D and -X options have the same behaviour as =T but output the file under another
format. The -D option yields a dot file which can be displayed on the screen. The =X option
yields an xml file which is ready for use by other programs.

2.1.4.2 Benching

The --bench option, -B for short, makes TAF-KIT to repeat the functions that follow the
option the number of times that is specified (compulsory parameter) with the option. The
data shown in the example above are stored in a result file for each of the execution, and then

3The automaton ladybird-10.xml has been built beforehand by the factory ladybird-char-b. The com-
putation has been done on a MacBook Pro with a 2 GHz Intel Core i7 processor.
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a summary of these data is made, which contains the mean, the sum, the minimum and the
maximum. This result file is output on the standard error output, which can be diverted
as usual.

$ vcsn-char-b -B5 determinize ladybird-10.xml > 1dblOdet.xml 2> 1db10-bench.txt
$ cat 1db10-bench.txt

————————————————————————— SUMMARY -—-————————mmmmmm oo
————————————————————————— Arithmetic mean

[Task list:]

Charge 1id: <name> total self calls self avg. total avg.

100.0% O: _program 233.22ms 233.22ms 1 0.23s 0.23s
63.7% 9: automaton output 148.47ms 148.47ms 1 148.47ms 148.47ms
30.6% T: determinize 71.29ms 71.27ms 1 71.27ms 71.29ms
2.9% 1:CMD[0O]: determiniz 84.62ms 6.88ms 1 6.88ms 84.62ms
2.6% 2: automaton input 6.12ms 6.12ms 1 6.12ms 6.12ms
0.1% 4: eps_removal 0.16ms 0.16ms 1 0.16ms 0.16ms
0.1% 3: cut_up 0.14ms  0.14ms 1 0.14ms 0.14ms
0.0%, 8:is_realtime (autom 0.02ms 0.02ms 1 0.02ms 0.02ms
0.0% b5: accessible_states 0.02ms  0.02ms 1 0.02ms 0.02ms
0.0% 6: sub_automaton 0.00ms 0.00ms 1 0.00ms 0.00ms

2.2 The writing of rational expressions

The definition of rational (or regular) expressions is rather an easy and classical subject of any
first year course in computer science (at least for the Boolean case). Reading and writing the
same expressions prove to be a much more tricky matter, for several reasons. Some are specific
to VAUCANSON: to begin with, no characters are reserved for the rational operators and the
usual ones may appear as letters in the alphabet over which the expressions are built; the
writing of weights, and the possibility of having integers as letters add to the problem. The
effective implementation of reading and writing strings that represent expressions, together
with the usual, and necessary, convention and simplification also conceal difficulties that have
to be circumvented by any software that deals with expressions.

2.2.1 The definition of expressions

2.2.1.1 Construction of expressions

The general definition reads as follow. A rational expression over a monoid M with weight
in a semiring K is a well-formed formula built from:

e the elements of M, which are the atomic formulas;
e the following operators:

1. two O-ary operators, or constants, denoted by ‘0’ and ‘1’ ;
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2. one unary operator star, denoted by ‘x’ ;
3. two binary operators, sum and product, denoted by ‘+’ and -’ ;

4. and, for every k in K, two unary operators, the left and right exterior multiplica-
tions by k, denoted by ‘k.” and .k’ .

This definition is the one taken by members of the VAUCANSON group in their writings
about weighted rational expressions (cf. [16, 12]). It must be said that it is not the most
common one. In general  if one may say so of the few publications that deal with weighted
rational expressions —, the elements of K are atomic formulas and the left and right exterior
multiplications are expressed with the product operator.

The VAUCANSON choice is more natural for the definition of the derivation of expressions,
even if it has the theoretical drawback of introducing an infinity of operators — something
that logicians do not like very much usually.

Being a formula, an expression may be viewed as a (finite) tree whose (inner) nodes are
labelled with operators and leaves by atoms. The tree itself may be faithfully represented in
different ways. The Fsm XML format provides all necessary tags to describe such a tree.

2.2.1.2 Reduction of expressions

Like automata, the rational expressions are a symbolic (and finite) representation of lan-
guages or series. Natural valuation of the atoms and induction rules make every expression
denotes a language or a series. Two rational expressions are equivalent if they denote the
same languages, or series. We want a priori to distinguish between two distinct equivalent
expressions — in particular since it is not always possible to decide whether two expressions
are equivalent or not.

For several reasons, we distinguish indeed between expressions that are obviouly equiva-
lent, such as (E+F) and (F+E),or (E+F)+G) and (E+ (F+ G)). There are however
expressions which can be constructed by the above rules, such as (E40) or (1-E), and which
we do not want to exist. Such convention are not only useful for simplifying expressions, they
are also necessary to make some computation processes (such as derivation) finite.

Everytime a rational expression is constructed inside VAUCANSON, either as the result
of a computation or as the mere consequence of the reading of a string of symbols that
represents it, the following rewriting rules, called trivial identities, and listed in Table 2.5,
are automatically applied, giving rise to a so-called reduced expression which is obviously
equivalent to the original expression.

In this table, E stands for any rational expression, = is any monoid generator (that is, a
letter, or a pair of two letters, or a pair of a letter and 1), k and h are weights, while {Ox }
and {1k} designate the zero and unit of the weight semiring. Any subexpression of a form
listed to the left of a ‘=’ is rewritten as indicated on the right.

These rewriting rules mean that it is impossible for VAUCANSON to output a rational
expression such as ‘({3}(0(ab)))*{4}’. This expression is by construction equal to ‘{4}1’ as
it can be verified with the following command:

$ vcsn-char-z -aab cat-E ’ ({3} (0(ab)))*{4}’

{4} 1
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E0=0 0E=0 E+4+0=E 04+E=E E1=E 1lE=E 0 =1 (T
{Ok}E=0 E{0x} =0 {k}0=0 0{k}=>0 {Ix}E=E E{lg}=E (Tk

{kY({RIE) = {kR}E  (E{k}){h} = E{kh}  ({K}E){h} = {k}(E{h}) (
1k} = {k}1  E({k}1) = E{k}  ({k}1).E = {k)E (Ux
1k} = {1 2o{k} = {k}z (

Table 2.5: The trivial identities

This command cat-E does not apply any algorithm to the rational expression. Its only
purpose is to read and write the rational expression using any I/O option supplied on the
command-line. The trivial identities are performed while reading the expression.

Caveat: The definition of the identity C, corresponds to what is actually implemented in
VAUCANSON 1.4 and is somehow a mistake. A more natural definition would be m{k} =
{k}m with m any element of the monoid. This may be corrected in forthcoming revisions of
VAUCANSON 1.4 but should anyway be reevaluated in connection with the definition of the
function derived-term for the weighthed automata.

2.2.2 Parsing strings into expressions

As we wrote above, there are several classical ways of faithfully representing an expression by
a string of symbols. We are nevertheless faced with two, and even three, problems.

First, we want to avoid the blotted form of marking languages, and even of fully parenthe-
sised forms, and to be able to use the more natural and common way of writing expressions
with implicit precedence of operators. Another difficulty arises when the operators, letters,
and weights share the same alphabet of characters for their represention. Finally, the possi-
bility of having integers as generators of a free monoid, that is, ‘letters’ that are written as
sequences of characters, brings in another problem. We treat these questions one after the
other, and begin with what can be considered as the default conventions.

We first suppose that the alphabet is an alphabet of characters (letters and/or digits for
the time being) and has been defined by means of the --alphabet option. According to
the above definition, we define in VAUCANSON rational expressions over A* (as opposed to
rational expressions over A), that is, any word of A*  string of letters of A is seen as an
atomic expression. This feature may prove to be somewhat misleading (see below).

2.2.2.1 The rational operators

The three rational operators, sum, product and (Kleene) star are represented — by default —
as in the following Table 2.6. The representation of the (left and right) exterior multiplications,
that is, the representation of weights, is described at Section 2.2.2.2.

VAUCANSON distinguishes indeed between two concatenation operators: the classical con-
catenation of expressions, as described in the above table, and concatenation of letters (or
generators) which form elements of the monoid and which remains implicit most of the time.
The default explicit notation for it is # (¢f. Table 2.7).
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Input Output Operator

Ex Ex Kleene star

EF or E.F E.F concatenation (implicit or explicit)
E+F E+F disjunction
(E) according to format grouping

Table 2.6: Rational operators

Operators precedence The classical precedence relation between operators which allows
to spare grouping symbols is extended in order to include the exterior multiplications and the
concatenation of letters:

E>SEx >k > k> > 47,

For instance, the rational expression which denotes the language that consists of all words
that contain ‘ab’ as a factor can be written (by a user) as ‘(a+b)*ab(a+b)*’. VAUCANSON
outputs it by making the product between non-atomic subexpressions explicit.

$ vcsn-char-b -aab cat-E ’(a+b)*ab(a+b)*’
(a+b)*.ab. (a+b) *

$ vcsn-char-b -aab cat-E ’((a+b)*) (((ab)) (a+b)*)’
(a+b)*.ab. (a+b) *

An atom which is enclosed in grouping symbols is not an atom anymore.

$ vcsn-char-b -aab cat-E ’((a) (b))’
a.b

Caveat: because VAUCANSON builds rational expressions on top of words, the Kleene
star operator and the weights (see below) apply to words and not to letters as it is usually
the case in other applications. For instance, ‘ab*’ is the same rational expression as ‘(ab) *’
for VAUCANSON, but it is different from ‘a.b*’ or ‘a. (b*)’.

Associativity Sum and product of languages or series are associative, but it is not the case
of the corresponding rational operators, as we have recalled above. The construction of the
Thompson automaton of an expression makes it clear: Figure 2.5 displays the result of the
following commands

$ vcsn-char-b -aabc thompson ’(a+b)+c’ \| display -
$ vcsn-char-b -aabc thompson ’a+(b+c)’ \| display -

The default bracketing is on the left, that is, a + b + ¢ is the same as (a + b) + ¢, a.b.c is
the same as (a.b).c. For the output, the default format for expressions as text strings, called
exp, represents the sum and concatenation as associative operators. The fpexp format yields
the full paranthesized writing.

$ vcsn-char-b -aabc cat-E ’a+b+c’
a+b+c
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thomp-abe-left.xml { 10 states, 11 transitions, #1 =1, #T =1} thomp-abe-right.xml { 10 states, 11 transitions, #1 =1, #T =1}

?

Figure 2.5: The operator ‘+’ is not associative

$ vcsn-char-b -aabc cat-E ’a+(b+c)’

atb+c

$ vcsn-char-b -aabc -ofpexp cat-E ’a+b+c’
((at+b)+c)

$ vcsn-char-b -aabc-ofpexp cat-E ’a+(b+c)’
(a+(b+c))

2.2.2.2 The weights

Weights are written in braces, as in ‘{3}’. When the expression is output by VAUCANSON,
weights are also followed? by a blank space.

$ vcsn-char-z -aab cat-E ’{2}a + {2} b’

{2} a+{2} b

As another example, the automaton C; of Figure 2.6 is described in the file c1.xml and gives
rise to the following command and output:

$ vcsn-char-z aut-to-exp cl1.xml
(a+b)*.b. ({2} a+{2} b)*
$ vcsn-char-z display cl1.xml

Eventhough all semirings which are instantiated in TAF-KIT 1.4 are commutative, this is
not an assumption which is made in VAUCANSON in general. In any case, the weight semiring

4This is not so good and will hopefully be corrected in further versions of VAUCANSON.
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a+b 2a+2b o,.

cl.xml { 2 states, 3 transitions, #l =1, #T =1}

Figure 2.6: The Z-automaton C; and its display by Graphviz.

be commutative or not, the left and right exterior multiplications yield distinct expressions,
from which distinct automata are built.

$ vcsn-char-z -aab cat-E ’{2}ab{3}"’
{2} (ab {3})

$ vcsn-char-z -aab cat-E ’{2}{3}ab’
{6} ab

2.2.3 Parser parametrization

As there is a priori no restriction on the alphabet, the representation of the rational operators
— called token — may collide with the one of elements of the monoid. VAUCANSON actually
allows every operator to be represented by an arbitrary string. The set of these representations
is called the writing data.

It is a feature of VAUCANSON that some different default values are prepared for the
constants so that TAF-KIT may try to choose a representation which does not collide with
the words. For the same purpose, the other tokens have to be given explicitely.

2.2.3.1 Implicit parametrization: the constants

The constants 0 and 1 are naturally written by default as 0 and 1. This is witnessed, for
instance, in the following command call that instantiates the last of the trivial identities (T)
(cf. Table 2.5):

$ vcsn-char-b -aab cat-E ’0%’
1

If ‘17 is a letter in the alphabet — as a character (digit) — the same symbol cannot be
used for representing the constant 1 nor the identity of the monoid, that is, the empty word.”
VAUCANSON chooses the first available representation of the identity from the following list
of candidate symbols: ‘1’, ‘e’, or ‘_e’, which does not collide with any letter of the alphabet.

5In TAF-KiIT 1.4, the functions which parse with rational expressions over a product of free monoids are
not implemented (c¢f. Section 3.5).
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$ vcsn-char-b -aabl cat-E 0%’
e
$ vcsn—-char-b -aabel cat-E ’0x%’
_e

Similarly, if ‘0’ is a letter in the alphabet — as a character (digit) — the same symbol cannot
be used for representing the constant 0 nor the null series and VAUCANSON chooses the first
available representation of the zero from the following list of candidate symbols: ‘0’, ‘z’, or
‘_z’, which does not collide with any letter of the alphabet. Because of the trivial identities
(see Section 2.2.1.2), this is a much rarer situation. The following calls to the expand function
(cf. Section 3.1.5.3) yields 0 in a non trivial way:

$ vcsn-char-z -aal expand ’a+{-1}a’
0

$ vcsn-char-z -aa01 expand ’a+{-1}a’
z

$ vcsn-char-z -aaz01 expand ’a+{-1}a’
-z

Caveat: (i) If the alphabet contains the three characters ‘1’, ‘e’, and ‘., the default
representation of the constant 1 is still ‘_e’ and another less ambiguous representation has
to be chosen explicitely (cf. below). The same is true for the default representation of the

constant 0 if the alphabet contains the three characters ‘0’, ‘z’, and ‘_’,

$ vcsn-char-b -a_abel cat-E ’0%*’

e

$ vcsn-char-z -a_az01 expand ’a+{-1}a’
-z

(ii) The identity of free monoid over an alphabet of pairs or of a product of free monoids
whose generators are characters is always 1 by default, even if the alphabets of the components
of the pairs or of the components of the product contain ‘1°.

In the results of the following commands, note how the coding of the identity element
of the monoid (underlined for helping the reader) changes from 1 to e when one goes from
the automaton over the pairs (resp. from the transducer) to the projection on the second
component (resp. to the image).

$ vcsn-char-char-b -a’(a,0)(b,1)’ exp-to-aut ’((a,0)+(b,1))*’ > ex-pairl.xml
$ vcsn-char-char-b aut-to-exp ex-pairl.xml
((b,1)+(a,0).(a,0)*.(b,1)).((a,0).(a,0)*.(b,1)+(b,1))*.((a,0).(a,0)*+1)+(a,0)
$ vcsn-char-char-b second-projection ex-pairl.xml | vcsn-char-b aut-to-exp -
(140.0%.1).(0.0*.1+1)*. (0.0%+e)+0.0%+e

$ vcsn-char-char-b pair-to-fmp ex-pairl.xml > ex-fmpl.xml

$ vcsn-char-fmp-b aut-to-exp ex-fmpl.xml
((b,1)+(a,0).(a,0)*.(b,1)).((a,0).(a,0)*.(b,1)+(b,1))*.((a,0).(a,0)*+1)+(a,0)
$ vcsn-char-fmp-b image ex-fmpl.xml | vcsn-char-b aut-to-exp -
(140.0%.1).(0.0*.1+1)*. (0.0%+e)+0.0*+e
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For integer alphabets, the constant 1 and the empty word on one hand, the constant 0 and
the null series on the other, are always (that is, even if the integers ‘1’ or ‘0’ are not in the
alphabet) written as ‘e’ and ‘z’ respectively.

$ vcsn-int-z -a’2,3’ expand ’2+{-1}2’

z

$ vcsn-int-z -a’2,3’ expand ’ (2+{-1}2)*’
e

2.2.3.2 Explicit parametrization: the parser option

Table 2.7 shows the tokens that are used in the writing of rational expressions within VAU-
CANSON, together with their meaning and default values. The --parser option can be used
to modify the values of these tokens. Each of them must be defined as a non-empty string.

long option  short purpose of the option

--parser -p fix the value of the tokens

--parserl -P fix the value of the tokens concerning input alphabet

--parser? -Q fix the value of the tokens concerning output alphabet
token meaning default value(s)

‘ZERO’ constant ‘0’ and the null series ‘0, ‘z’, ‘.z’

‘ONE’ constant ‘1’ and the identity of the monoid ‘1, ‘e’ ‘e’

‘STAR’ Kleene star x

‘PLUS’ sum +

‘TIMES’ product ‘L

‘CONCAT’ concatenation (product within the monoid) G

‘OPAR’ group start ‘¢

‘CPAR’ group end 9’

‘OWEIGHT’ weight start g

‘CWEIGHT’ weight end ‘b

‘SPACE’ space character (to be ignored) ’

Table 2.7: Tokens of the parser option: the writing data

This ability of the user to define the tokens at will allows to use characters of any kind as
letters of the alphabet. For instance, one may define the language of well-parenthetized words
of nested depth at most 2, over the alphabet {(,)}, for which one should obviously rename
the ‘OPAR’ and ‘CPAR’ tokens.

$ vcsn-char-b -a’\(\)’ --parser=’0PAR=[ CPAR=]’ cat-E ’[([(]*)]*’
[C.O*.)Tx

The values of the writing data are stored® in the XML file which contains the automaton
or the expression, so there is no need to specify them again when working from a file.

5This is a questionable feature of both VAUCANSON 1.4 and the corresponding version of Fsm XML, but it
is so.
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$ vecsn-char-b -a’\(\)’ --parser=’0PAR=[ CPAR=]’ exp-to-aut ’[([()]*)]*’ > par.xml
$ vcsn-char-b aut-to-exp par.xml

GLCH . ICHTI*DHT.ICGLC) . [CHI*)+)T]*+1

Caveat: It is the responsability of the user to define the tokens in such a way there is no
collision between them nor with the elements of the monoid.

In case there exist such collisions, the way the tokens are recognized in a string of letters
may depend upon the token.”

$ vcsn-char-b -a_abel cat-E ’_eO*+e_e_.e’

_ete_.e

$ vcsn-char-z -a_aez01 cat-E ’z_aO+a_z0+a(_z)0+a_z_eO0’
z_al0+a_z0+a._z.0+a_z0

In the first line, the string _e has been recognized as the constant 1; in the second, the string
_z has not been recognized as the constant 0.

As a consequence, it is not possible in VAUCANSON 1.4 to use the alphabet of all ASCII
characters.

The token TIMES As noted at Table 2.6, the token TIMES is given a unique value for the
output of strings by VAUCANSON, but the empty string is always accepted as input for the
‘representation’ of the same operator product.

$ vcsn-char-b -aab cat-E ’(a+b) (b+a)’

(a+b) . (b+a)

$ vcsn-char-b -a’ -.’ --parser=’TIMES=x PLUS=|’ cat-E ’... -—= (... [-... )’
L T |

The token CONCAT The token CONCAT is used to represent the same operator product, but
between letters of the alphabet, when such a sequence forms an element of the monoid. As
for TIMES, CONCAT is given a unique value for the output of strings by VAUCANSON, but the
empty string is always accepted as input for the ‘representation’ of the same operator. Indeed,
the existence of this token is hardly noticeable when one uses alphabet of characters, as its
default value in this case is the empty string as well. It is necessary to explicitely give it a
non empty value in order to make it appear.

$ vcsn-char-b -aab cat-E ’(aba) (bab)’

aba.bab

$ vcsn-char-b -aab --parser=’CONCAT=-’ cat-E ’(aba) (bab)’
a-b-a.b-a-b

This token is useful, and necessary, when the generators of the monoid, that is, the letters,
are not characters but written as sequences of symbols. In TAF-KIT 1.4, this happens for the
instances in which the type of letters are integers. In this case, the default value of CONCAT
is ‘#’. The token is necessary when the set of letters, viewed as a set of words on the alphabet
of digits, is not a prefix code.

"This has to be corrected in the forthcoming versions of VAUCANSON.
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$ vcsn-int-b -a’0,1,2’ cat-E ’10(12+21)%*’

1#0. (1#2+2#1) *

$ vecsn-int-b -a’0,1,12,22° cat-E ’10(12+122)*’
vcsn-int-b: Lexer error, unrecognized characters: 2)*
$ vecsn-int-b -a’0,1,12,22° cat-E ’10(12+1#22)*’

1#0. (12+1#22) *

One understands that the parser matches the longest prefiz of the string it reads with the
letters of the alphabet.

The token SPACE The token SPACE is meant to be a character or a string that is equivalent
to the empty sequence and that makes the writing of expressions as strings more readable
by the users. Of course, its default value is the space character and is likely to keep this
value unless the space character itself is a letter of the alphabet (as in the Morse alphabet
considered in the example above).

Caveat: TAF-KIT 1.4 does not formally implement this specification. When SPACE is used
between letters of the alphabet, it is replaced by TIMES, instead of CONCAT as it should
be if it were equivalent to the empty sequence. One may argue however that the actual
implementation is closer to the natural intuition.

$ vcsn-char-b -aab cat-E ’(aba) (bab)’

aba.bab

$ vcsn—char-b -aab cat-E ’(a b a) (b a b)’

a.b.a.b.a.b

$ vcsn-char-b -aab --parser=’CONCAT=-’ cat-E ’(aba) (bab)’
a-b-a.b-a-b

$ vcsn-char-b -aab --parser=’CONCAT=-’ cat-E ’(a b a) (b a b)’
a.b.a.b.a.b

$ vcsn-char-b -aab --parser=’CONCAT=- SPACE=#’ cat-E ’ (a#b#a) (b#a#b)’
a.b.a.b.a.b

2.2.3.3 Overwriting the writing data

The writing data are used when parsing a string into a rational expression and when writing
back a rational expression as a string, or even when displaying an automaton. A rational
expression or an automaton themselves do not call on the writing data. Nevertheless, and as
we said above, the writing data are embarked in the XML file that contains an automaton or
an expression (cf. Appendix ??). It makes these objects fully self-contained and allows for
instance to convert them as a rational expression written as a string without giving additional
information.
The ‘--parser=’ option can then be used to modify the way the object will be output.

$ vcsn-char-b -a’\(\)’ --parser=’0PAR=[ CPAR=]’ -oxml cat-E ’[([(D]*)]*’ > p.xml
$ vcsn-char-b -ixml cat-E p.xml

LCLCOT*)]x

$ vcsn-char-b --parser=’0PAR=< CPAR=>’ -ixml cat-E p.xml

<(.<()>*.)>x%
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If we edit the file p.xml and suppress the writing data in it (and write the result in the
file pp.xml), we then get the output with the default values for the tokens.

$ vcsn-char-b -ixml cat-E pp.xml

(CCCII* D)=

2.3 TAF-Kit IO functions

We end this chapter with the description of the input and output commands available within
TAF-KIT. The other commands that perform computations on the automata and expressions
are described in the next chapter.

1. data <aut>

2. cat <aut>

3. cat-E <ezp>
4. display <aut>

5. edit <aut>

2.3.0 Data file location

TAF-KiT works (or a user works with TAF-KIT) in a current directory called working direc-
tory. On the other hand, every instance vesn-xxx-y of TAF-KIT knows a directory, called
data directory, located at vaucanson-1.4/data/automata/xxx-y, and where automata pre-
defined by VAUCANSON are stored. The latter form the automata repository of the instance
(cf. Section 1.2.5). See Appendix A for the list of automata in each repository.

Every TAF-KIT command writes in the working directory (or in any directory which is
assigned by the usual Unix file path scheme). As we mentioned in Section 1.1, every TAF-
KIT command first reads in the working directory, and, if the automaton is not found there,
it then reads from the data directory.

2.3.1 data

$ vcsn data a.xml
States: 3
Transitions: 6
Initial states: 1
Final states: 1

2.3.2 cat

$ vcsn cat a.xml > b.xml

$

Prints some characteristic data on the automaton a.zml (cf.
Section 1.1).

Reads the automaton a.zml and writes it in the file b.zml.
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Comments: The cat function of VAUCANSON works very much in the same way as the Unix
cat command and allows in the same way to write a file on the standard output or in another
file.

The main difference is the behaviour described above: the cat command first reads from
the working directory and then from the data directory and thus allows to ‘load’ predefined
automata from the data directory to the working one.

The next difference is that the format of both the input and output may be controlled
via the -i and -o options, as described at Section 2.1.3.1. The cat function thus allows to
convert a representation in one format into a representation in another one (c¢f. Section 2.1.3.1
for the shorcomings of the conversion between the xml and the fsm formats).

2.3.3 cat-E
$ vcsn-char-b -aab cat-E ’ezp’ Read the expression ezp given as a string,
<red-exp> stores it in the memory, and writes it back,
$ vcsn-char-b -oxml cat-E ’ezp’ > e.xml as a string by default.
$ vcsn-char-b -ixml cat-E e.xml It can also read and write the expression as
<red-exp> an XML file.

$ vcsn display a.xml

$

$ vcsn edit a.xml

$

Comments: The different behaviours of the cat-E function according to the possible formats
have been described at Section 2.1.3.2.

A rational espression output by cat-E is in reduced form (cf. Section 2.2.1.2).

2.3.4 display

Display the automaton a.zml via Graphviz.

Comments: The same functionality may be achieved by outputting the automaton a.zml
in the dot format and then calling dotty directly (c¢f. Section 2.1.3.1).

The possibility of using VGI, a graphic interface written within the VAUCANSON project?,
will be given as soon as possible.

2.3.5 edit

Create and edit the automaton a.zml via keyboard interface.

Comments: This command edit provides a textual interface to define automata interac-
tively. It takes as argument the filename of the automaton to be defined or modified. If the
file does not yet exist, the alphabet of the automaton should be specified on the command
line (using the --alphabet or -a option as with any other command), and the file will be
created when the editor is exited; if the file does exist, the alphabet will be read from the file
along with the automaton itself, and the file will be overwritten upon exit.

8By the team of National Taiwan University.
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The interface is based on a menu of choices. After the edit command line, and after
every choice in the menu, TAF-KIT first outputs a description of the current state of the
automaton, and then the full menu.”

$ vcsn-char-z edit c1.xml
Automaton description:
States: 0, 1
Initial states: 0 (W: 1)
Final states: 1 (W: 1)

Transitions:
1: From O to 1 labeled by 1
2: From O to O labeled by O0+1
3: From 1 to 1 labeled by ({2} 0)+({2} 1)

Please choose your action:

1. Add states 5. Set initial 9. Display
2. Delete a state 6. Set not initial
10. Save and exit
3. Add a transition 7. Set final 11. Exit without saving
4. Delete a transition 8. Set not final

Your choice [1-11]:

Note that states are numbered from 0, but transitions numbers start at 1.

The effect of the actions ‘1’, ‘27, ‘4’, ‘6’, ‘8’, and ‘9’ to ‘11’, is self-evident. The one of the
others will depend upon the type of the automaton being edited and thus upon the TAF-KIiT
instance which calls the edit command.

For Boolean automata or transducers, setting a state initial or final requires the speci-
fication of a state omly; for weighted ones, it requires the specification of a state and of a
weight.

$ vcsn-char-fmp-b edit t1.xml

Your choice [1-10]: 5
For state: 0

$ vecsn-char-z edit c1.xml
Your choice [1-11]: 7

For state: O
With weight: 2

The description of transitions will be the same for Boolean or weighted automata but
different for automata and transducers. When editing an automaton, the user is first asked

9The repetition of the menu after each command may seem heavy. But it proves to be very convenient.
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for the origin, then for the end of the transition, and finally for an expression that labels the
transition. This expression may be a simple letter from the alphabet, but also any weighted
rational expression without the star operator.

$ vcsn-char-z -aab edit test.xml
10
Your choice [1-11]: 3
Add a transition from state: O
To state: O
Labeled by the expression: a

Your choice [1-11]: 3
Add a transition from state: O
To state: O
Labeled by the expression: (1+{-1}ab) ({-1}a(1+{3}ba))

Automaton description:
States: O
Initial states: 0 (W: 1)
Final states: 0 (W: 2)

Transitions:
1: From O to O labeled by a
2: From 0 to O labeled by ({-1} a)+({-2} aba)+({3} ababa)

As it can be observed on the above screen capture, the expression that labels the transition
has been transformed into a polynomial (by the expand function — ¢f. Section 3.1.5.3). Note
that all simplifications have been done within the polynomial itself (that is, every monomial
appears only once) but not between the transitions that have the same origin and end.

The label that can be given to a transition in a transducer is more constraint: it is a
weighted element of the product monoid, that is, a weigted pair of words. After the origin
and end of the transition, the user is asked for the first component of the pair, then for the
second component, and finally for the weight.

$ vcsn-char-fmp-z -aab -Aab edit test-fmp.xml
11
Your choice [1-11]: 3
Add a transition from state: O
To state: O
First component labeled by the word: ab
Second component labeled by the word: ba
With weight: 1

Automaton description:
States: 0
Initial states: 0 (W: 1)

0The automaton test.xml is supposed to have been created with one state, both initial anf final.
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Final states: 0 (W: 2)

Transitions:
1: From O to O labeled by (ab,ba) W: 1

Caveat: The automata created with the edit function have the property that the initial and
final functions are scalar functions, that is, the labels of initail and final arrows are restricted
to be weights.

This restriction does not come from a theoretical limitation. One could imagine, and even
wish, to work with automata in which the initial or final functions may take as a value a
weighted expression, like any other transition label. To tell the truth, this possibility is open
in the library of VAUCANSON 1.4.

But it turned out that not all functions in TAF-Ki1T 1.4 would behave correctly in presence
of such general initial or final functions. This is the reason why we have left the restriction
in the edit function and we make the assumption that all automata that are dealt with by
TAF-KIT 1.4 meet this restriction, which we call the scalar end-function condition.

"' The transducer test-fmp.xml is supposed to have been created with one state, both initial anf final.
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Chapter 3

Specification of functions on
automata and rational expressions

Functions are classified according to the type of automata they are applied to. They depend
upon the type of the monoid: free monoid or direct product of two free monoids at this stage
for TAF-KiT 1.4 and upon the type of the multiplicity semiring: ‘numerical’ semirings of
different kinds. Some functions are specialised to even more particular type of alphabets.
Note that TAF-KIT 1.4 offers no instance where the multiplicity semiring is a semiring of
series (over a free monoid with multiplicity in a numerical semiring).! In this chapter, we
give the specifications of the functions, that is, the preconditions on their arguments, and the
description of the result and how it is related to the argument.

1. General automata and rational expressions

2. Weighted automata and rational expressions over free monoids

3. Automata and rational expressions over free monoids with weights in a field.
4. Boolean automata and rational expressions over free monoids

5. Weighted automata over product of two free monoids

6. Weighted automata over free monoids over alphabets of pairs

This classification is used to organise the lists of commands. KEvery instance of TAF-
KIT contains the commands of the first section and of one or several others, as indicated in
Table 3.1 below. A command with input and output arguments with different types belongs
to the instance corresponding to the input type. Moreover, such a command exists only if the
type of the output argument is instanciated as well (¢f. partial-identity, Section 3.2.1.4).

Every section begins with the list of commands that are then described in the section.

Whereas this possibility is offered within the library VAUCANSON 1.4, but it is out of the scope of this
user’s manual.
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command name

alphabet type

weight semiring function sections

vcsn-char-b characters (B,V,A) 1,2, 4
vesn—int-b integers (B, V,A) 1, 2,4
vcsn—-char-z characters (Z,+, x) 1, 2
vcsn-int-z integers (Z,+, x) 1, 2
vcsn-char-zmax characters (Z, max, +) 1, 2
vcsn-char-zmin characters (Z, min, +) 1,2
vcsn-char-r characters (R, +, %) 1,2,3
vecsn—-char-q characters (Q,+, x) 1,2,3
vcsn—-char-£2 characters (Fo, 4+, x) 1,2,3
vcsn-char-char-b pairs of characters (B, V,A) 1,2,4,6
vcsn-char-int-b pairs of character and integer (B, V,A) 1,2,4,6
vcsn-int-int-b pairs of integers (B,V,A) 1,2,4,6
vcsn—-char-char-z pairs of characters (Z,+, x) 1,2,6
vesn-int-int-z pairs of integers (Z,+, x) 1,2,6
vcsn-char-fmp-b characters (B, V,A) 1,5
vecsn—-char-fmp-z characters (Z,+, x) 1,5
vcsn-int-fmp-b integers (B, V,A) 1,5
vesn—-int-fmp-z integers (Z,+, x) 1,5

Table 3.1: The TAF-KIT instances in VAUCANSON 1.4 and their commands
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3.1 General automata and rational expressions

Automata are ‘labelled graphs’, and these labels are, in full generality, elements of a monoid
associated with a multiplicity (taken in a semiring), or a finite sum of such weighted elements.
The commands considered in this section make assumption neither on the monoid, nor on
the weight semiring. They are thus called by any instance of TAF-KIT, for automata of any
type.2

1. Graph functions

accessible <aut>, coaccessible <aut>
trim <aut>, is-trim <aut>
is-empty <aut>

is-useless <aut>
2. Transformations of automata

(2.1) proper <aut>, is-proper <aut>
(2.2) standardize <aut>, is-standard <aut>

3. Operations on automata

union <autli> <aut2>
sum <autl> <aut2>
concatenate <auti> <aut2>

left-mult <aut> <k>

(3.1)

(32)

(3.3)

(3.4) star <aut>
(3.5)

(3.6) right-mult <aut> <k>
(3.7)

chain <aut> <n>

4. Operations on behaviours of automata

(4.1) sum-S <auti> <aut2>
(4.2) cauchy-S <autil> <aut2>
(4.3) star-S <aut>

5. Automata and expressions; operations on expressions
(5.1
(5.2) expand <exp>
(5.3

2 Allowing some exceptions, mentioned when describing the functions.

) aut-to-exp <aut>, aut-to-exp-DM <aut>, aut-to-exp-S0 <aut>

) exp-to-aut <ezp>
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The following function is not implemented. It is just convenient to describe specification
of ‘dual’ functions in this section. It differs from transpose as it has no effect on the labels.

Reverses every edge of the underlying graph of the automaton

$ vcsn reverse a.xml > b.xml e
a.zml, as well as exchanges the initial and final edges and

$
write the result in b.zml.

3.1.1 Graph functions

Automata are ‘labelled graphs’: a number of functions on automata are indeed functions on

the graph structure, irrespective of the labels.

3.1.1.1 accessible, coaccessible
$ vcsn® accessible a.xml > b.xml Computes the accessible part of the automaton a.zml and
$ writes the result in b.zml.

Specification:

The description of the function is the specification. It is realised by a traversal of the under-

lying graph of a.zml. It may imply a renumbering of the states.
$ vcsn coaccessible a.xml > b.xml. Computes the co-accessible part of the automaton a.zml and
$ writes the result in b.zml.

Specification:

coaccessible(a.xml) = reverse(accessible(reverse(a.xml)))

3.1.1.2  trim, is—trim
$ vcsn trim a.xml > b.xml Computes the trim part of the automaton a.zml and writes
$ the result in b.zml.

Specification:

trim(a.xml) = coaccessible(accessible(a.xml))

$ vecsn -v is-trim a.xml

I . . Tells whether or not the automaton a.zml is trim.
nput is not trim

Specification:

is-trim(a.xml) = is-accessible(a.xml) A is-coaccessible(a.xml)*

3 As the functions of this section are valid for all instances of TAF-KIT 1.4, the instance in the description
is shown under the generic name vcsn.
4Even if the functions is-accessible and is-coaccessible are not implemented, the specification is clear.
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3.1.1.3 is-empty

$ vesn -v is-empty a.xml

Tnput is not empty Tells whether or not the automaton a.zml is empty.

3.1.1.4 is-useless

$ vcsn -v is-useless a.xml Tells whether or not the automaton a.zml has successful com-
Input is has successful computations putations.

Specification:
is-useless(a.xml) = is-empty(trim(a.xml))

Comments: is-useless is a graph function and tests whether there are successful computa-
tions in the automaton, that is a sequence of co-terminal transitions, the first one beginning in
an ‘initial state’, the last one ending in a ‘final state’. By definition, or by the way automata
are specified in VAUCANSON, each of these transitions have a non-zero label. This does not
imply that the label of the computation itself is different from zero, nor that the behaviour
of the automaton is different from zero.

For instance, the behaviour of the Z-automaton usl.xml of Figure 3.1 is the null series.
Nevertheles one has:

$ vcsn-char-z -v is-useless usl.xml
Input has a successful computation

usl.xml { 2 states, 2 transitions, #l = 1, #T =1 }

Figure 3.1: The Z-automaton usl.xml

3.1.2 Transformations of automata

3.1.2.1 is-proper, proper

$ vesn -v is-proper a.xml

. Tells whether or not the automaton a.xzml is proper.
Input is not proper

Specification:
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An automaton is proper if it has no spontaneous transitions,® that is, no transition labelled
by the identity of the monoid (empty word for free monoids, the pair of empty words for
product of free monoids). If a transition is labelled by a polynomial and not by a monomial,
this means that the support of the polynomial does not contain the identity.

$ vcsn proper a.xml > b.xml Computes a proper automaton equivalent to a.zml and writes
$ the result in b.zml.

Specification:

(i) This procedure can be called for automata of any type.

(ii) The procedure eliminates the spontaneous transitions of the automaton. The result may
not be defined for some automata of certain type. We follow the definition taken in [16, 17]
and consider that the result is defined if, and only if, the family of weights of computations
labelled by the identity is summable.
(ili) The spontaneous-transition elimination algorithm implemented in VAUCANSON 1.4 is
novel. It is valid for automata whose weight semiring is positive (such as K =B, (Z, min, +),
(Z,max,+)) or ordered, with a ‘positive’ part which is a subsemiring and a ‘negative’ part
which is the opposite of tbe positive part (such as K = Z, Q, R). Finally, the case of K = Fy
is treated separately.

Altogether, the algorithm is valid for all instances of TAF-KiT 1.4. It is (will be indeed)
documented in [14].

Example: We test the algorithme proper with the automaton prp-tstl.xml described
below and represented at Figure 3.2. We run indeed the test with a varying weight k for the
spontaneous transition 3 from state 1 to state 2 (k = % in the illustration below).

$ vcsn-char-q -aa edit prp-tstl.xml

Automaton description:
States: 0, 1, 2, 3
Initial states: 0 (W: 1)
Final states: 2 (W: 1)

Transitions:
1: From O to O labeled by ({1/2} 1)
2: From O to 1 labeled by a
3: From 1 to 2 labeled by ({1/2} 1)
4: From 2 to 1 labeled by 1
5: From 2 to 3 labeled by 1
6: From 3 to 1 labeled by ({-1} 1)

Although there exists always an order to eliminating the spontaneous transitions such that
one gets a valid automaton, the behaviour of prp-tstl.xml itself is defined if, and only if,
k< % and this is to be detected by the algorithm.

50ften called also e-transitions.
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prp-tstl.xml { 4 states, 6 transitions, #l = 1, #T =1}

Figure 3.2: A test for the algorithm proper

3.1.2.2 is-standard, standardize

$ vcsn -v is-standard a.xml

I . Tells whether or not the automaton a.zml is standard.
nput is standard

Specification:

An automaton is said to be standard if it has a unique initial state which is the destination of
no transition and whose initial multiplicity is equal to the unit (of the multiplicity semiring).

$ vcsn standardize a.xml > b.xml Transforms a.zml into a standard automaton and writes the
$ result in b.zml.

Specification:

(i) If a.zml is standard, b.zml=a.zml.

(ii) As a standard automaton is not necessarily proper, nor accessible, and the initial func-
tion of a state may a priori be any polynomial, standardize is not completely specified by
the definition of standard automaton and (i) above.

(ili) Roughly, the procedure amounts to make ‘real’ the subliminal initial state, eliminate by
a backward closure the spontaneous transitions thus created, and suppress among the former
initial states those ones that have become not accessible after the closure.

A more precise specification is given by the description of the algorithm at Section B.1.2.2.

Example: Figure 3.3 shows a transducer tt1.xml built for the sake of the example and the
result of the command:

$ vcsn-char-fmp-b standardize ttl.xml \| display -
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ttl.xml { 5 states, 7 transitions, #l =2, #T =2 } - { 5 states, 7 transitions, #l = 1, #T =3 }

Figure 3.3: A transducer and its standardization

3.1.3 Operations on automata

Caveat: Five of the seven functions described in this subsection have two input arguments.
The question then arise of the determination of the alphabet(s) of the output. Normally, it
should be the union of the alphabet(s) of the input arguments.

In TAF-K1T 1.4, the alphabet(s) of the output is the alphabet(s) of the first input argu-
ment. And thus, the letters that appear in the labels of the second input automaton must
be contained in the alphabet of the first input automaton. For further reference, we call
this assumption the two argument convention. This error will be corrected in the subsequent
versions of VAUCANSON.

3.1.3.1 union

$ vcsn union a.xml b.xml > c.xml Builds the automaton that is the union of a.zml and b.zml
$ and writes the result in ¢.zml.

Precondition: No precondition besides the two argument convention.
3.1.3.2 sum

$ vecsn sum a.xml b.xml > c.xml Build the automaton that is the ‘sum’ of a.zml and b.zml and
$ writes the result in c¢.zml.

Precondition: a.zml and b.zml are standard, for the sum operation is defined only on
standard automata, and obey the two argument convention.

Specification:

cf. Section B.1.3.2
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3.1.3.3 concatenate

Build the automaton that is the ‘concatena-
$ vcsn concatenate a.xml b.xml > c.xml . .
$ tion’ of a.zml and b.zml and writes the result
in c.aml.

Precondition: a.zml and b.zml are standard, for the concatenation operation is defined
only on standard automata, and obey the two argument convention.

Specification:

¢f. Section B.1.3.3.

Comments: The concatenate function of two automata realises the (Cauchy) product of
their behaviours. We keep the word ‘product’ for a product function which is based on
the Cartesian product of the automata and which realises the intersection of the accepted
languages in the case of Boolean automata, and the Hadamard product of the behaviours in
the general case of weigted automata (cf. Section 3.2.4.2).

3.1.3.4 star

$ vcsn star a.xml > b.xml Build the automaton that is the star of a.zml and writes the
$ result in b.zml.

Precondition: a.zml is standard, for the star operation is defined only on standard au-
tomata.

Specification:

cf. Section B.1.3.4
3.1.3.5 left-mult

$ vcsn left-mult a.xml k > b.xml Build the automaton that is obtained by multiplication on the
$ left of a.zml by k and writes the result in b.aml.

Precondition: a.zml is standard, for the left ‘exterior’ multiplication operation is defined
only on standard automata.

Specification:

cf. Section B.1.3.5

Comments: Beware that although the multiplication is on the left, the operand k is the
second argument, and thus written on the right of a.zml.
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3.1.3.6 right-mult

$ vcsn right-mult a.xml k > b.xml Build the automaton that is obtained by multiplication on the
$ right of a.zml by k and writes the result in b.zml.

Precondition: a.zml is standard for the right ‘exterior’ multiplication operation is defined
only on standard automata.

Specification:
c¢f. Section B.1.3.6

Example: Figure 3.4 shows the effect of a left and a right exterior multiplication on the
standardization of the Z-automaton c1.xml.

$ vcsn-char-z standardize cl.xml \| left-mult - 3 \| display -
$ vcsn-char-z standardize cl.xml \| right-mult - 5 \| display -

‘, 12) 0+(12) 1)

{5}e

- { 3 states, 5 transitions, #l = 1, #T =1} - { 3 states, 5 transitions, #l = 1, #T =1}

Figure 3.4: Left and right multiplication on a standard Z-automaton

3.1.3.7 chain
$ vcsn chain a.xml n > b.xml Build the concatenation of n copies of a.zml by and writes the
$ result in b.zml.

Precondition: a.zml is standard, for the concatenation operation is defined only on stan-
dard automata.

Specification:

$ vesn chain a.xml 0 > u.xml

where u.xml is the one state automaton (initial and final) with no transitions, which accepts
the empty word and which is the identity element for the concatenation of automata.

Example: Figure 3.5 shows the effect of a concatenation of 3 copies of the standardization
of the (B-)automaton al.xml.
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1L#T=1}

- { 10 states, 24 transitions, #I

Figure 3.5: Concatenation of 3 copies of the standardization of al.xml.

$ vcsn-char-z standardize al.xml \| chain - 3 \| display -

Comments: This function compensates for the absence of exponents in the writing of rational
expressions. Note that it may easily yield large automata and entail long execution time.

3.1.4 Operations on behaviour of automata

These functions implement somehow (one direction of) Kleene’s theorem by building standard
automata which realize the rational operations on the behaviour of the parameters (the -S
stands for ‘series’, as the behaviour is a series in general).

3.1.4.1 sum-S

s s 1 boxml > ] Build a standard automaton whose behaviour is the sum of

vecsn sum-— a.xm . Xm C.Xm . . .

$ the behaviours of a.zml and b.zml and writes the result in
c.zml.

Precondition: No precondition besides the two argument convention.
Specification:

sum-S(a.xml, b.xml) = sum(standardize(a.xml) ,standardize(b.xml))
3.1.4.2 cauchy-S

s hvs 1 boxml > ] Build a standard automaton whose behaviour is the (Cauchy)

vcsn cauc. - a.xm . Xm C.Xm

$ 7 product of the behaviours of a.zml and b.zml and writes the
result in c.zml.

Precondition: No precondition besides the two argument convention.

Specification:

cauchy-S(a.xml, b.xml) = concatenate(standardize(a.xml) ,standardize(b.xml))
Comments: The terminology used here is meant to recall that the product of behaviours
of automata, seen as series, is the Cauchy product, and corresponds to the concatenation of

automata (when they are standard automata) and not to their product. The latter is defined
for realtime automata over a free monoid only (cf. Section 3.2.4.2).
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3.1.4.3 star-S

$ vcsn star a.xml > b.xml Build a standard automaton whose behaviour is the star of the
$ behaviour of a.zml and writes the result in b.zml.

Precondition: No precondition.

Specification:

star-S(a.xml) = star(standardize(a.xml))

3.1.5 Automata and expressions; operations on expressions
3.1.5.1 aut-to-exp, aut-to-exp-DM <aut>, aut-to-exp-S0 <aut>

In VAUCANSON, expressions are computed from automata by the state elimination method.
The algorithm is then specified by the order in which the states are eliminated. In TAF-KIT
1.4, the order is either an order computed by a heuristics called the naive heuristics — which
is the default option , or an order computed by a heuristics due to Delgado Morais [9], or
simply the order of the state identifiers.

$ vcsn -oxml aut-to-exp a.xml > e.xml
$ vesn -oxml aut-to-exp-DM a.xml > e.xml

$ vcsn -oxml aut-to-exp-S0 a.xml > e.xml
$ e.zml.

Build a rational expression which denotes the
behaviour of a.zml and writes the result in

Precondition: No precondition.

Specification:
cf. Section B.1.4.

Example: The three orders applied to the automaton ladybird-3.xml (Figure 3.6) give the
following results.

$ vcsn-char-b aut-to-exp ladybird-3.xml
a.(c.atbtc+a. (b+c)*. (c+a) .a)*. (c+a. (b+c)*. (c+ta))+1

$ vcsn-char-b aut-to-exp-DM ladybird-3.xml

(a.(b+c)*.c+a.(b+c)*.a. (b+c)*. (c+a))*

$ vcsn-char-b aut-to-exp-SO ladybird-3.xml
a.(c.a+b+c)*.a.((c+a).a.(c.atb+c)*.a+b+c)*.((c+a) .a. (c.a+b+c)*.c+c+a)+a. (c.a+b+c) *.c+1

On this example the DM heuristics seems to be better than the naive one. They give
indeed the same results in many cases (eg for ladybird-n.xml for n > 4). A thorough
comparison between the two heuristics remains to be done.

The same functions apply of course to weighted automata and transducers as well.

$ vcsn-char-z aut-to-exp cl.xml

(0+1)*.1.(2 0+2 1)*

$ vcsn-char-fmp-b aut-to-exp t1.xml

((@,1).(1,p+,x).(b,1))*. ((a,1)+1)

$ vcsn-char-fmp-b aut-to-exp-SO t1.xml

((@,1).(1,y))*. (1,x) . ((b,1) . ((a,1) . (1,y))*. (1,x))*.(b,1) . ((a,1) . (1,y) ) *.
(@, D+D+((a,1).(1,y))*.((a,1)+1)
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$ vesn -ixml exp-to-aut e.xml > a.xml

ladybird-3.xml { 3 states, 9 transitions, #1 = 1, #T =1}

Figure 3.6: The automaton ladybird-3.xml

3.1.5.2 exp-to-aut

Build an automaton whose behaviour is de-
noted by the expression e.zml and writes the

$
result in a.zml.

Precondition: no precondition.

Specification:

The automaton a.zml is the ‘standard automaton’ of the expression e.zml, computed by the
recursive use of the operations on automata, as described at Section 3.1.3 and as specified at

Section B.1.3.

For the specification of the expression formats, c¢f. Section 2.1.3.2.

Caveat: (i) For technical reasons, the exp-to-aut function s not implemented for the
fmp instances, that is, for transducers, in TAF-KIT 1.4.

(ii) The actual implementation of exp-to-aut carries out first a ‘letterization’ of the expres-
sion, which is not necessary in principle. As it is, it is completely synonymous to the standard
function (cf. Section 3.2.3). This is one of the reasons for which it is not implemented for the
fmp instances.

Example: The exp-to-aut function is not implemented for transducers, but is for weigted
automata, as shown at Figure 3.7, result of the following command (c¢f. [16, Exer. 111.2.24]).
$ vcsn-char-q -aab exp-to-aut ’(1/6a* + 1/3b*)*’ \| display -
3.1.5.3 expand
$ vcsn -ixml -oxml expand e.xml > f.xml Expands the expression e.zml and writes the
$ result in a.zml.

Specification:
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- { 3 states, 6 transitions, #1 =1, #T =3}

Figure 3.7: A standard Q-automaton built by exp-to-aut

Distributes product over addition recursively under the starred subexpressions and groups
the equal monomials.

For the specification of the expression formats, c¢f. Section 2.1.3.2.

Example:

$ vcsn-char-b -aabc expand ’ (a+b+1) ((a+ba) (ca+cc))*’

a. (aca+acc+baca+bacc) *+b. (aca+tacc+baca+bacc) *+(aca+acc+baca+bacc) *
$ vcsn-char-z -aabc expand ’a(b(c+a)*+c(b)*)+ac(1+b) (b*)’

ab. (a+c)*+2 (ac.bx)+acb.bx*

Caveat: Not implemented for the fmp instances, that is, for expressions over a direct product
of free monoids.
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3.2 Weighted automata and expressions over free monoids

The following functions concern automata over a free monoid — as opposed to automata
over a direct product of free monoids. A priori, there is no assumption on the multiplicity
semiring. However, in VAUCANSON 1.4, TAF-KIT gives access to automata with weight in
‘numerical’ commutative semirings only.

The next two sections, Section 3.3 and Section 3.4, will describe functions that are special
to automata with multiplicity in a field (R, Q and F3) and in B respectively.

1. Properties and transformations of automata

transpose <aut>
is-realtime <aut>, realtime <aut>

is-unambiguous <aut>

)
)
)
) partial-identity <aut>
) characteristic <aut>

)

(1.
(L.
(1.
(L.
(1.
(1.6) support <aut>

2. Behaviour of automata

(2.1) eval <aut> <word>
(2.2) eval-S <aut> <word>

3. From expressions to automata

(3.1) standard <ezp>
(3.2) thompson <ezp>
(3.3) star-alphabet <ezp>

4. Operations on automata,

quotient <aut>
product <autl> <aut2>
power <aut> <n>

shuffle <autl> <autZ2>, infiltration <auti> <aut2>

3.2.1 Properties and transformations of automata

The following function is not implemented. It is just convenient to describe the specification

of realtime.

$ vcsn letterize a.xml > b.xml

$

Computes from a.zml an equivalent automaton whose transi-
tions are all labelled by letters or the empty word, by cutting
the label of every transition into letters and writes the result
in b.zml.
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3.2.1.1 transpose

$ vcsn transpose a.xml > b.xml Computes the transposition of the automaton a.zml and
$ writes the result in b.zml.

Specification:

Builds the transposition of the underlying graph, and exzchanges the initial and final functions
(that is, realises the function reverse (cf. Section 3.1). Finally, transposes the labels as well,
that is, takes the mirror image of the words that label the transitions and in the initial and
final functions.5

Comments: (i) The behaviour of A", the tranpose of A, is the transpose of the behaviour
of A.

(ii) There exists a transpose function for transducers (fmp) as well, that will be redefined
explicitely for them (cf. Section 3.5.1.2).

3.2.1.2 is-realtime, realtime

$ vecsn is-realtime -v a.xml

Input is realtime Tells whether or not the automaton a.zml is realtime.

Specification:

An automaton (over a free monoid) is realtime if it is both letterized and proper.

Caveat: The label of a transition of a realtime automaton is not necessarily a weighted letter
but may be a sum of weighted letters as shown on the followng example (c¢f. Figure 2.6 for
the automaton c1.xml).

$ vcsn-char-z -v is-realtime cl1.xml
Input is realtime

Computes from a.zml an automaton by eliminating the spon-
taneous transitions from the letterized version of a.zml and
writes the result in b.zml.

$ vcsn realtime a.xml > b.xml

$

Specification:
realtime(a.xml) = proper(letterize(a.xml))

Comments: (i) The problem with realtime is the same as the one of proper and has
been mentioned at Section 3.2.4.2.

(ii) letterize(proper(a.xml)) is another realtime automaton, which has potentially many
more states and transitions than realtime(a.xml).

Such automata cannot be built by the edit function and will not be considered within TAF-KiT 1.4 (scalar
end-function condition).
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3.2.1.3 is-unambiguous

$ vcsn -v is-unambiguous a.xml

. . Tells whether or not the automaton a.zml is unambiguous.
Input is unambiguous

Precondition: a.zml is a realtime automaton.

Specification:

An automaton is unambiguous if every word accepted by the automaton is the label of only
one successful computation.

Comments: (i) Being ambiguous or unambiguous is classically a property of Boolean
automata. We have found interesting to extend the definition to any weighted automata

(ii) The function implements the following characterization of unambiguous automata which
yields an algorithm of polynomial complexity:  An automaton A is ambiguous if, and only
if, the trim part of the product Ax A contains a state outside of the diagonal.

3.2.1.4 partial-identity

. , ansforms the automaton a.zml over A* into an automaton
$ tial-identit 1> ¢ wml Transf th t t l A* int t t
vcsn partial-—ldenti a.xm .Xm . . . .
$ P 7 over A* x A* (a fmp-transducer) which realises the identity
on the behaviour of a.zml and writes the result in t.zml.

Precondition: no precondition.

Specification:

Every transition of t.zml is obtained from a transition of a.zml by keeping the same weight
and by replacing the label f by the pair (f, f).

Example:

$ vcsn-char-z partial-identity cl.xml > clpi.xml
$ vcsn-char-fmp-z display clpi.xml

clpi.xml { 2 states, 5 transitions, #1 = 1, #T =1}

Figure 3.8: A weighted partial identity
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Caveat: (i) The partial-identity function is implemented for the TAF-KIT instances
vcsn-char-b, vesn-int-b, vesn-char-z, et vesn-int-z only, so that the type of the result
matches an implemented instance for fiup.

(ii) As the type of the result is different from the type defined by the calling instance of
TAF-KIT, it is not possible to use the internal pipe to chain the functions.

(iii) The partial-identity function requires the automaton to meet the scalar end-function
condition in order to behave correctly.

3.2.1.5 characteristic

Transforms the Boolean automaton a.zml into a char-

$ vcsn-xxx-k characteristic a.xml > b.xml acteristic automaton whose weight semiring is deter-

$

mined by the calling instance of TAF-KIT and writes
the result in b. zml.

Precondition: no precondition.

Example:
$ vcsn-char-zmin characteristic alct.xml > alctchr.xml

$ vcsn-char-zmin display alctchr.xml

alct.xml { 2 states, 4 transitions, #l =1, #T =1} alctchr.xml { 2 states, 5 transitions, #1 =1, #T =1}
Figure 3.9: A compact version of Ay and its characteristic automaton in (Z, min, +)

Comments: Eventhough different from the type of the input, the type of the result corre-
sponds to the calling instance of TAF-KIT: the internal pipe is thus usable.

3.2.1.6 support

Transforms the automaton a.zml (whose weight semir-

$ vcsn-xxx-k support a.xml > b.xml ing is determined by the calling instance of TAF-K1T)

$

into a Boolean automaton and writes the result in
b.xzml.

Precondition: no precondition.

Example:
$ vcsn-char-z support cl.xml > clspp.xml

$ vcsn-char-b display clspp.xml

VAUCANSON 1.4 TAF-KIT Documentation -61 - September 28, 2011



c1spp.xml { 2 states, 5 transitions, #1=1,#T =1}

Figure 3.10: The support of C;

3.2.2 Behaviour of automata

The function aut-to-exp and its variant (cf. Section 3.1.5.1) apply to these automata.

3.2.2.1 eval

$ vcsn eval a.xml ’word’ Computes the coefficient of the word word in the series realized

by a.zml.

Precondition: (i) a.zml is realtime.

(ii) word is a sequence of letters in the input alphabet of a.zml (the generators of A*).
Example:

$ vcsn-char-z power7 cl.xml 10 > c10.xml
$ vcsn-char-z eval c10.xml ’10°

1024

Caveat: The parameter word must be a sequence of letters, and not an expression which
denotes a word.

$ vcsn-char-z eval c10.xml ’1 0’
FATAL: Cannot parse 1 0O

Comments: c¢f. Section B.2.2.1 for the description of the algorithm.

3.2.2.2 eval-S

$ vcsn eval-S a.xml ’word’ Computes the coefficient of the word word in the series realized

by a.zml.
Precondition: (i) No condition on a.zml.
(ii) As for eval, word is a sequence of letters in the input alphabet of a.zml.
Specification:

eval-S(a.xml,word) = eval(realtime(a.xml) ,word).

T¢f. Section 3.2.4.3.
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3.2.3 From expressions to automata

3.2.3.1 standard

$ vcsn standard e.xml > a.xml Computes the standard automaton of e.zml and writes the

$

result in a.zml.

Specification:

We call standard automaton what is often called in the literature Glushov automaton or
position automaton of the expression that is thus understood to be ‘letterized’ (even if it not
necessarily so in VAUCANSON 1.4).

Comments: In TAF-KIT 1.4, the standard function is synonymous to exp-to-aut, or to
be more precise, the exp-to-aut function is synonymous to standard (cf. Section 3.1.5.2).

3.2.3.2 thompson

$ vcsn thompson e.xml > a.xml Computes the Thompson automaton of e.zml and writes the

$

$ vcsn --alphabet=alpha star-alphabet > a.xml

$

$ vcsn quotient a.xml > b.xml

$

result in a.zml.
Specification:
The precise specification of thompson is to be found elsewhere (and probably to be written).

Comments: (i) The following holds: standard(e.xml) = proper (thompson(e.xml))
with the specification that proper implements the backward elimination of spontaneous tran-
sitions.

(ii) The way automata are built and implemented in VAUCANSON makes that this construc-
tion has more a historical interest than an algorithmic one. It is also useful to building tests
(because of the above equation).

3.2.3.3 star-alphabet

Creates the automaton a.zml whose be-
haviour is the characteristic series of the free
monoid generated by alpha.

Specification:
The automaton a.zml has one state, both initial and final, and a transition for every letter
in alpha.

3.2.4 Operations on automata

3.2.4.1 quotient

Computes the quotient of a.zml and writes the result in b. zml.

Precondition: a.xzml is a realtime automaton.

Comments: The quotient function implements an iterative refinement of equivalences over
states (by a variant of Hopcroft’s algorithm). For an example, cf. Figure 3.12.
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3.2.4.2 product

$ vcsn product a.xml b.xml > c.xml Computes the product of a.zml and b.zml and writes the
$ result in c.zml.

Precondition: (i) a.zml and b.zml are realtime automata and obey the two argument
convention (cf. Section 3.1.3).

(ii) This operation requires, to be meaningful, that the weight semiring be commutative,
and this is the case for all the instances implemented in TAF-KiT 1.4.

Specification:

The product of a.zml and b.zml is, by definition, the accessible part of the automaton whose
set of states is the cartesian product of the sets of states of the two automata and whose
transitions are defined by

k h kh
Vp,qe A, Vr,s € B p%)q and T‘%)S = (p,T)jX—B>(q73)

and the initial and final functions by
Vpe A, VreBB I(p,r)=1(p)I(r) and T(p,r)=T(p)T(r).

Comments: (i) The result c.zml is a realtime automaton.

(ii) In terms of representations, the representation of the product is the tensor product of
the representations of the operands (cf. [16, Sect. 111.3.2]).

Example: Together with the command star-alphabet, product allows the projection over
a subalphabet of an automaton.

$ vcsn-char-z -al star-alphabet > ustar.xml
$ vcsn-char-z product cl1.xml ustar.xml > clu.xml
$ vcsn-char-z display clu.xml

+1

{2} 0)+({2} 1) {2} 1)

cl.xml { 2 states, 3 transitions, #I = 1, #T =1} clu.xml { 2 states, 3 transitions, #l = 1, #T =1}

Figure 3.11: Projection of C; over {1}*
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3.2.4.3 power

$ vcsn power a.xml n > d.xml Computes the product of a.zml by itself n times and writes
$ the result in d.zml.

Precondition: (i) a.zml is realtime.

(ii) This operation requires, to be meaningful, that the weight semiring be commutative,
and this is the case for all the instances implemented in the TAF-KiT 1.4.

Specification:
$ vcsn power a.xml 0 > ustar.xml
where ustar.xml is the one state automaton (initial and final) with one transition for every

letter of the alphabet of a.xml, which accepts the whole free monoid and which is the identity
element for the power of automata.

Example:

$ vcsn-char-z power ccl.xml 2 > cc2.xml
$ vcsn-char-z quotient cc2.xml 2 > cc2q.xml

{4} a)+({4} b)

ccl.xml { 2 states, 3 transitions, #1 =1, #T =1} cc2.xml { 4 states, 9 transitions, #1 = 1, #T =1} cc2q.xml { 3 states, 6 transitions, #1 = 1, #T =1}

Figure 3.12: The Z-automaton ccl.xml, its square cc2.xml and the quotient of cc2.xml

3.2.4.4 shuffle

$ vcsn shuffle a.xml b.xml > c.xml Computes the shuffle of a.zml and b.azml and writes the result
$ in c.zml.

Precondition: (i) a.zml and b.zml are realtime automata and obey the two argument
convention.

(ii) This operation requires, to be meaningful, that the weight semiring be commutative,
and this is the case for all the instances implemented in the TAF-KiT 1.4.
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Specification:

The shuffle of a.zml and b.zml is, by definition (cf. [16, Sect. 111.3.2.6]), the accessible part
of the automaton whose set of states is the cartesian product of the sets of states of the two
automata and whose transitions are defined by

alk alk

Vp,qe A, VreB LN — ) 2 (g,
b,q r p q (p,7) 05 (q,7)
Vpe A, Vr,s e B r 2y — (p,7) LN (p, s)
p 3 ) B p’ QB p,

and the initial and final functions by

Vpe A, VreB I(p,7) =1(p)I(r) and T(p,r)=T(p)T(r).

hadam3.xml { 4 states, 8 transitions, #1 =1, #T =1 } hadam1.xml { 1 states, O transitions, #1 = 1, #T =1}

Figure 3.13: Two shuffle products of Z-automata

Example: (i) Figure 3.13 shows the shuffle products of the Z-automata that realize the
series (ab)* and (—ab)* (on the left) and the series (a)* and (—a)* (on the right) — cf. [16,
Exer. 111.3.3.15].

(ii) The shuffle product of two words yields the set of words obtained by intertwining their
letters. The function expand is well suited for the presentation of the result of such shuffle
products.

$ vcsn-char-z -aab exp-to-aut ’ab’ > ab.xml

$ vcsn-char-z -aab exp-to-aut ’ba’ > ba.xml

$ vcsn-char-z shuffle ab.xml ba.xml \| aut-to-exp -
(a.b+b.a).(b.ata.b)+a.b.b.atb.a.a.b

$ vcsn-char-z shuffle ab.xml ba.xml \| aut-to-exp - \| expand -
abab+{2} abba+{2} baab+baba
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3.2.4.5 infiltration

$ vcsn infiltration a.xml b.xml > c.xml Computes the infiltration of a.zml and b. zml
$ and writes the result in c.aml.

Precondition: (i) a.zml and b.zml are realtime automata and obey the two argument
convention.

(ii) This operation requires, to be meaningful, that the weight semiring be commutative.
Specification:
The infiltration of a.zml and b.zml is, by definition(c¢f. [16, Sect. 111.3.2.6]), the accessible

part of the automaton whose set of states is the cartesian product of the sets of states of the
two automata and whose transitions are those of the product and of the shuffle.

Example: As for the shuffle, the function expand is well suited for the presentation of the
result the infiltration of words.

$ vcsn-char-z infiltration ab.xml ab.xml \| aut-to-exp - \| expand -
{2} aab+{4} aabb+ab+{2} abab+{2} abb

Comments: The infiltration product has been introduced (under the name shuffle!) by
Chen, Fox and Lyndon in the study of the free group [7]. It appears in identities between
generalised binomial coefficients, that is, when counting the subwords (c¢f. [15, Chap. 6]).
More precisely, if (g ) denotes the number of subwords of f equal to g, and f 1T g the
polynomial obtained by the infiltration of f and g, it holds:

<ftg,9>= <f>
g

It is then easy to write a script that computes (é ) : write the following lines

#! /bin/sh

vcsn—-char-z -a"$1" exp-to-aut "$2" > /tmp/tmpl.xml

vecsn-char-z -a"$1" exp-to-aut "$3" > /tmp/tmp2.xml

vesn-char-z infiltration /tmp/tmpl.xml /tmp/tmp2.xml \| eval - "$3"

in a file called binom, make this file executable and store it in a folder whose address appears
in the PATH variable. One then have a command with 3 arguments: the first one is the
alphabet, the next two are words f and g over this alphabet; the command outputs (g ) .

$ binom ab aabb ab
4
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3.3 Automata and rational expressions

on free monoids with weights in a field
Three instances of TAF-KIT 1.4 implement a weight semiring which is a field: vcsn-char-q,
vesn-char-r, and vcsn-char-£2, for which the weight semiring is Q, R, and Fo = Z/27Z
respectively (cf. Section 1.2.2). In addition to all the functions of the preceding section which

obviously apply, a function reduce is specific to those automata whose weight semiring is a
field. It then easily allows to test the equivalence of two automata or expressions.

1. Operations on automata

(1.1) reduce <aut>
(1.2) are-equivalent <autl> <aut2>

2. Operations on expressions
(2.1) are-equivalent-E <ezpl> <ezp2>

3.3.1 Operations on automata

3.3.1.1 reduce

$ vcsn reduce a.xml > b.xml Computes from a.zml an equivalent automaton of minimal

dimension and writes the result in b.zml.
Precondition: a.zml is realtime.

Comments: Implements Schiitzenberger algorithm for reduction of representations (cf. Sec-
tion B.3).

Caveat: (i) The reduction algorithm may well produce an automaton which will look
more ‘complicated’ than the original one, especially when the latter is already of minimal
dimension. Figure 3.14 shows such an example.

0, {4} D+({4) b)
1

cc2q.xml { 3 states, 6 transitions, #l =1, #T =1} cc2r.xml { 3 states, 12 transitions, #l =1, #T =1}

Figure 3.14: The quotient of cc2.xml and its ‘reduction’.
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(ii) The computation of reduced representations implies the ezact resolution of linear sys-
tems of equations which becomes problematic when the dimension of the systems grows. The
following example shows an error occurs when dealing with systems of dimension 32 (dans R)
ou 1024 (dans Q): the number of states should be 6 in the first case, 11 in the second.®

$ vcsn-char-r power cl.xml 5 \| reduce - \| data -
States: 10

Transitions: 88

Initial states: 1

Final states: 1

$ vcsn-char-q power cl.xml 10 \| reduce - \| data -
States: 25

Transitions: 444

Initial states: 1

Final states: 1

3.3.1.2 are-equivalent

$ vesn -v are-equivalent a.xml b.xm  Tells whether or not the automata a.xzml and b.zaml realize
Automata are not equivalent the same series.

Precondition: no precondition.
Specification:
are-equivalent(a.xml,b.xml) =
is-empty(reduce(sum(standardize(realtime(a.xml)),
left-mult (standardize(realtime(b.xml)),-1))))

3.3.2 Operations on expressions

3.3.2.1 are-equivalent-E

$ vcsn -v -ixml are-equivalent-E e.xml f.xml Tells whether or not the expressions e.zml
Expressions are equivalent and f.zml denote the same language
Specification:

are-equivalent-E(e.xml,f.xml) = are-equivalent (standard(e.xml) ,standard(f.xml))

Caveat: The specifications for the input format of rational expressions apply for this function.
For instance, the alphabet must be specified if the expressions are given as strings.
Example:

$ vcsn-char-q -aab -v are-equivalent-E ’b*x(({2}a).b*)*’ > (({2}a)*b)*({2}a)*’
Expressions are equivalent

8These data depend heavily on the examples, and also on the machine on which the examples are run.
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3.4 Boolean automata and rational expressions on free monoids

The classical theory of automata has been developed for automata with no weight, that is,
with weight taken in the Boolean semiring. All functions of Section 3.1 and Section 3.2
obviously apply. But a number of other functions, very important ones indeed, are specific
to Boolean automata.

1. Operations on automata

is-complete <aut>, complete <aut>

is-deterministic <aut>, determinize <aut>

(L.1)

(1.2)

(1.3) complement <aut>
(1.4) minimize <aut>
(1.5)

prefix <aut>, suffix <aut>, factor <aut>

enumerate <aut>

shortest <aut>

are-equivalent <autl> <aut2>

(2.1)
(2.2)
(2.3) intersection <auti1> <aut2>
(2.4)
(2.5) universal <aut>

3. Operations on expressions

(3.1) derived-term <ezp>
(3.2) are-equivalent-E <ezpl> <exp2>

Comments: For clarifying specifications, we make use of some specific automata:

° V is the empty automaton (no state);

. W is the one-state automaton, where the unique state is initial but not final, and is
both the source and the target of a transition labeled by every letter of the alphabet.

3.4.1 Operations on automata

3.4.1.1 is-complete, complete

$ vesn -v is-complete a.xml

) Tells whether or not the automaton a.zml is complete.
Input is complete

Precondition: a.xzml is realtime.
Specification:

A realtime automaton a.zml over the alphabet A is complete if
(a) it has at least one initial state;
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(b) every state of a.zml is the origin of at least one transition labelled by a, for every a
in A.

Comments: As a consequence of the specifications, every word of A* is the label of at least
one computation in a.zml (characteristic property which makes (a) necessary), possibly a not
successful one.

(i) The property thus depends not only on a.zml itself, but also on the alphabet on which
a.zml is constructed. Or, to tell it in another way, not only on the value of the automaton,
but also on its type.

(ii) The empty automaton V is not complete.

(iii) Once the definition is written down, it appears that it could be taken for automata over
a free monoid in general, and not only for Boolean automata. It is the function complete ()
which would be meaningless, or, at least, artifical for a non-Boolean automaton.

(iv) One must acknowledge that the definition is rather artifical also for automata which are
not accessible.

$ vcsn complete a.xml > b.xml Computes from a.zml an equivalent complete automaton and

$

writes the result in b.zml.
Precondition: a.zml is realtime.
Specification:
If a.zml is not complete,
(a) add a new state z to a.zml;
(b) for every state p of a.zml (including z), and for every a in A, if there exist no transi-
tion (p,a,q) in a.zml, add a transition (p,a, z) to a.zml;
(c) if there exist no initial state in a.zml, make z initial.
Comments: complete(V) = W.
$ vcsn-char-b complete al.xml \| display -

- { 4 states, 9 transitions, #l = 1, #T =1}

Figure 3.15: The completion of 4;
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3.4.1.2 is-deterministic, determinize

$ vcsn is-deterministic -v a.xml

Input is not deterministic

Tells whether or not the automaton a.zml is deterministic.

Precondition: a.zml is realtime.

Specification:
A realtime automaton a.zml over the alphabet A is deterministic if

(a) it has at most one initial state;

(b) every state of a.zml is the origin of at most one transition labelled by a, for every a
in A.

Comments: As a consequence, every word of A* is the label of at most one computation
in a.zml (characteristic property which makes (a) necessary).

(i) The result depends indeed only on a.zml itself, not on its type.

(ii) The empty automaton V is deterministic.

$ vcsn determinize a.xml > b.xml Computes the ‘determinisation’ of a.zml and writes the result

$

in b.zml.

Precondition: a.zml is realtime.

Specification:

Computes the accessible part of the ‘subset automaton’, an algorithm sometimes refered to
as ‘the subset construction’. The result is thus accessible and complete.

Comments: determinize (V) = W. ¢f. Figure 1.3 for the determinisation of al.xml.

3.4.1.3 complement

$ vcsn complement a.xml > b.xml Computes the ‘complement automaton’ of a.zml and writes

$

the result in b.zml.

Precondition: a.zml is complete (thus realtime) and deterministic.

Specification:

Swap terminal for non-terminal states in a.zml.

Comments: Thanks to the preconditions, the language accepted by complement (a.xml) is
the complement of the language accepted by a.zml.

Caveat: The complement automaton is not trim. cf. Figure 3.16.
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3.4.1.4 minimize

$ vcsn minimize a.xml > b.xml Computes the ‘minimized automaton’ of a.zml and writes the
$ result in b.zml.

Precondition: a.zml is complete (thus realtime) and deterministic.
Specification:
minimize(a.xml) = quotient(a.xml). ¢f. Figure 3.16 for an example.

Comments: (i) Thanks to the preconditions, minimize (a.xml) is the minimal automaton
of the language accepted by a.zml.

(i) TAF-KiT 1.4, the quotient algorithm is specialised to Boolean automata and implements
the Hopcroft algorithm.

alcmp.xml { 4 states, 8 transitions, #1 =1, #T =2} almin.xml { 3 states, 6 transitions, #l = 1, #T =1}

Figure 3.16: The complement of aldet.xml and its minimisation.

3.4.1.5 prefix, suffix, factor

$ vesn prefix a.xml > b.xml Makes every state of a.zml final and writes the result in b. zml.

$
Precondition: a.zml is realtime and trim.
Comments: Thanks to the preconditions, b.zml= prefix(a.xml) is an automaton which
accepts all prefixes of words in the language accepted by a.zml.
$ vcsn suffix a.xml > b.xml Makes every state of a.zml initial and writes the result in
$ b.zml.

Precondition: a.xzml is realtime and trim.

Comments: Thanks to the preconditions, b.zml= suffix(a.xml) is an automaton which
accepts all suffixes of words in the language accepted by a.zml.
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$ vcsn factor a.xml > b.xml Makes every state of a.zml initial and final and writes the
$ result in b.zml.

Precondition: a.xzml is realtime and trim.

Comments: Thanks to the preconditions, b.zml= factor(a.xml) is an automaton which
accepts all factors of words in the language accepted by a.zml.

Example: Figure 3.17 shows the automata for the prefixes, suffixes, and factors of div3base2.xml.
Of course, these automata accept all words; the example shows how the construction works.

- { 3 states, 6 transitions, #l =1, #T =3 } - { 3 states, 6 transitions, #1 =3, #T =1} - { 3 states, 6 transitions, #l = 3, #T =3}

Figure 3.17: Automata for the prefixes, suffixes, and factors of div3base2.xml

3.4.2 Operations on the behaviour of automata

3.4.2.1 enumerate

$ vcsn enumerate a.xml n Computes the list of the words of length less than or equal to
< list of words > n in the support of the series realized by a.zml.

Precondition: a.zml is realtime.

Specification:

(i) The words are enumerated in the radix ordering, and output as one word per line.
(ii) If is-useless(a.xml), then the list is empty.

Example: The next command enumerates the words with an even number of a’s.

$ vcsn enumerate apair.xml 3
1

b

aa

bb

aab

aba

baa

bbb
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3.4.2.2 shortest

$ vcsn shortest a.xml Computes the shortest word in the support of the series real-
< word > ized by a.zml.

Precondition: a.zml is realtime.

Specification:

If is—useless(a.xml), the shortest function exits with a non-zero exit code.
3.4.2.3 intersection

Computes from a.zml and b.zml an automa-
$ vcsn intersection a.xml b.xm > c.xml ton which accepts the intersection of the lan-
$ guages accepted by a.zml and b.zml and

writes the result in c.zml.

Precondition: no precondition.

Specification:

intersection(a.xml,b.xml) = product(realtime(a.xml) ,realtime(b.xml))
3.4.2.4 are-equivalent

$ vcsn -v are-equivalent a.xml b.xml Tells whether or not the automata a.zml and b.zml accept
Automata are not equivalent the same language.

Precondition: no precondition.

Specification:

are-equivalent(a.xml,b.xml) =
is-useless(intersection(a.xml, complement(determinize(realtime(b.xml1)))))
A is-useless(intersection(complement (determinize(realtime(a.xml))),b.xml))

3.4.2.5 universal

$ vcsn universal a.xml > b.xml Computes the universal automaton of the language accepted
$ by a.zml and writes the result in b.zml.

Precondition: no precondition.

Specification:

With every language is canonically associated an automaton, called the universal automaton
of the language in [16], which is finite whenever the language is rational. It has been first
defined by J. H. Conway in [8] in order to solve two dual problems of approzimation of
languages. A complete and systematic presentation of the universal automaton is given
in [13], including the computation algorithm that is implemented in VAUCANSON.
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Example:
$ vcsn-char-b universal al.xml \| display -

{ 3 states, 14 transitions, #1 = 1, #T =1}

Figure 3.18: The universal automaton of al.xml (of L(.A;) indeed)

Comments: The universal automaton contains many interesting informations on the lan-
guage. In particular, it contains a copy of any minimal NFA which recognizes the language.

In the case of group langages, and even reversible languages, an automaton of minimal
loop complexity is to be found within the universal automaton (cf. [13]).

The universal automaton however becomes soon very complex, as witnessed in the figure
below, and a more structured view on it is necessary to discover the interesting properties.
The language Hg is accepted by the automaton h6.xml that is generated within VAUCANSON
by a call to the factory: doublering-char-b 6 1 3 4 5 > h6.xml.

More details on the computation of the universal automaton of Hg and its relation with the
star height of Hg are to be found in [13] or [16, Sec. 11.8].
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(b) ... and a more structured view

Figure 3.19: The universal automaton of Hg = {f € {a,b}* | |fla—|flp=1,3,4 0r 5 mod 6}
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3.4.3 Operations on expressions

3.4.3.1 derived-term

$ vcsn derived-term e.xml > a.xml Computes the derived term automaton of e.zml and writes

$

the result in a.zml.
Precondition: no precondition.

Specification:
The definition of the derived term automaton of an expression in the Boolean case is due to
Antimirov [4] and can be found in other references [1, 1, 12, 16].

Caveat: The specifications for the input format of rational expressions apply for this function.

Example: As shown with the next commands and Figure 3.20, the automaton div3base2.xml
yields again a good example (cf. [16, Exer. 1.5.5]).

$ vcsn-char-b aut-to-exp-SO div3base2.xml
Ox.1.(1.0%.1)*.0.(0.(1.0%.1)*.0+1)*.0.(1.0%.1)*.1.0%+0x.1.(1.0%.1)*.1.0%+0%
$ vcsn-char-b aut-to-exp-SO div3base2.xml \| derived-term - \| display -

- { 7 states, 17 transitions, #1 =1, #T =2}
Figure 3.20: The derived term automaton of an expression computed from div3base2.xml

Comments: (i) The computation of the derived terms of an expression in VAUCANSON
1.4 implements the ideas introduced in [6].

(ii) The derived term automaton of an expression can be defined for weighted expressions as
well and not only for Boolean expressions (c¢f. [12]). This is not implemented in VAUCANSON
1.4 (but will be in subsequent versions of VAUCANSON).

(ili) The derived-term function is sensitive to the bracketting of the expression (cf. [1]).
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3.4.3.2 are-equivalent-E

$ vesn -v -ixml are-equivalent-E e.xml f.xm Tells whether or not the expressions e.zml
Expressions are equivalent and f.zml denote the same language.

Precondition: no precondition.
Specification:
are-equivalent-E(e.xml,f.xml) = are-equivalent (standard(e.xml) ,standard (f.xml))

Caveat: The specifications for the input format of rational expressions apply for this function.

VAUCANSON 1.4 TAF-KIT Documentation -79 - September 28, 2011



3.5 Weighted automata over a product of two free monoids

Automata over a product of (two) free monoids are called transducers in the literature and
fmp-transducers in VAUCANSON, ‘fmp’ stands for free monoid product. Their behaviours are
series over A*x B*, that is, weighted subsets of A*x B*, or weighted relations from A* (input
monoid) to B* (output monoid), but looked at symmetrically.

Transducers can also be considered as automata over the input alphabet with multiplicity
in the semiring of (rational) series over the output alphabet (the equivalence between the
two points of view is asserted by the Kleene-Schiitzenberger theorem). These would be called
rw-transducers in VAUCANSON, ‘rw’ stands for rational weights. They are not implemented
in TAF-K1r 1.4 (¢f. Section 1.2.2) but will be in subsequent versions.

In the sequel, we denote the input monoid by A*, the output monoid by B* — in TAF-
KiT 1.4, they are both alphabets of characters or both alphabets of integers — and the weight
semiring (numerical, and commutative) by K — in TAF-KiT 1.4, B or Z. We denote the
transducers by tdc rather than by aut.

As automata over A*x B*, fmp-transducers are eligible to functions listed in Section 3.1
and that apply to all automata. For technical reasons, functions which involve reading rational
expressions: cat-E, exp-to-aut, are not implemented in TAF-KIT 1.4. On the other hand,
a number of functions are specific to transducers, and are described in this section.

1. Transformations of transducers

inverse <tdc>

transpose <tdc>

(L.1)
(1.2)
(1.3) is-subnormalized <tdc>, subnormalize <tdc>
(1.4) is-1tl <tde>

(15)

1tl-to-pair <tdc>

domain <tdc>, image <tdc>, w-domain <tdc>, w-image <tdc>

)
) composition <tdci> <tdc2>
) evaluation <tde> <aut>

)

eval <tde> <word>
3. Operations on behaviours of transducers
(3.1) composition-R <tdc1> <tdc2>

3.5.1 Transformations of transducers

3.5.1.1 inverse

$ vcsn inverse t.xml > u.xml u. zml realizes what is called the inverse relation of the relation

$

realized by t.aml
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Precondition: no precondition.

Specification:

Swaps the first for the second component in the labels of the transitions of the transducer
t.zml and writes the result in the transducer . zml.

Comments: inverse(t.xml) is kind of pivotal function and will have an influence on the
specification of other functions.

3.5.1.2 transpose

$ vcsn transpose t.xml > u.xml Computes the transposition of the transducer t.zml and
$ writes the result in the transducer . zml.

Precondition: no precondition.
Specification:

(i) Builds the transposition of the underlying graph.

(ii) Transposes the labels of the transitions thanks to the extension of the function transpose ()
from words to pair of words:
transpose((f,g))= (transpose(f),transpose(g)).

Example: Figure 3.21 shows the left-to-right cautious Fibonacci transducer (c¢f. [16, Exam-
9

ple V.1.4]), its inverse, and its transpose.

fib-gd.xml { 5 states, 8 transitions, #l =1, #T =3 } fib-gd-inv.xml { 5 states, 8 transitions, #1 =1, #T =3} fib-gd-trsp.xml { 5 states, 8 transitions, #l = 3, #T =1}

Figure 3.21: The left-to-right cautious Fibonacci transducer, its inverse, and its transpose

n [16], transducers are allowed to have final functions that have non-scalar values; thus the examples there
and here have a slightly different look.

VAUCANSON 1.4 TAF-KIT Documentation - 81 -~ September 28, 2011



3.5.1.3 is—-subnormalized, subnormalize

$ vcsn is-subnormalized -v t.xml

Input is not subnormalized Tells whether or not the transducer t.zml is subnormalized.

Specification:
A transducer is subnormalized if it is
1. proper;
2. weakly ‘letterized’, in the sense that the labels of transitions are either in (A x 1p+) or

in (14 x B), or in (Ax B);

3. initial and final functions are scalar, that is, take values in the weight semiring.

Comments: The terminology ‘subnormalized’ is new (introduced in [5]) and comes from
‘normalized’, which means that the labels of transitions are either in (Ax1p+) or in (14+xB).
The terminology ‘normalized’ is not so good, as it collides with the notion of normalized
automata, but is widely accepted and used. Once ‘normalized’ is accepted, ‘subnormalized’
is not so bad. Other suggestions are still welcome: no established terminology exists.

$ vcsn subnormalize t.xml > u.xml Computes from t.zml a subnormalized transducer and writes
$ the result in u.zml.

Precondition: no precondition.

Specification:

1. As for proper above, one wants to ‘letterize’ first, and then eliminate the spontaneous
transitions.

2. We are to ‘letterize’ monomials such as m = {k}(f,g) with f in A* and ¢ in B*.

A monomial of the form {k}(abc,xy) will be decomposed in the product of n =
sup(|f],]g|) ‘generators’ in the following way:

({k}(a,x)) (b,y) (c,1)

3. create n — 1 states between the origin and the end of the transition labeled by the
monomial and the n transitions such that each of them is labeled by one of the generators
we have computed in the above decomposition, the first one being possibly weighted.

4. eliminate the spontaneous transitions with a ‘backward’ procedure.

Comments: The subnormalize function is only a ‘decomposition’ algorithm; it does not
attempt to make the automaton more compact: this would be the task of other, and more
sophisticated, algorithms.

Example: Figure 3.22 shows a Z-transducer and its subnormalization. Note that the trans-
ducer fx1.xml cannot be built, nor edited, with the edit function.

Caveat: The subnormalize function requires that the transducer meets the scalar end-
function condition.
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{2} (abb,ba))+(ba,baa)

(s

fx1.xml { 2 states, 3 transitions, #1 =1, #T =1} fx1-sbn.xml { 6 states, 8 transitions, #1 =1, #T =1}

Figure 3.22: A Z-transducer and its subnormalization

3.5.1.4 is-1tl

$ vesn is-1tl -v t.xml Tells whether or not the label of every transition of t.zml is
Input is letter-to-letter in A% B.

3.5.1.5 1tl-to-pair

$ vesn 1tl-to-pair t.xml > a.xml Transforms t.zml into an automaton over (AxB)* with weight

in K and writes the result in a.zml.

Precondition: t.zml is letter-to-letter.

Specification:

The label of every transition of t.zml becomes a letter in the alphabet (AxB) and the weight
of the transition is kept unchanged.

Comments: A letter-to-letter transducer and an automaton over the corresponding alphabet
of pairs looks very much the same when they are drawn by the display function. But they
are very different with respect to the functions which can be applied to them.

vcsn-char-fmp-b display trx.xml

vcsn—-char-fmp-b 1tl-to-pair trx.xml > trx-pair.xml

vcsn-char-char-b complete trx-pair.xml \| complement - > trx-pair-cmp.xml
vcsn-char-fmp-b complete trx.xml \| complement - > trx-cmp.xml
vcsn—-char-fmp-b: command ‘complete’ doesn’t exist.

&S H H &BH
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trx.xml { 2 states, 4 transitions, #l =1, #T =2} trx-pair.xml { 2 states, 4 transitions, #l = 1, #T =2} trx-pair-cmp.xml { 3 states, 12 transitions, #1 =1, #T=1}

Figure 3.23: A letter-to-letter transducer, its pair of characters version, and the complement

3.5.2 Operations on transducers

3.5.2.1 domain, image, w-domain, w—image

¢ domain t.xml > ] Forgets the second component of the label and the weight of

v n maln . Xm . Xm .. .

$ csn doma a the transitions of the transducer t.zml and writes the result
in the characteristic automaton a.zml on A*.

Precondition: no precondition.

s . ¢ xml > b.xml Forgets the first component of the label and the weight of the
csn 1mage . Xm . Xm . . .
$ v £ * transitions of the transducer t.zml and writes the result in

the characteristic automaton b.zml on B*.

Precondition: no precondition.

Comments: The specification for image is taken so that the following identities hold:
image(t.xml) = domain(inverse(t.xml)) and
domain(t.xml) = image(inverse(t.xml)).

fx1-dom.xml { 2 states, 4 transitions, #l =1, #T =1} fx1-im.xml { 2 states, 4 transitions, #l =1, #T =1}

Figure 3.24: The domain and image of £x1.xml

Caveat: The results of domain and image could, or should, have been Boolean automata.
In TAF-Ki1T 1.4, they are automata with the same weight semiring as the operand.
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Forgets the second component of the label and keeps the weight
of the transitions of the transducer t.zml and writes the result
in the automaton a.zml on A*.

$ vecsn w-domain t.xml > a.xml

$

Precondition: no precondition.

Forgets the first component of the label and keeps the weight
of the transitions of the transducer t.zml and writes the result
in the automaton b.xzml on B*.

$ vcsn w-image t.xml > b.xml

$

Precondition: no precondition.

fx1-wdom.xml { 2 states, 4 transitions, #1 =1, #T =1} fx1-wim.xml { 2 states, 4 transitions, #1 =1, #T =1}

Figure 3.25: The weighted domain and image of fx1.xml

3.5.2.2 composition, b-composition

As we shall see, the composition algorithms of fmp-transducers are defined on subnormalized
ones only. There are two distinct functions for the composition. The first one, composition,
yields a fmp-transducer in which the number of paths is preserved. It is the only one which
makes sense for weighted fmp-transducer. The second one, b-composition, is reserved for
Boolean fmp-transducers, and yields a fmp-transducer which is simpler, but in which the
number of paths is not preserved.

$ vcsn composition t.xml u.xml > v.xml Realizes the composition algorithm on t.zml
$ and u.zml and writes the result in v.zml.

Precondition: t.zml and w.zml are subnormalized, with matching monoids (output of
t.zml = input of u.zml) and same weight semirings.

Specification:

The composition algorithm used in TAF-KIT is described at Section B.5.2.2.

Comments: When the weight semiring is not complete, it may be the case that the compo-
sition is not defined, in which case the call to composition will produce an error.

Realizes the Boolean composition algorithm
on t.zml and u.zml and writes the result in
v.xml.

$ vcsn b-composition t.xml u.xml > v.xml

$
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Precondition: t.zml and w.zml are subnormalized, with matching monoids (output of
t.zml = input of u.zml) and Boolean weight semiring.

Specification:

The Boolean composition algorithm is described at Section B.5.2.2 and goes roughly as follows:

1. performing the ‘product’ of ¢t.zml and u.zml

2. make the result proper.

Example: Figure 3.26 shows the b—composition and the composition of the fmp-transducers
t1l.xml and ul.xml that are taken as examples at Section B.5.2.2 (¢f. Figure B.1 and Fig-
ure B.2).

$ vcsn-char-fmp-b b-composition t1.xml ul.xml \| display -
$ vcsn-char-fmp-b composition t1.xml ul.xml \| display -

Note that the b-composition is not trim.

- { 6 states, 10 transitions, #l =2, #T =2} - { 7 states, 10 transitions, #1 =3, #T =4}

Figure 3.26: b-composition and composition of t1.xml and ul.xml

Caveat: In TAF-KIT 1.4, b-composition and composition do not test the precondition
is-subnormalized. In the case where this precondition is not met, the result is not correct.

This error will be corrected in subsequent versions.
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3.5.2.3 evaluation

Computes an automaton which realizes the
$ vcsn evaluation t.xml a.xml > b.xml image of the series realized by a.zml by the
$ relation realized by t.zml and writes the re-

sult in b.aml.

Precondition: t.zml is subnormalized, a.zml is a realtime automaton over the input
monoid of t.zml, t.zml and a.zml have the same weight semiring.

Specification:
evaluation(t.xml, a.xml) = W-image(composition(partial-identity(a.xml),t.xml))

Comments: When the weight semiring is not complete, it may be the case that the evaluation
is not defined, in which case the call to evaluation will produce an error.

3.5.2.4 eval
Computes an automaton which realizes the
$ vcsn eval t.xml ’exp’ image of the expression exp by the relation
fxp realized by t.zml and outputs the result as

the expression fzp.

Precondition: t.zml is subnormalized, ezp is an expression over the input monoid of
t.axml.

Comments: Just a wrapper for evaluation.

Caveat: In TAF-KIT 1.4, the expressions ezp and fzp have to be under the string format:
the -i and -o options have no effect on this function.

3.5.3 Operations on behaviours of transducers

3.5.3.1 composition-R

$ tion-R t.xml 1 ] Computes a transducer that realizes the com-

vcsn composition-— . Xm u.xm v.Xm . . .

$ P position of the relations realized by t.zml and
u.zml and writes the result in v.zml.

Precondition: t.zml and u.zml have matching monoids (output of t.zml = input of
u.zml) and the same weight semiring.

Specification:

composition-R(t.xml, u.aml) = composition(subnormalize(t.xml), subnormalize(u.xml))
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3.6 Weighted automata on free monoids
over alphabets of pairs

An alphabet of pairs A is defined by a pair of alphabets B and C and letters in A are pairs
(b,c) with bin B and ¢ in C. A is thus a subset of BxC, (BxC)* is easily identified with a
subset of B*x(C™ and in this way some functions apply to automata over A* that correspond
to functions on automata over B* x C*.

The alphabets of pairs are the key to several constructions on automata and transducers.
One example is when letters within an expression or an automaton are indezed; another one is
the treatment of letter-to-letter transducers as automata on a free monoid. In TAF-KiT 1.4
there are not many functions special to automata over such alphabets. There will be more in
subsequent versions. At this stage, what is more important is the mere existence of this type
of automata whithin TAF-KIT, which already allows to demonstrate the usefulness of going
forth and back between the class of transducers and the one of automata (cf. Figure 3.23).

1. Transformations of automata

(1.1) first-projection <aut>, second-projection <aut>
(1.2) pair-to-fmp <aut>

3.6.1 Transformations of automata

3.6.1.1 first-projection, second-projection

$ vcsn first-projection a.xml > b.xml Yields an automaton over B* (resp. C*), by keeping the first
$ (resp. second) component of every letter.

3.6.1.2 pair-to-fmp

$ vcsn pair-to-fmp a.xml > t.xml yields fmp-transducer over B* x C* every letter (b,c) to the
$ corresponding element of B* x C™*.

Specification:

A transition labelled by (a,z)(b, z)(a,y) becomes a transition labelled by (aba, xzy).
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Appendix A

Automata repository and factory

The VAUCANSON 1.4 distribution contains a folder data/automata/ where a number of au-
tomata and of VAUCANSON programs which build automata are ready for use by the TAF-Ki1T
commands.

A.1 B-automata

A.1.1 Repository

The following automata files are stored ‘data/automata/char-b/’ directory (and accessible
by the command vecsn-char-b cat).

A.l1.1

A.1.1.2

‘al.xml’ for A;

a a
. a M_b
)
b b

Figure A.1: The Boolean automaton 4; over {a,b}* (c¢f. Figure 1.2).

‘b1l.xml’ for B;
a a
b b

Figure A.2: The Boolean automaton B; over {a,b}*.

94



A.1.1.3 ‘evena.xml’

Figure A.3: The Boolean automaton ‘evena.xml’ over {a,b}*.

A.1.1.4 ‘oddb.xml’

Figure A.4: The Boolean automaton ‘oddb.xml’ over {a,b}*.

A.1.2 Factory

The following programs are in the ‘data/automata/char-b/’ directory.

A.1.2.1 Program ‘divkbaseb’

$ divibaseb 4 3 > divdbase3.xml Generates an automaton over the digit alphabet {0,...,b—1}
$ 1rbase tvabases. that recognises the writing in base b of the numbers divisible
by the integer k.

Comments: The ‘divisor’ ‘div3base2.xml’ (Figure A.5) is already in the repository.

Figure A.5: The ‘divisor’ ‘div3base2.xml’ over {0, 1}*.

A.1.2.2 Program ‘double ring’

Generates an n state automaton over the al-

phabet {a, b} that consists in a double ring of
$ doublering 6 1 3 4 5 > double-6-1-3-4-5.xml . . .
s transitions: a counter clockwise ring of tran-

sitions labelled by a and a clockwise ring of
transitions labelled by b.

Specification:
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The states are labelled from 0 to n-1. State 0 is initial. The number of states n is the
first parameter and the next parameters give the list of final states. Figure A.6 shows the
automaton built by the above command.

Comments: The double-ring automata are closely related to the star-height problem. Schiitzen-
berger used them to give the first example of automata over a 2 letter alphabet that have
arbitrary large loop complexity and McNaughton to give the simplest example of minimal
automata which do not achieve the minimal loop complexity for the language the recognize.
This was then reinterpreted in terms of universal automata (cf. [16, Sec. 11.8]).

The automaton ‘double-3-1.xml’ (Figure A.6) is already in the repository.

Figure A.6: The ‘double rings’ Hg and ‘double-3-1.xml’

A.1.2.3 Program ‘ladybird’

Generates an n state automaton over the alphabet {a,b,c}
whose equivalent minimal deterministic automaton has 2"
states.

$ ladybird 6 > ladybird-6.xml
$

Specification:

The states are labelled from 0 to n-1. State 0 is initial and final. The number of states n is
the first parameter and the next parameters give the list of final states. Figure A.6 shows the
automaton built by the above command.

Comments: The determinisation of ‘ladybird-n’ has 2™ states and is minimal as it is
co-deterministic.

‘ladybird-n’ is used in the benchmarking of VAUCANSON.
The automaton ‘ladybird-6.xml’ (Figure A.7) is already in the repository.

A.2 Z-automata

A.2.1 Repository

The following automata files are stored ‘data/automata/char-z/’ directory (and accessible
by the command vesn-char-z cat).
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Figure A.7: The ‘ladybird’ Lg

A.2.1.1 ‘pl.xml’
The chacteristic automaton of the automaton B; (cf. Figure A.2). The different outcomes of

functions such as power n bl.xml \quotient - on the automaton ‘bl.xml’ illustrate well
the influence of the weights.

A.2.1.2 ‘cil.xml’ for C;
Comments: The series realised by C; associates every word w of {a,b}* with its value in the

binary notation, when a is interpreted as 0 and b as 1.

a 2a

b 2b

Figure A.8: The Z-automaton C; over {a,b}*.

A.2.1.3 ¢d1.zxml’

Comments: The series realised by this automaton associates every word w of {a,b}* with
its number of ‘a’ minus its number of ‘b’.

Figure A.9: The Z-automaton ‘d1l.xml’ over {a,b}*.
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A.3 Zmin-automata

A.3.1 Repository

The following automata files are stored ‘data/automata/char-zmin/’ directory (and acces-
sible by the command vcsn-char-zmin cat).

A.3.1.1 ‘minab.xml’

Comments: The series realised by this automaton associates every word w of {a,b}* with
man(number of ‘a’, number of ‘0’).

(o | {0b {0} | {1}

Sl

Figure A.10: The Zmin-automaton ‘minab.xml’ over {a,b}*

A.3.1.2 ‘minblocka.xml’

Comments: The series realised by this automaton associates every word w of {a,b}* with
the length of the smallest block of ‘a’ between two ‘b’s.

{1}a

{0}a {0}a
(01D g:z {0}b
-/

{030 {010

Figure A.11: The Zmin-automaton ‘sag.xml’ over {a,b}*

A.3.1.3 ‘slowgrow.xml’

Comments: The smallest word associated with the value n is abaab - - - o™ Dba™b.
1la
{0}a t {0}a

(01 {1}a

Figure A.12: The Zmin-automaton ‘sag.xml’ over {a,b}*

{0}D

(0D
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A.4 Zmax-automata

A.4.1 Repository

The following automata files are stored ‘data/automata/char-zmax/’ directory (and acces-
sible by the command vcsn-char-zmax cat).

A.4.1.1 ‘maxab’

Comments: The series realised by this automaton associates every word w of {a,b}* with
max(number of ‘a’, number of ‘b’) (¢f. Figure A.10).

A.4.1.2 ‘maxblocka.xml’

Comments: The series realised by this automaton associates every word w of {a,b}* with
the length of the greatest block of ‘a’.

{1}a
{0}a {0}a
{0Vb Q {0}b

{o}o K {0}b

Figure A.13: The Zmin-automaton ‘maxblocka.xml’ over {a,b}*

A.5 B-fmp-transducers

A.5.1 Repository

The following automata files are stored ‘data/automata/char-fmp-b/’ directory (and acces-
sible by the command vcsn-char-fmp-b cat).

A.5.1.1 “t1.xml’ for T;

Figure A.14: The fmp-transducer Ty over {a,b}* x{x,y}* (¢f. Section B.5.2.2).
A.5.1.2 ‘ul.xml’ for U

A.5.2 Factory

The following program is in the ‘data/automata/char-fmp-b/’ directory.
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Figure A.15: The fmp-transducer U; over {z,y}* x{u,v}* (¢f. Section B.5.2.2).

A.5.2.1 Program ‘quotkbaseb’

Generates an fmp-transducer over the digit alphabets
$ quotkbaseb 3 2 > quot3base2.xml {0,...,b— 1} that computes the integer quotient of the divi-
$ sion by the integer k (first parameter) of the numbers written
in base b (second parameter).

Comments: The ‘divisor’ ‘quot3base2.xml’ (¢f. Figure A.16) is already in the repository.

0[0 110 0[0 11
11 0|1

Figure A.16: The ‘divisor’ ‘quot3base2.xml’ over {0, 1,2}*.

A.5.2.2 Program ‘ORR’

Generates two fmp-transducers over the alphabets guessed
from the two patterns (first two parameters). The first trans-
ducer is left-sequential; it realises the replacement of the first
pattern by the second in a left to right reading of the input.
The second is right-sequential; it realises the replacement of
the first pattern by the second in a right to left reading of the
input.

The third parameter of the program, completed by _left and
_right, gives the name of the two transducers.

$ ORR abb baa fibred
$

Comments: The fmp-transducers ‘fibred left.xml’ and ‘fibred right.xml’ are already
in the repository.
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Appendix B

Algorithm specification,
description and discussion

B.1 General automata and rational expressions functions

B.1.1 Graph functions
B.1.1.0 reverse

This is a hidden (and ancillary) graph function, not accessible to the user through TAF-KiT
(because it would be somewhat confusing with transpose). It builds the transpose of the
graph including the initial and final function that can be seen as labels of arcs from subliminal
to real states, but leaves the labels untouched.

B.1.1.1 accessible, coaccessible, trim

Graph traversal. Implemented by breadth-first search.

B.1.2 Transformations of automata
B.1.2.1 proper

From a theoretical point of view, the algorithm proper cannot be described, nor understood,
before addressing the problem of the star in a semiring of series.

(1) If M is graded, then K((M)), equipped with the Cauchy product, is a semiring as well.!
If T is a semiring, and ¢ is in T, by definition

t*:ztn

neN

and as infinite sums are not always defined, t* is not always defined. Hence a semiring should
be equipped with two supplementary methods (supplementary to the defining operations of
the semiring) is-starable() and star(), with obvious meaning and result.

'1f M is not graded, this may not be the case anymore, but is out of the scope of VAUCANSON for the time
being, and for certain while.
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If s is a series in K({(M)), we denote by c(s) its constant term, that is, the coefficient of 1.
Thus, a series s is proper if its constant term is nul: c(s) = Og. And the proper part of an
arbitrary series s is the proper series s, such that s = c(s) 1y + sp. Under a natural, and not
restrictive, hypothesis on K (¢f. [16, 17]), the following property holds.

Property 1 A series s in K(M)) is starable if, and only if, c(s) is starable and it holds:
s = (c(5))" (sp(c(s)))"

As a conclusion to this paragraph, we can say that star is not always defined in K, and
thus in K{(M)).
(2) Let A be an automaton over M with multiplicityin K. We say that the behaviour of A,
|A], is defined if, and only if, for every pair of states p and ¢ in A, the family of labels of
computations from p to g is summable.

Let Ay be the automaton obtained from A by retaining the transitions labelled by 1,
only. We then have:

Property 2 The behaviour of A is defined if, and only if, the behaviour of Ag is.

(3) Let A= (I,E,T) and Ay = (I, Ey,T) be their respective matrix description. We
write F, for the proper matrix such that F = F, + Ej .

Property 3 If the behaviour of A is defined, we have:

|A| =1 (Ey*- Ep)* - E*-T .

It is important to note that it is not true that |.A| is necessarily defined when Ey*, and
thus I-(Ey*- Ep)* - Ep* - T are defined (c¢f. [16, 17] for more details and example).

The algorithm, whose implementation depends indeed on K, has the double goal of de-
ciding if the behaviour of Ag is defined and of computing Fy* - E, and Fy* - T. It will be
described in [14].

B.1.2.2 standardize

An automaton is said to be standard if it has a unique initial state which is the destination of
no transition and whose initial multiplicity is equal to the unit (of the multiplicity semiring).
Not only every automaton is equivalent to a standard one, but a simple procedure, called
‘standardization’, transforms every automaton A in an equivalent standard one. The difficulty
in specifying standardization comes from the fact that on the one hand side a standard
automaton is not necessarily proper nor accessible and on the other the initial function of a
state may a priori be any polynomial.
The procedure goes as follows.
(i) Add a new state s , make it initial, with initial multiplicity equal to the unit of the
multiplicity semiring.
(ii) For every initial state i of A , with initial function /(i) , add a transition from s to i with
label (i), and set I(i) to Og (the zero of the multiplicity semiring) — which is equivalent to
say that i is not initial anymore.
(iii) Suppress by a backward closure every spontaneous transition that has been created
in (ii).
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By convention, we consider that a transition from s to i is spontaneous if I(i) is scalar,
that is, if the support of I(i), seen as a polynomial over A*, is restricted to the identity 14+.

(iv) Remove the former initial states of A that are the destination of no incoming transition.

Comments: (a) Steps (iii) and (iv) are necessary to insure the following property:
The standardization of a standard automaton A is isomorphic to A.

(b) We say ‘by convention’ in (iii) as we could have chosen different policies without loosing
the above property (which is in the specification of standardize).

— A non-proper polynomial (i) could give rise to a spontaneous transition labelled with
its constant term. We prefered not to do it in order to change as few things as possible.

— We could have decided to perform no closure as soon as there exists at least one initial
function which is not scalar. We have prefered to have a choice which is more local to every
intial state, but this is certainly disputable.

B.1.3 Operations on automata

A small sketch is worth a long speech.

Let A=<Q, A, E,{i},T> and B=<R, A, F,{j},U> be two standard automata:

B.1.3.1 union

Just the union of the two automata. It is a graph function indeed.

B.1.3.2 sum

Precondition: a.zml and b.zml are standard for the sum operation is defined only on
standard automata.

Specification:

e The standard automaton A+ B =<QU R\ {j}, A,G,{i},V> is defined as:

VAUCANSON 1.4 TAF-KIT Documentation -103 - September 28, 2011



Vp,q €QU R\ {j},

l;pg if p,geEQ
o Fpq if p,geR
P Fjq if p=iandgq€eR

Ok otherwise
Vp QU R\ {j},
T; ® U; if p=1i

Vo=4Tp if pe@\{i}
Up if peR

B.1.3.3 concatenate
Precondition: a.zml and b.zml are standard for the concatenation operation is defined
only on standard automata.

Specification:

e The standard automaton A-B =<QU R\ {j}, A, G, {i},V> is:

Vp,q €QU R\ {j}, Vp eQU R\ {j}.

IZpg if p,geEQ

Fpq if p,q€R U, if peER
Gpq = T F. . Vp = :

»Fiq if peQandqgeR T, Uj if peq@

Ok otherwise

B.1.3.4 star

Precondition: a.zml is standard for the star operation is defined only on standard au-
tomata.

Specification:
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e The standard automaton A* = <Q, A, E®, {i}, T™)> is:

Vp,q €Q,
Hy-{ v
’ T, 17 E; g ® Epq otherwise
Vp €Q,
T {T{k if p=i
P 1,17 otherwise

B.1.3.5 left-mult

Precondition: a.zml is standard for the left ‘exterior’ multiplication operation is defined
only on standard automata.

Specification:

e The standard automata kA = <Q, A, E®) {i}, T*)> is defined by:

Vp.q € Q E(k'):{kEp’q =i

pa By, g otherwise Ir
VpeqQ, T = kI, if p=i
P T, otherwise

B.1.3.6 right-mult

Precondition: a.zml is standard for the right ‘exterior’ multiplication operation is defined
only on standard automata.

Specification:

e The standard automata Ak =<Q, A, F, {i}, Tk)> is defined by:

WeQ, TN =T,k

B.1.4 From automata to expressions

VAUCANSON implements the state elimination method for computing the rational expression
that denotes the behaviour of an automaton. The outcome of the algorithme depends upon
the order in which the states are ‘eliminated’.
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In VAUCANSON library, this order of states is given to the fonction as a second parameter
called ‘chooser’. The chooser either runs over a list of states that is given explicitely, or
implements a heuristics that computes at each step the next state to be suppressed. Two
heuristics are implemented in the library: the ’naive heuristics which is described below, and
a variant of it which takes into account not only the number of transitions incident to every
given state, but also the length of the expressions that label these transitions it is due to
Delgado and Morais and described in [9].

Note that in any case and for a precise specification (in view of the derivation procedure
in particular), one should specify the bracketting:

F G H . (F-G*)-H
p—q—>q—— 1 gives p—— T (B.1)

after the elimination of the state q.

B.1.4.1 The ‘naive’ heuristics

(a) Make real the initial and final subliminal states i and ¢. From i to every initial state p,
there is thus a transition with label I(p). Dually, from every final state r to ¢, there is thus a
transition with label T'(r).

(b) For every state p (outside 7 and ¢) compute a two component index (I(p), k(p)):
— I(p) = 1 if p is the origin of a loop, I(p) = 0 otherwise;
— k(p) = [i(p) — 1][o(p) — 1] where i(p) is the in-degree of p and o(p) its out-degree.
— Lexicographically order the states by their index.

(c) While there remains states,

choose the state ¢ with smallest index,

— remove it and replace the incoming and outgoing transitions according to (B.1),
— recompute the index for those states that were adjacent to q.

(d) Return the label of the transition from i to ¢.

B.2 Weighted automata and rational expressions over free
monoids

B.2.2 Behaviour of automata

B.2.2.1 eval

As the automaton A implemented by a.xml is supposed to be realtime, it is described by a
representation (A, i, v). The coefficient of a word w in the series | 4| realised by Ais A-pu(w)-v

(cf. 16, Sect. II1.3]). The vector A - p(w) is computed by induction on ¢ = |w|, the length
of w. The overall complexity of the algorithm is O(¢d?) where d is the dimension of A.
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B.3 Automata and rational expressions on free monoids with
weights in a field

B.3.1 Operations on automata
B.3.1.1 Reduction of representations over a field

Automata and representation
Any finite automaton over A* with multiplicity in K is equivalent to a realtime automa-
ton A with set of states Q: A = (I, E,T) where I and T are vectors in K® and F is a
square matrix of dimension (), whose entries are linear combination with coefficients in K of
letters in A. One can then write:
E = Z apa

acA

where every ap is a square matrix of dimension ) with entries in K. These matices define
a morphism g from A* into K&¥, and for every w in A* the coefficient of w in the series s
realised by A is <s,w> = I -wp -T. The tuple (I,u,T) is called a representation (of
dimension Q) of s.

Rational series over a field

If K is a field T, for every F-rational series s, there exists an integer r, called the rank
of s which is the minimal dimension of any representation of s. A representation of minimal
dimension is said to be reduced.

Theorem 1 (Schiitzenberger) A reduced representation of a F-rational series s is effec-
tively computable from any representation of s.

A reduced representation of a rational series is an object comparable to the minimal
automaton of a rational language, to the extent it is not unique but defined up to a basis
transformation within FY. The theorem implies two F-automata which realize s and t are
equivalent if, and only if the reduced representation of the series s — ¢ is of dimension 0 and
this is decidable.

The algorithm

A representation (I, u,T') of dimension @ being given, the algorithm that underlies the
theorem amounts to find a maximal prefix-closed subset P of A* such that the vectors I - pu
are independent (in FQ). Such set of vectors allows in turn to compute a new and equivalent
representation, of dimension P. The substance of the theorem is that it is sufficient to perform
this algorithm twice in a row, on the given representation and then on its transpose in order
to get the reduced representation.

The elementary step in this algorithm is thus to determine whether a given vector belongs
to a subspace generated by a set of given independent vectors and in the positive case to
compute its coordinates in this system, that is to solve a system of linear equations. In order
to reach the optimal complexity, and also to be able to treat the case of non-commutative
fields (a case which does not appear in VAUCANSON 1.4), these systems are solved by an
iterative method of Gaussian elimination.
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B.5 Weighted automata over a product of two free monoids

B.5.2 Operations on transducers
B.5.2.2 composition, b-composition

The Composition Theorem, due to Elgot and Mezei (cf. [16]) is one of the basic results on
rational relations and finite transducers. The composition algorithm described here has been
presented in [5]. We describe first the algorithm that realises the b-composition and then
the more sophisticated one that realises the composition.

Product of normalized transducers
We first consider two proper normalized transducers:

T=(Q,A*xB*E,I,T) and U=(R,B*xXC*F,J,U) ,
that is, the transitions of 7 are labelled in AXx 1 or in 1x B and those of U/ are labelled in

Bx1lorin 1xC.
The proof of the Composition Theorem is equivalent to the construction of the transducer

TxU=(QxR,A*XC*,G,IxJ, TxU)

by the following rules.
(i) If (p.(a,1),q) € E then for allr € R ((p,7), (a,1),(q,7)) € G.
(ii) If (r,(1,u),s) € F then for all ¢ € @ ((g,7),(L,u),(g,s)) €G.
(iii) If (p,(1,2).q) € E and (r,(z,1),s) € F then ((p.r),(1,1),(g,s)) € G.

A next possible step is to eliminate the transitions with label (1,1) by means of a clas-
sical closure algorithm. Figure B.1 shows an example of such product, before and after the
elimination of spontaneous transitions.

1lv 1lu

U - /To T1 < Uy
@ y
1lv 1lu

Ti

bl1
1|z
—
all
1y

Figure B.1: Composition Theorem on Boolean transducers

Product of subnormalized transducers

This construction can easily be extended to subnormalized transducers, which are such
that transitions are labelled in Ax B\ (1,1) where A = AU{1}. It amounts to replace (iii)
by
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(iii') If (p,(d’,z),q) € E with d’ € A and (r,(z,u'),s) € F with v/ € C
then ((p,r),(d', ), (q,5)) €G.

In this form, it contains as a particular case the composition of letter-to-letter transducers.

Product of subnormalized transducers and composition

It is known that this construction, which works perfectly well for Boolean transducers,
does not yields a transducer for the composition if the multiplicities are to be taken into
account.

For instance, there is one path labeled (aa,y) in 77 and one path labeled (y,w) in Uy; and
there are two paths labeled (aa, u) in 71 >t U;. Hence, T 1 U does not realize the composition
of the weighted relations realized by 7 and U.

Preparation of transducers for the composition

In order to have a product of transducers that realises the weighted composition, we
performa preliminary operation on both operands that distinguishes between transitions and
the take advantage of this supplementary information in order to supress some transitions in
the product.

The construction on 7 and U can be described as follows:

(a) Split the states of 7 and their _outgoing transitions in such a way they are labeled either
in (Ax1) — black states — or in Ax B (or the state is final) — white states; the incoming
transitions are duplicated on split states. This is transducer 7.

(b) Split the states of U and their incoming transitions in such a way they are labeled either
in (1xC) — black states — or in BxC' (or the state is initial) — white states; the outgoing
transitions are duplicated on split states. This is transducer U’.

(c) Apply the preceeding algorithm [steps (i), (ii) and (iii’)] to 7’ and U’ in order to build
T'>U'.

(d) Delete the black-black states (every state in 7' > U’ is a pair of states).

(e) Trim and eliminate the transitions with label (1,1) by classical closure.

Figure B.2 shows the construction applied to 771 and U;.
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Figure B.2: A composition that preserves multiplicity
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format
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Graphviz, 8, 26
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infiltration, see product
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repository, see automata
right-mult, 53

second-projection, 88
shortest, 75

shuflle, see product
shuffle, 65
SPACE, see token, 38
spontaneous, see transition
is-standard, 50
standard, 63
standardize, 50
STAR, see token

star, 52
star-alphabet, 63, 64
star-S, 55

state elimination method, 55, 105
subnormalize, 82
subnormalized, seetransducer82
is-subnormalized, 82
subword, 67

suffix, 73

sum, 51

sum-S, 54

support, 61
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terminal state, 72
Thompson, see automaton
thompson, 32, 63
TIMES, see token, 37
token

CONCAT, 36
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--version, 20
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