
Outline

Advanced Static Object-Oriented Programming
Features: A Sequel to SCOOP

Thierry Géraud

EPITA Research and Development Laboratory (LRDE)

January 2006

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 1 / 120

Outline

Outline

1 Introduction

2 An actual example
The running example
Variations
Specialization of algorithms

3 SCOOP v1
About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

4 Implicit inheritance
The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 2 / 120

Outline

Outline

1 Introduction

2 An actual example
The running example
Variations
Specialization of algorithms

3 SCOOP v1
About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

4 Implicit inheritance
The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 2 / 120

Outline

Outline

1 Introduction

2 An actual example
The running example
Variations
Specialization of algorithms

3 SCOOP v1
About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

4 Implicit inheritance
The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 2 / 120

Outline

Outline

1 Introduction

2 An actual example
The running example
Variations
Specialization of algorithms

3 SCOOP v1
About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

4 Implicit inheritance
The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 2 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

Objectives of these slides

These slides aim at:

presenting a static object-oriented programming paradigm
featuring:

static typing
class inheritance in a new (uncommon) way
safe covariance
multi-methods

describing our erstwhile work on that subject
http://www.lrde.epita.fr/cgi-bin/twiki/view/Publications/200310-MPOOL

and explaining why we need new programming concepts

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 3 / 120

http://www.lrde.epita.fr/cgi-bin/twiki/view/Publications/200310-MPOOL

Introduction
An actual example

SCOOP v1
Implicit inheritance

Context of our work

a scientific numerical computing library
http://olena.lrde.epita.fr

two main features
efficiency:
large amount of data to process; so the faster the better
genericity:
different input types; yet algorithms should be written once

clients are scientists (not computer science people)

another main feature
simplicity:
C-like code from the client point of view

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 4 / 120

http://olena.lrde.epita.fr

Introduction
An actual example

SCOOP v1
Implicit inheritance

Three axis for library entities

Three kinds of entities in libraries:

D data types

for use as algorithms input and output
ex: types of data structures (containers)

A algorithms

main objective of libraries = provide a catalogue

O other (auxiliary miscellaneous) tools

to ease data manipulation and for use in algorithms
ex: iterators

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 5 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

Four kinds of users

assemblers
just compose components (algorithms) to solve a problem
use axis A but know about D

designers

write new algorithms
extend axis A and sometimes O

providers

write new data types
mainly extend axis D and often also O

architects

focus on the library core
make the three axis work altogether

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 6 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

Problems of an architect

how to simultaneously get abstractness and efficiency?

is there a suitable language to implement theory?

how to ease library extensibility?

is there a way to avoid modifications
when we think about a new fundamental feature?

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 7 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

Solution provided

a static object-oriented paradigm

a paradigm complying to standard C++

a more “declarative” approach of programing
class hierarchies are not fully explicit
so they are partially implicit

some inheritance relationships are computed at
compile-time
so we have static hierarchies

a new way of thinking about class design...

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 8 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

A relevant example

from our applicative domain:

basic image processing operators are very comprehensive

their effects on images can be expressed visually

a very simple one but:

it allows us to point out many difficulties

it is very significant of what we expect from a scientific
software

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 9 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

Outline

1 Introduction

2 An actual example
The running example
Variations
Specialization of algorithms

3 SCOOP v1
About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

4 Implicit inheritance
The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 10 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

Some image types (1/2)

a signal (1D image) with integral values:

12 96 51 4

a 2D image with floating values:
1.2 3.4 5.6
7.8 9.1 2.3
4.5 6.7 8.9

a binary 2D image:
• ◦ ◦
• ◦ •
◦ • •

where ◦ and • stand for respectively true (white) and false (black).

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 11 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

Some image types (2/2)

a color (red, green, blue) 2D image:
(102, 31, 84) (221, 93,125) (90, 18,164)
(208,138,157) (230,185,182) (197,124, 35)

a 2D image whose support is not a rectangle:
3.4 5.6
9.1

4.5

and also we have:

2D images on a triangular grid (pixels are hexagons),

3D images,

and so on...

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 12 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

The algorithm

name: assign

input: an image (ima) and a value (val)
action: for every point of ima, set its value to val
output: ima is modified in-place

pseudo-code:

assign(ima : image, val : value)
{

for every (p)
ima[p] := val

}

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 13 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

Outline

1 Introduction

2 An actual example
The running example
Variations
Specialization of algorithms

3 SCOOP v1
About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

4 Implicit inheritance
The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 14 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

Some desired variations (1/4)

We also may want this operator to be partially applied (so that
the image is only modified on given regions):

assign(ima : image, mask : binary image, val : value) {
for every (p)

if (mask[p])
ima[p] := val

}

For instance:

ima = 2 5 1 3

mask = ◦ • • ◦

val = 0

 ⇒ 0 5 1 0

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 15 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

Some desired variations (2/4)

We may also want to apply this operator to some component of
the input values:

assign(ima : image, attr : accessor, val : value) {
for every (p)

attr(ima[p]) := val
}

For instance:

ima = (1,2) (3,4) (5,6)

attr = 1st component

val = 0

 ⇒ (0,2) (0,4) (0,6)

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 16 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

Some desired variations (3/4)

We may also want operators to display graphically their
behavior:

assign(ima : image, val : value, display : bool)
{

for every (p) {
ima[p] := val
if (display)

refresh display(ima)
}

}

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 17 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

Some desired variations (4/4)

And why not a mix of the previous variations?

assign(ima : image,
mask : binary image,
attr : accessor,
val : value,
display : bool)

{
for every (p)

if (mask[p])
{

attr(ima[p]) := val
if (display)

refresh display(ima)
}

}

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 18 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

About variations (1/2)

If we implement variations as is:

we get code bloat

we pay the expensive price of writing the combination of
variations

we end up with too much code to maintain

we obfuscate the code of algorithms

we turn code from simple to error-prone

but the worst is that...

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 19 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

About variations (2/2)

...

we have lost an important property of algorithms:

algorithms are intrinsically abstract

put differently,
they should be free from implementation details

we have broken an important software engineering rule:

feature addition should be a non intrusive extension

clearly,
we cannot foresee what the next desired variations will be!

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 20 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

A step towards a solution

an algorithm is written once in its “simple” form

we modify input data to provide the algorithm with different
particular behaviors:

for instance

ima’ := add mask(ima, mask)
assign(ima’, val)

idem with

ima’ := first component(ima)
ima’ := add display(ima)

and—now why not—with

ima’ := first component(add mask(add display(ima), mask))

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 21 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

Recap

We want:

to preserve abstractness in implementing algorithms
 to keep code clean and clear

to write efficient algorithms
 to have an effective scientific library

to externally “modify” the behavior of algorithms
 to get flexibility in using algorithms

and as a consequence:

to provide an easy way to define “modified” data types
 e.g., a masked image is an image + a mask

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 22 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

Outline

1 Introduction

2 An actual example
The running example
Variations
Specialization of algorithms

3 SCOOP v1
About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

4 Implicit inheritance
The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 23 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

Re-considering the notion of algorithm

an image processing operator sometimes translate into
several distinct algorithms

input act as a selector of the right (or more appropriate)
algorithm

having several algorithms for a functionality:

is sometimes mandatory
(Example: the ’erosion’ operator should use respectively ’and ’ and ’min’

when input have Boolean and scalar values.)

or just allows for enhancing efficiency

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 24 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

An another image type

A very common image type is the association of data with a
look-up-table (LUT); for instance:

ima =

 data =
1 3 1
1 1 2
2 2 2

, lut =
1 → (102, 31, 84)
2 → (221, 93, 125)
3 → (208, 138, 157)


which means that this image actually is:

ima =
(102, 31, 84) (208, 138, 157) (102, 31, 84)
(102, 31, 84) (102, 31, 84) (221, 93, 125)
(221, 93, 125) (221, 93, 125) (221, 93, 125)

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 25 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

A second algorithm (1/2)

The ’assign’ functionality is better written like:

assign(ima : image with lut, val : value)
{

for every (v) // values of ima’s lut
v := val

}

the call “assign(ima, black)” ends up with:

ima =

 data =
1 3 1
1 1 2
2 2 2

, lut =
1 → (0, 0, 0)
2 → (0, 0, 0)
3 → (0, 0, 0)



Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 26 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

A second algorithm (2/2)

this second algorithm also accepts variations so the call
“assign(first component(ima), 0)” ends up with:

ima =

 data =
1 3 1
1 1 2
2 2 2

, lut =
1 → (0, 31, 84)
2 → (0, 93, 125)
3 → (0, 138, 157)


finally we have both:

assign(ima : image, val : value); // general case
assign(ima : image with lut, val : value); // special case

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 27 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

Use cases of specializations (1/2)

Consider the abstract class hierarchy:

class A { /∗ ... ∗/ };

class A1 : public A { /∗ ... ∗/ };
class A2 : public A { /∗ ... ∗/ };

such as A = A1 ∪ A2, which means that:

there cannot be another sub-class of A

an object of type A is either a A1 or a A2.

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 28 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

Use cases of specializations (2/2)

There are two different ways of defining specializations:

// bar
void bar(A1& a) { /∗ ... ∗/ }
void bar(A2& a) { /∗ ... ∗/ }

// baz
void baz(A & a) { /∗ ... ∗/ }
void baz(A1& a) { /∗ ... ∗/ }

both bar and baz are functionalities of A but

bar is defined on every disjoint subsets of A,
whereas baz is defined

by a (default) general implementation
and a specialized impl for a particular subset of A

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 29 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The running example
Variations
Specialization of algorithms

Recap

We want:

to specialize algorithms
 to get the higher efficiency we can

to show a facade (one functionality) to the client
 to keep specializations transparent for the client

and as a consequence:

to be able to write multi-methods
 e.g., an operation that dispatches w.r.t. its arguments

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 30 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Outline

1 Introduction

2 An actual example
The running example
Variations
Specialization of algorithms

3 SCOOP v1
About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

4 Implicit inheritance
The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 31 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

OO and genericity

Object-orientation and genericity are great

having classes means:

encapsulation

information hiding

having genericity means:

define a class with universal quantification

e.g., image2d<T> is a 2D image (a container)
it is defined once, for all T,
T being the type of contained data

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 32 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

An alternative to handle abstractions (1/4)

A duality exists between

class inheritance:

named typing

inheritance relationship is explicit

abstractions = abstract classes (or interfaces)

method binding is often solved at run-time

parametric polymorphism:

structural typing

no inheritance is required

abstractions = parameters

method binding can be solved at compile-time

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 33 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

An alternative to handle abstractions (2/4)

The following couple of class designs

with class inheritance: and without:

are translated into C++ by...

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 34 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

An alternative to handle abstractions (3/4)

with class inheritance:

class A { // ...
virtual void m() = 0;

};

class C : public A { //...
virtual void m() {

// C::m code
}

};

and without:

class C { // ...
void m() {

// C::m code
}

};

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 35 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

An alternative to handle abstractions (4/4)

and the main difference appears in the writing of algorithms

with class inheritance:

void foo(A& a) {
a.m();

}

where A is an abstract class

and without:

template <class A>
void foo(A& a) {

a.m();
}

where A is now a parameter

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 36 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Pros for object-orientation

Pros for classes:

they provide a good way to think about domain entities

and a proper “abstraction-like” level

Pros for class inheritance:

a practitioner already has names for the domain objects
 so abstractions and concrete entities can be named

she definitely knows the definitions of abstractions,
 so abstract classes are perfect for that

she always knows the “is-a” relationship between objects
 so inheritance is (seems) trivial

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 37 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Class inheritance versus generic programming

OO means “class inheritance” and GP stands for “generic programming”

efficiency

is great in GP but poor in OO

the abstraction cost of OO is a ×α at execution-time

overloading

comes easily thanks to OO abstractions but is limited in GP

is featured by many mainstream OO languages

multi-methods

look intuitive in the OO context but are difficult to get in GP

however they are not featured by mainstream OO langs

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 38 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Temporary conclusion

We want the best of both worlds (OO and GP):

abstract classes
 so interfaces are clearly defined

class inheritance
 so classes are explicitly related to each other

parameterization
 so programs are efficient at run-time

static typing
 so errors are pointed out at compile-time

so we have defined a Static Object-Oriented Paradigm
(SCOOP), version 1.

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 39 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Different approaches of abstractness

// OO-style
void foo(abstraction& a);

// GP-style
template <class A>
void foo(A& a);

// SCOOP-style
template <class A>
void foo(abstraction<A>& a);

abstractness:

 through abstract classes
here the class “A” is renamed as “abstraction”

 through parameters
so on this slide “A” is always a parameter

 simultaneously through
both abstract classes
and parameters

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 40 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Outline

1 Introduction

2 An actual example
The running example
Variations
Specialization of algorithms

3 SCOOP v1
About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

4 Implicit inheritance
The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 41 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

A class hierarchy translated in SCOOP

Let us consider this class hierarchy:

we want to translate this hierarchy into a static one...

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 42 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Abstract classes (1/3)

To achieve (strong) static typing, the exact type of an
object should never be forgotten.

Example:

an elephant (concrete class) is an animal (abstract class)

the concept of animal translates into a class parameterized
by its exact type:
template <class E> class animal { /∗...∗/ };

an object whose type is elephant derives from
animal<elephant>

In the following, E always denotes the “exact type”.

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 43 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Abstract classes (2/3)

The abstract class at the top of a hierarchy derives from
any<E> to inherit some equipment.

More precisely:

the ’any’ class provides a couple of methods, named exact,
that performs a downcast of the target object toward its
exact type

we have
template <class E>
class any {
public :

E& exact() { return ∗(E∗)(void ∗)this ; }
const E& exact() const { // likewise...

};

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 44 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Abstract classes (3/3)

Classes propagate the exact type through inheritance.

More precisely

starting a static hierarchy in SCOOP from a top class A:
template <class E>
class A : public any<E> { // ...
};

setting inheritance between two abstract classes:
template <class E>
class A1 : public A<E> { // ...
};

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 45 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Final concrete classes

Defining a final concrete class follows a particular idiom.

Precisely

between a final concrete class and an abstract class:
class F1 : public A1< F1 > { // ...
};

even when the final concrete class is parameterized:
template <class T>
class F1p : public A1< F1p<T> > { // ...
};

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 46 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Non final concrete classes

Defining a non-final concrete class follows a particular idiom.

Precisely

C1 is a non-final concrete class deriving from A1:
template <class E = itself> // “itself” is a special type
class C1 : public A1< C1 <E> > { // ...
};

and the client can literally write “C1” thanks to:
typedef C1 <itself> C1;

sub-classing C1 is then possible:
class SC1 : public C1 < SC1 > { //...
}; // here SC1 is a final class

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 47 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Methods

An abstract method is statically bound to its proper
implementation.

More precisely:

the programmer should manually code the binding
template <class E>
class abstraction { // ...

int meth(int args) {
return this −>exact().impl meth(args);

}
};

method implementation should use the impl prefix

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 48 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Putting all together

OO:

class A { // ...
virtual void m() = 0;

};

class B : public A { //...
virtual void m() {

// B::m code
}

};

void foo(A& a) {
a.m();

}

SCOOP:
template <class E>
class A : public any<E> { // ...

void m() { this−>exact().impl m(); }
};

class B : public A { //...
void impl m() {

// B::m code
}

};

template <class E>
void foo(A<E>& a) {

a.m();
}

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 49 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

About algorithms in SCOOP

An algorithm is turned into a procedure (C-like function):

their variations are handled through inheritance
 the procedure behavior changes with the input types

their specializations can be handled through multi-methods
 several procedures share the same name but not the same code

Just like a regular method,
a multi-method is statically bound to its proper implementation.

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 50 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Multi-methods (1/2)

For instance, for bar and baz multi-methods:

first provide their implementation sets
namespace impl
{

// bar
template <class E> void bar(A1<E>& a) { /∗ code dedicated to subset A1... ∗/ }
template <class E> void bar(A2<E>& a) { /∗ code dedicated to subset A2... ∗/ }
// baz
template <class E> void baz(A<E>& a) { /∗ general code (default)... ∗/ }
template <class E> void baz(A1<E>& a) { /∗ specialized code... ∗/ }

}

then the multi-method facades, which perform the binding
// bar
template <class E> void bar(A<E>& a) { impl::bar(a.exact()); }
// baz
template <class E> void baz(A<E>& a) { impl::baz(a.exact()); }

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 51 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Multi-methods (2/2)

this multi-method idiom naturally

works with multiple arguments

allows the compiler to point out potential ambiguities
such as in:
namespace impl {

template <class T, class U> void oops(A1<T>& t, A<U>& u) { /∗ ... ∗/ }
template <class T, class U> void oops(A<T>& t, A2<U>& u) { /∗ ... ∗/ }

}
template <class T, class U>
void oops(A<T>& t, A<U>& u) { impl::oops(t.exact(), u.exact()); }

int main() {
C1 c1; C2 c2; // with C1 and C2 respectively deriving from A1 and A2
oops(c1, c2);

}

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 52 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

What have we done?

we have

static class hierarchies
 meaning that abstractions keep track of object exact type

parametric routines with constrained genericity
 so mixing overloading and genericity is now easy

considering template <class T> void routine(A<T>& arg)

arg can be of any type T being a subclass of A
 more precisely, T is a subclass of A<T>

this kind of recursive bound is theorically sound
 it is known as F-bounded parametric polymorphism

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 53 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Outline

1 Introduction

2 An actual example
The running example
Variations
Specialization of algorithms

3 SCOOP v1
About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

4 Implicit inheritance
The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 54 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Covariant methods (1/2)

The following design seems reasonable:

that’s because...

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 55 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Covariant methods (2/2)

...many methods are expected to behave in a covariant way!

for instance in:
class image { // ...

virtual value& operator [](const point& p) = 0;
};

template <class T>
class image2d : public image { // ...

virtual T& operator [](const point2d& p) { /∗ impl... ∗/ }
};

the type of p is point2d in the operator implementation, whereas
it is point (base class of point2d) in the abstract interface.

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 56 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Covariance

C++, such as many languages, does not support covariant
methods
 such feature is proven to be not type-safe!

the covariant behavior can be emulated but a run-time test
is required:

T& image2d<T>::operator [](const point& p)
{

const point2d∗ ptr = dynamic cast <const point2d∗>(&p);
if (ptr == 0) throw covariance error;
const point2d& p2 = ∗ptr;
// here p2 has the proper type
// ...

}

however, covariance can be safe in a static context
 since types are known at compile-time, covariance can be type-checked

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 57 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Extended C++ (1/3)

A solution, based on “virtual types”, is here expressed with an
extended C++ syntax

an abstract class declares virtual types and thus can use them
in methods:
class image
{
public :

// virtual types declarations:
virtual typedef value value vt;
virtual typedef point point vt;

// a method using virtual types:
virtual value vt& operator [](const point vt& p) = 0;

};

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 58 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Extended C++ (2/3)

The former declaration:
virtual typedef value value vt;

means that the value virtual type should be a subclass of the
value abstraction.

Another way to extend C++ could be to define abstract virtual
types with the ”= 0” syntax:

virtual typedef value vt = 0;

and a constrain upon a virtual type, depending on inheritance,
could be expressed with the ”: public ” syntax, such as in:

virtual typedef value vt = 0 : public value;

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 59 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Extended C++ (3/3)

a subclass should provide definitions for abstract virtual types
and/or override inherited definitions:

template <class T>
class image2d : public image
{
public :

// virtual types definitions:
virtual typedef T value vt;
virtual typedef point2d point vt;

// method implementation:
virtual value vt& operator [](const point vt& p) {

// here the type of p is point2d
// ...

}
};

virtual types substitution follows subclassing
Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 60 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

OO diagram with virtual types

Finally we end up with:

and the polymorph method now looks invariant
(yet still behaves in a covariant way)

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 61 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Attempt in standard C++

The natural translation into SCOOP gives:

template <class E>
class image : public any<E> {
public :

typedef typename E::value vt value vt;
typedef typename E::point vt point vt;
value vt& operator [](const point vt& p) { return this −>exact().impl op(p.exact()); }

};

template <class T>
class image2d : public image< image2d<T> > {
public :

typedef T value vt;
typedef point2d point vt;
value vt& impl op(const point vt& p) { /∗ impl... ∗/ }

};

which does not work since these classes are mutually
recursively defined.

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 62 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Equipment for virtual types

To break recursion

virtual types are defined separately from their
corresponding class

a traits class is used to encapsulate virtual types
definitions.

for that, a tiny equipment is provided:
struct undefined;
template <class T> struct traits;
#define vtype(T,V) typename traits<T>::V## vt

where vtype is a macro to resolve virtual type value; for
instance:

‘‘vtype(E, value)’’ means ‘‘typename traits<E>::value vt’’

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 63 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Virtual types in SCOOP (1/3)

first the class to be defined is declared:
template <class E> class image; // forward declaration

then virtual types are declared by a traits class:
template <class E>
struct traits < image<E> > // specialization
{

typedef undefined value vt;
typedef undefined point vt;

};

at that point, the virtual types are not yet defined
an (abstract) image cannot tell what its effective value vt and point vt are

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 64 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Virtual types in SCOOP (2/3)

Last the class can be defined:
template <class E>
class image : public any<E> {
public :

vtype(E, value)& operator [](const vtype(E, point)& p) {
return this −>exact().impl op(p);

}
};

where

the calls vtype(E,something) are substituted at compile-time
by the proper types

these types are expected to be provided by subclasses of
image

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 65 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Virtual types in SCOOP (3/3)

The same scheme is used for the derived class:

// forward declaration:
template <class T> class image2d;

// traits specialization:
template <class T>
struct traits < image2d<T> > : public traits< image< image2d<T> > >
{

typedef T value vt;
typedef point2d point vt;

};

// class definition:
template <class T>
class image2d : public image< image2d<T> > {
public :

T& impl op(const point2d& p) { /∗ impl... ∗/ }
};

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 66 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

Conclusion

Several remarks:

for virtual type definitions to be inherited, the traits should
reproduce the same inheritance tree than their
corresponding classes it works because in C++ typedef s are inherited!

in our example, image2d is a final class so its interface can
directly use the virtual type values (and avoid calling vtype)

however SCOOP v1, as presented here, does not fulfill all
our requirements...

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 67 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Outline

1 Introduction

2 An actual example
The running example
Variations
Specialization of algorithms

3 SCOOP v1
About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

4 Implicit inheritance
The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 68 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

A quick refresh(1/2)

Remember that:

we are in a static context
 all types are known at compile-time

we define class hierarchies like in classical OO
 with abstract classes, their interface, and inheritance

we want to design classes built over other classes
 e.g., a masked image is an image + a mask

 e.g., an image with a display attached to

 ...

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 69 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

A quick refresh (2/2)

Generic programming (such as in the standard library of C++
and so on) is a solution to this combinatorial problem:

an algorithm should work on many data types
yet it should be written once and be efficient at run-time

with

A algorithms

D data types = S structure types × T value types

it comes that

one should only define (A + S + T) entities

and then 1 A ⇔ S × T

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 70 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Introducing morphers

Let us call morpher a class defined from another class put

differently, a morpher is a generic class built upon another class

with

M morphers

it comes that

one should only define (A + S + T + M) entities

and then 1 A ⇔ (S × T) M
*

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 71 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

The case of morphers (1/3)

First let us introduce an abstract subclass of image:
// top class of the image hierarchy
class image { /∗ ... ∗/ };

// the new abstract class for 2d images
class image 2d : public image { /∗ ... ∗/ };

// a concrete image class
template <class T>
class image2d : public image 2d { /∗ ... ∗/ };

having abstract subclasses means:

extended interfaces

somehow specialized behaviors

concepts more precise than just “image”

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 72 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

The case of morphers (2/3)

Let us introduce a morpher that works by delegation:

class masked image : public image
{ //...

value& operator [](const point& p) {
assert(mask[p]); // test and...
return this −>ima[p]; // delegate

}
image& ima; // object to delegate to
image& mask;

};

// routine to associated a mask
// with an image:

masked image&
add mask(image& ima, image& mask)
{

return ∗new masked image(ima, mask);
}

with that design we can have:
image2d<int > i 2d; image2d<bool > m 2d; //...
image& ima = add mask(i 2d, m 2d);
point2d p(5,1);
cout << ima[p] << endl; // ok

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 73 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

The current design (1/2)

The corresponding UML class diagram is the following:

so an “masked image” does not derive from the 2D image
abstraction

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 74 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

The current design (2/2)

thus the following sample code
image 2d& ima = add mask(i 2d, m 2d);

is not valid...

yet, in that case, the result of “add mask” should be a 2d image!

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 75 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

The case of morphers (3/3)

Actually

we want to translate a morpher into one single class

in the static context:
the masked image class looks like

template <class I, class M>
class masked /∗ here some code has been deleted ∗/ { //...

I& ima;
M& mask;

};

e.g., we have masked_< image2d<int>, image2d<bool> >

we want to say that:
when I is 2D then masked <I,M > is 2D

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 76 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

The problem with morphers

the facts are:

morphers should be implemented by delegation
 because using mixins cannot work property (just trust me on that!)

when I has a specific property, then
a_morpher_based_on<I> should not ignore it
 a “2D image plus a mask” should be a 2D image...

delegation does not transfer “properties”
 so does not transfer inheritance (in our example image_2d)

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 77 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

A solution for morphers

for morphers we want a mechanism:

that relies on delegation

that acts like mixins

that is close to type inference

that is easily extendable without intrusion

that can be written in static OO C++

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 78 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Example

in the following pseudo-C++ “SCOOP v2”-like code:

class image { //...
};

class image 2d : public image { //...
value& operator ()(int row, int col) = 0;

};

class masked image
: public image entry { //...
// no operator()(int, int) is written here
// since this class is generic

};

masked image&
add mask(image& ima, image& mask) {

return ∗new masked image(ima, mask);
}

int main() {
image2d<int > i; image2d<bool > m; //...
image 2d& ima = add mask(i, m); // (a)
cout << ima(5,1) << endl; // (b)

}

the class masked_image automatically
inherits from image_2d so line (a) is ok
and delegates the operator call of line (b)

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 79 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

SCOOP v2 in a few words

the cornerstone of SCOOP v2 is:

inheritance is not fully explicit
(so inheritance is partially implicit)

more precisely:

we declare that a concrete class belong to a hierarchy
 masked_image derives from a special class, image_entry

we do not explicitly precise the abstract image subclasses
from which it derives
 we cannot explicitly write from which class derives masked_image

 but a masked 2d image will derive from the image_2d abstract class

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 80 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Outline

1 Introduction

2 An actual example
The running example
Variations
Specialization of algorithms

3 SCOOP v1
About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

4 Implicit inheritance
The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 81 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Programing with properties (1/3)

in SCOOP v2

a class is defined along with a collection of types,
the so-called properties
 a property is not just a trait associated to a class

a concrete class can enter a hierarchy
 for that, the class should derive from the hierarchy entry

image_entry for the image hierarchy

inheritance for this class is automatically plugged from its
properties
 so inheritance is not fully explicit

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 82 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Programing with properties (2/3)

before:

class image { //...
typedef point type = 0;

};

class image 2d : public image { //...
typedef point2d point type;

};

template <class T>
class image2d : public image 2d { //...

// point type is already defined here
// but we explicitly write inheritance

};

with properties:

class image { //...
typedef point type = 0;

};

class image 2d : public image { //...
// optional: check point type == point2d;

};

template <class T>
class image2d : public image entry { //...

typedef point2d point type;
// we define point type
// but now inheritance can be implicit

};

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 83 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Programing with properties (3/3)

image_entry has to define how to solve inheritance:
class image entry : public

image 2d when point type == point2d
// and so on for other inheritance rules...

{};

and now we can easily write:
template <class I, class M>
class masked : public image entry { //...

typedef I::point type point type;
};

thus, when I is 2D, masked_<I,M>::point_type is point2d

so masked_<I,M> inherits from image_2d

remember that the inheritance mechanism is performed at compile-time!

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 84 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

First conclusion on properties

we now do NOT say:
image2d<T> works with point2d because it derives from image_2d

but conversely we do say:
image2d<T> derives from image_2d because it works with point2d

using properties:

allows to just roughly draw inheritance

we just have to write “image2d<T> ” is an image
so we can get rid of inheritance details
and we can have morphers work properly

reverses the way we think about inheritance

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 85 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

A few remarks

yet this solution remains partially unsatisfactory

a type is manually transfered (and that’s really bad!)
in the previous code the designer explicitly writes that

the value of ::point_type is transfered from I to masked_<I,M>

we definitely cannot know the list of types to transfer
an extension will introduce some ::new_type ...

so we need a solution

to express the notion of “set of properties (SoP) of a type”

to transfer a SoP from one type to another

to extend or modify a SoP in a non-intrusive way

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 86 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Outline

1 Introduction

2 An actual example
The running example
Variations
Specialization of algorithms

3 SCOOP v1
About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

4 Implicit inheritance
The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 87 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Hierarchy design (1/3)

A class hierarchy has two important classes:

the top abstract class
 image in our example

the hierarchy entry class
 image_entry in our example

The other classes belong to one of these categories:

client abstractions
 for instance image_2d

concrete classes
 for instance image2d<T> or masked_<I,M>

implementation abstract classes...

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 88 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

SCOOP v2 hierarchy design

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 89 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Hierarchy design (2/3)

client abstractions:
are defined in-between respectively the hierarchy top and entry classes

are part of the application domain

can use but do not define properties

concrete (implementation) classes:
are subclasses of the entry class

are also used by the client (the assembler)

implementation abstract classes:
are subclasses of the entry class and base classes for concrete classes

are used to factor code and definitions of properties
 so they shall be understood as implementation details

are for provider and architect eyes only

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 90 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

the return of SCOOP v2 hierarchy design

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 91 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Hierarchy design (3/3)

so we have two parts:

the client abstraction part
 can be organized into “parallel sub-hierarchies”

- the hierarchy entry class as separator

and the implementation part
with implementation abstract classes
and concrete classes

 this part can be organized into a judicious “implementation hierarchy”

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 92 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

A typical class diagram in SCOOP v2

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 93 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Conclusion on properties and hierarchy

properties

are defined in the implementation part

behave as virtual types in the implementation hierarchy

the client abstraction part and the implementation part

address two well-separated issues (domain v. design)

both parts are extendable independently,
whatever the extension is horizontal or vertical

(and that’s great!)

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 94 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

The extension process (1/2)

extending a class hierarchy means:

adding a new concrete class
this new class has to implement abstract methods
and to set the values of properties

adding a new property to this hierarchy
all concrete classes have to value this property
setting values is performed in the implementation part

adding something in a client abstract class
either a new property or a new method
this new entity is thus not defined by all concrete classes

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 95 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

The extension process (2/2)

extending a class hierarchy also means:

adding a new sub-hierarchy of abstract classes
these new classes derive from the hierarchy top class
this new sub-hierarchy can be orthogonal to existing ones
a new inheritance rule has then to be defined

adding a method definition
corresponding to an abstract method
for any class of the hierarchy

all these extensions are non-intrusive
(so that’s great!)

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 96 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Outline

1 Introduction

2 An actual example
The running example
Variations
Specialization of algorithms

3 SCOOP v1
About abstractness and OO v. GP
SCOOP basic idioms
Virtual types in SCOOP

4 Implicit inheritance
The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 97 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Forewords

the solution we present conforms to standard C++

and it’s not such hard core C++...

(however the following slides are rated R)

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 98 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

About functions from type(s) to type (1/4)

Just realize that:

writing the following C++ code
template <class T> struct foo { typedef undefined ret; };

means that foo is a function
taking a type as argument (T)
and returning a type (foo<T>::ret)

for instance,
getting the value type from an image type is a function

with image2d<int> the value type is int

in that case, the name of the foo -like function is value_type

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 99 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

About function from type(s) to type (2/4)

Also just realize that:

the specialization
template <> struct foo <A> { typedef float ret; };

defines the result of the function for the input type A

and the following structure
template <>
struct types <A> {

typedef float bar;
typedef bool baz;

};

means
that bar can be considered as a function (from type to type)
and that we pack several definitions together

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 100 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

About functions from type(s) to type (3/4)

but

do not confuse function definitions with function results

for virtual types, definitions are subject to substitution...

calling a function is performed by a particular syntax

so calling a function from type(s) to type can have different
behaviors:

the basic matching imposed by C++ template specialization
 and this kind of matching is rather limited

a client-defined pattern matching for each function
 just like in a functional language

and the “virtual type” mechanism that relies on inheritance
 that’s the one we are interested in for properties

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 101 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

About functions from type(s) to type (3/4)

for example:
with
template <class I>
struct set_types < image<I> > {

typedef undefined value;
//...

};

when I is image2d<int>

the definition of value type for image<I> gives undefined

but the value type result provided by
typeof(image<I>, value) is int

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 102 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

C++ contraction (1/2)

in the following we use some syntactical contractions:

standard C++ shortened C++

template<class T> struct foo; decl ’T foo;
template<class T>
struct foo {...}; ’T foo<T> {...};
template<class T>
struct foo < image2d<T> > ... ’T foo< image2d<T> > ...
: public base1, public base2 : base1, base2
and_< eq<T1,T2>, is_a(T3,T4) > T1 == T2 and T3 <# T4
predicate::ensure(); check predicate;

current the class we are currently defining
typeof(current, value) value@
{this->exact().impl_m();} = 0;
... some code has been deleted

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 103 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

C++ contraction (2/2)

in the following we use some syntactical contractions:

standard C++ shortened C++

typedef float alias_type; alias = float;
{ typedef float ret; }; = float;
typename foo<T>::alias_type foo(T).alias
typename foo<T>::ret foo(T)

understand that

foo<T> is the structure type

foo(T).alias and foo(T)

are access to the structure contents (a typedef)
but are not the function resolution of the virtual type foo

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 104 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Some equipment (1/3)

flags to handle the result of functions from type(s) to type:

flag meaning

undefined the type is not defined yet
(so it has only been declared... as being “undefined”)

no_type there is no type (no relevant type can be returned)
not_found the type has not been found (it cannot be retrieved)

this sample code:
decl A; decl B;

’T foo<T> = undefined;
foo<A> = float;

’T types<T> {};
types<A> { bar = double };

gives:

check foo(B) == undefined;
check foo(A) == float ;

check types(A).baz == not found;
check types(A).bar == double ;

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 105 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Some equipment (2/3)

A key tool is implicitly used when we write:

check types(A).baz == not_found;

actually

trying to read the typedef baz_type in the structure
types<A> shall compile even if this type definition does not
exist!

for that we rely on the C++ SFINAE rule
 you should know that “Substitution Failure Is Not An Error”!

a piece of meta-program is behind the writings like foo(T)
and foo(T).alias
 the meta-function is typedef_of(type, alias)

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 106 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Some equipment (3/3)

Some functions (for any type T) are proposed as an equipment
for the architect and the provider:

function meaning

set super(T) to declare the immediate base class of T
super(T) to get the immediate base class of T

set types(T) to define the properties of T
types(T) to get the properties set of T
set ext type(T, P) to define an extra property P for T

for extending the properties set without intrusion
typeof(T, P) to get the property P of T

and also

function meaning

set impl(T) to define a default impl for the interface of T

set inherits(A, E, i) to define the ith inheritance rule for E in the A hierarchy

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 107 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

The magic of typeof

setting a property P for a type T can be performed

either within the bundles of types associated with T
 one should then use set_types(T)

or via the non-intrusive extension process
 one should then use set_ext_type(T, P)

typeof(T, P) retrieves from any type T its property P

practically

the property is defined either in the bundle types(T) or, as a stand-alone
extension, by type(T, P)

both structures types(T) and type(T, P) follows inheritance to provide
virtual types

the property should not be twice ’not_found ’ nor ’undefined ’

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 108 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Ready?

so let’s rock!

and that’s not so hard...

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 109 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Hierarchy top class

A hierarchy has a top abstract class.

// first declare the class:

decl ’E image;

// before setting the types related to it:

’E set_types<current> {
value = undefined;
point = undefined;

};

// last define the class:

’E image<E> : any<E>, impl<current> {
@value& operator[](const @point& p) = 0;

};

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 110 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Hierarchy entry class

A SCOOP v2 hierarchy has an entry class.

// the entry point of the image hierarchy:

decl ’E image_entry;

’E image_entry<E> : inherits<image, E> {
};

the class “inherits ”, provided in the equipment, allows for
sub-classes to implicitly inherit from client abstractions

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 111 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

A concrete class

Then we can add a concrete class.

// first declare:

decl ’T image2d;
set_super<current> = image_entry<current>;

// then set types:

set_types<current> {
value = T;
point = point2d;

};

// last define:

’T image2d<T> : super<current> {
@value& operator[](const @point& p) { ... }
...

};

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 112 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Adding a sub-hierarchy

A first sub-hierarchy is defined (discriminant = grid dimension).

// start with the sub-hierarchy:

’E image_2d<E> : image<E>, impl<current> {
@value& operator()(int row, int col) {

return (*this)[@point(row, col)];
}

};

//...

// and end with the corresponding inheritance rule:

’E set_inherits<image, E, 1> =
if typeof(E, point) == point2d
then image_2d<E>
// elseif ...
;

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 113 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Making a room for morphers

Let us introduce the abstract impl. class for image morphers.

// declare:

decl ’I ’E morpher;
set_super<current> = image_entry<current>;

// fetch the properties from I:

set_types<current> : types<I> { // for the packed ones
delegated = I; // extra property

};
’P set_type<current, P > = type<I, P>; // for the stand-alone ones

// define:

’I ’E morpher<I,E> : super<current> {
morpher(I& ima) : ima_(ima) {}
@delegated impl_delegate() { return ima_; }
I& ima_;

};

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 114 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Adding a morpher

We can add an image morpher: the class for “image + mask”.

declare:

decl ’I ’M masked_;
set_super<current> = morpher<I, current>;

set a new type:

set_type<current, mask > = M; // extra property

define:

’I ’M masked_<I, M> : super<current> {
masked_(I& ima, M& mask) : super(ima), mask_(mask) {}
M& mask() { return mask_; }
M mask_;

};

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 115 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Generalization

The “mask” property becomes global (defined for all image
types):

’I set_type< image<I>, mask > = no_type; // default value

and a second sub-hierarchy takes advantage of this new
property:

’E masked_image<E> : image<E>, impl<current> {
@mask& mask() = 0;

};

’E set_inherits<image, E, 2> =
if typeof(E, mask) != no_type
then masked_image<E>
;

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 116 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Method default implementation

To handle morphers, one should be able to automatically
delegate methods.

’E set_impl< image<E> > {

// the abstract image class is thus equipped:

@delegated& delegate() = 0;
E& impl_delegate(); // no default impl

// delegation is implemented for the image class interface:

@value& impl_operator[](const @point& p) {
return delegate().operator[](p);

}
}

// we proceed likewise for each client abstract class:

’E set_impl< masked_image<E> > {
@mask& impl_mask() { return delegate().mask(); }

}

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 117 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Conclusion

this document is nothing but an introduction to SCOOP v2

a technical report with much more details will be published
on our web site
http://olena.lrde.epita.fr

a perspective of our work is to provide a language
based on the concepts presented in those slides
dedicated to efficient object-oriented scientific programing

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 118 / 120

http://olena.lrde.epita.fr

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

Thanks

I’d like to thank

the SCOOP v1 team, which is at the origin of this work:
Nicolas Burrus, Alexandre Duret-Lutz, David Lesage, and
Raphaël Poss

Roland Levillain for fruitful discussions

Akim Demaille and all the people that are supporting the
OLENA project

and every contributors to OLENA

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 119 / 120

Introduction
An actual example

SCOOP v1
Implicit inheritance

The need for SCOOP v2
Think different
Designing with properties
The How-To Section

just mail me if you have some comments or questions:

theo@lrde.epita.fr

Thierry G éraud A Sequel to SCOOP EPITA-LRDE 2006 120 / 120

	Outline
	Main Talk
	Introduction
	An actual example
	The running example
	Variations
	Specialization of algorithms

	SCOOP v1
	About abstractness and OO v. GP
	SCOOP basic idioms
	Virtual types in SCOOP

	Implicit inheritance
	The need for SCOOP v2
	Think different
	Designing with properties
	The How-To Section

