Spot’s Temporal Logic Formulas

Alexandre Duret-Lutz|<adl@lrde.epita.fr>
compiled on April 15, 2025, for Spot 2.13.0.dev

[1._Reasoning with Infinite Sequences| 3
1.1. Finite and Infinite Sequences| L. 3
1.2. Usagein Model Checking|

[2._Temporal Syntax & Semantics| 4
I Boolean Constanfsl 4

RII _Semantics 4
[2.2. Atomic Propositions|o oo o 4
22.1. Examples| 5
222. Semantics] 5
[2.3. Boolean Operators (for Temporal Formulas)l 5
R31._Semanticsl 6
[2.3.2. Trivial Identities (Occur Automatically)| 6
[2.4. Temporal Operators|. 6
R4I1. Semanticsl 7
2.4.2. SyntacticSugar| 7
2.4.3. Trivial Identities (Occur Automatically)| 7
[25. SERE Operators| 8
25.1. Semantics| 8
2.5.2. SyntacticSugar| 9
2.5.3. 'Trivial Identities (Occur Automatically)[. 10
[2.6. SERE-LIL Binding Operators| 11
6. Semantics| 11
2.6.2. SyntacticSugar| 12
2.6.3. 'Trivial Identities (Occur Automatically)l 12

B._Grammar] 13
[3.1. Operator precedence| 13

[Properties| 15
4.1. Pure Eventualities and Purely Universal Formulas|. 15
4.2. Syntactic Hierarchy Classes| 16

[5. Rewritings| 19
B _Unabbreviationsl. v v v e e e e e e 19
5.2. LILsimplifier] 19
5.3. Negative normalform| o oo 20
5.4. Simplifications|. L 20

5.4.1. Basic Simplifications| L o o 21
5.4.2. Simplifications for Eventual and Universal Formulas| 25
5.4.3. Simplifications Based on Implications| 26

—_

mailto:adl@lrde.epita.fr

|A. Defining LTL with only one of U, W, R, or M

IB. Syntactic Implications|

29
31
31

1. Reasoning with Infinite Sequences

1.1. Finite and Infinite Sequences

Let N = {0,1,2,...} denote the set of natural numbers and w ¢ IN the first transfinite ordinal. We
extend the < relation from IN to IN U {w} with Vn € IN, n < w. Similarly let us extend the addition and
subtraction withVn e N, w+n=w—-n=w+w = w.

For any set A, and any number n € IN U {w}, a sequence of length n is a function o : {0,1,...,n -1} —
A that associates each index i < n to an element ¢(i) € A. The sequence of length 0 is a particular
sequence called the empty word and denoted e. We denote A" the set of all sequences of length n on A
(in particular A“ is the set of infinite sequences on A), and A* = | J,cy A" denotes the set of all finite
sequences. The length of any sequence ¢ is noted ||, with || € N U {w}.

For any sequence ¢, we denote ¢/ the finite subsequence built using letters from o (i) to o(j). If o
is infinite, we denote o' the suffix of o starting at letter o (i).

1.2. Usage in Model Checking

The temporal formulas described in this document, should be interpreted on behaviors (or executions,
or scenarios) of the system to verify. In model checking we want to ensure that a formula (the property
to verify) holds on all possible behaviors of the system.

If we model the system as some sort of giant automaton (e.g., a Kripke structure) where each
state represent a configuration of the system, a behavior of the system can be represented by an
infinite sequence of configurations. Each configuration can be described by an affectation of some
proposition variables that we will call atomic propositions. For instance r = 1, = 0,¢ = 0 describes the
configuration of a traffic light with only the red light turned on.

Let AP be a set of atomic propositions, for instance AP = {r,y, g}. A configuration of the model is a
function p : AP — B (or p € BAP) that associates a truth value (B = {0, 1}) to each atomic proposition.

A behavior of the model is an infinite sequence ¢ of such configurations. In other words: ¢ € (BAP)«.

When a formula ¢ holds on an infinite sequence o, we write o = ¢ (read as ¢ is a model of).

When a formula ¢ holds on an finite sequence o, we write o |- ¢.

2. Temporal Syntax & Semantics

2.1. Boolean Constants

The two Boolean constants are ‘1" and ‘0’. They can also be input as ‘true’ or ‘false’ (case insensitive)
for compatibility with the output of other tools, but Spot will always use ‘1" and ‘0 in its output.

2.1.1. Semantics

o0
cE1

2.2. Atomic Propositions

Atomic propositions in Spot are strings of characters. There are no restrictions on the characters that
appear in the strings, however because some of the characters may also be used to denote operators
you may have to represent the strings differently if they include these characters.

1. Any string of characters represented between double quotes is an atomic proposition.

2. Any sequence of alphanumeric characters (including ‘) that is not a reserved keyword and that
starts with a characters that is not an uppercase ‘F’, ‘G’, or ‘X’, is also an atomic proposition. In
this case the double quotes are not necessary.

3. Any sequence of alphanumeric character that starts with ‘F’, ‘G, or ‘X’, has a digit in second
position, and anything afterwards, is also an atomic propositions, and the double quotes are not
necessary.

Here is the list of reserved keywords:
e ‘true’, ‘false’ (both are case insensitive)
PY /F/, IGII /MI, /RI, IU,, /VI’ /w/, IX,, /Xor/

The only way to use an atomic proposition that has the name of a reserved keyword, or one that
starts with a digit, is to use double quotes.

The reason we deal with leading ‘F’, ‘G, and ‘X’ specifically in rule [2|is that these are unary LTL
operators and we want to be able to write compact formulas like ‘GFa’ instead of the equivalent
‘G(F(a))’ or ‘G F a’. If you want to name an atomic proposition ‘GFa’, you will have to quote it as
‘"GFa"’.

The exception done by rule 3| when these letters are followed by a digit is meant to allow ‘X0,
‘X1’, ’X2’, ... to be used as atomic propositions. With only rule |2} “X0” would be interpreted as ‘X(0)’,
that is, the LTL operator X applied to the constant false, but there is really little reason to use such
a construction in a formula (the same is true for ‘F’ and ‘G’, and also when applied to ‘1’). On the
other hand, having numbered versions of a variable is pretty common, so it makes sense to favor this
interpretation.

If you are typing in formulas by hand, we suggest you name all your atomic propositions in lower
case, to avoid clashes with the uppercase operators.

If you are writing a tool that produces formula that will be feed to Spot and if you cannot control
the atomic propositions that will be used, we suggest that you always output atomic propositions
between double quotes to avoid any unintended misinterpretation.

2.2.1. Examples

® ‘"a<=b+c"’ is an atomic proposition. Double quotes can therefore be used to embed constructs
specific to the underlying formalism, and still regard the resulting construction as an atomic
proposition.

® ‘light_on’ is an atomic proposition.

¢ ‘Fab’ is not an atomic proposition, this is actually equivalent to the formula ‘F (ab)” where the
temporal operator F is applied to the atomic proposition ‘ab’.

e ‘FINISHED’ is not an atomic proposition for the same reason; it actually stands for ‘F (INISHED)’
* ‘F100ZX’ is an atomic proposition by rule

¢ ‘FX100’ is not an atomic proposition, it is equivalent to the formula ‘F(X100)’, where ‘X100’ is
an atomic proposition by rule

2.2.2. Semantics
For any atomic proposition a, we have
cEa < 0(0)a) =1

In other words a holds if and only if it is true in the first configuration of o.

2.3. Boolean Operators (for Temporal Formulas)

Two temporal formulas f and g can be combined using the following Boolean operators:

preferred other supported UTF8 characters supported
operation syntax syntaxes preferred others
negation L f “f — U+00AC

disjunction flg fllg f\/g f+g v U+2228 U U+222A
conjunction f&g feeg f/\Ng frdl Auvs2227 A Ur2229

implication f->g f=>g f-->g — U+2192 — U+27F6, = U+21D2 U+27F9
exclusion fxorg f g @ U+2295
equivalence f<->g f<=>g f<-->g¢ — U+2194 < U+21D4

Additionally, an atomic proposition a can be negated using the syntax ‘a=0’, which is equivalent
to ‘1 a’. Also ‘a=1" is equivalent to just ‘a’. These two syntaxes help us read formulas written using
Wring’s syntax.

When using UTF-8 input, a ‘=0 that follow a single-letter atomic proposition may be replaced by a
combining overline U+0305 or a combining overbar U+0304. When instructed to emit UTF-8, Spot will
output ‘a” using a combining overline instead of ‘—a’ for any single-letter atomic proposition.

When a formula is built using only Boolean constants (section 2.T)), atomic proposition (section [2.2),
and the above operators, we say that the formula is a Boolean formula.

IThe *-form of the conjunction operator (allowing better compatibility with Wring and VIS) may only used in temporal
formulas. Boolean expressions that occur inside SERE (see Section 2.5) may not use this form because the * symbol is used
as the Kleene star.

2.3.1. Semantics

CE!'f < (0K f)
cEfg = (CEf)r(0EQ)
cEflg = (cEf)v(ckEg)
oEf>g = (CFfv(CEg)
ok fxorg < ((CEf)a(0# Q) v ((a# f)A(okEg))
vEf<>g = (CEf)a(cE=g) v ((a# f) (o g)

2.3.2. Trivial Identities (Occur Automatically)

Trivial identities are applied every time an expression is constructed. This means for instance that
there is not way to construct the expression “! ! 4’ in Spot, such an attempt will always yield the
expression ‘a’.

10=1 1—>f5f f—>151
11=0 0->f=1 f>0=1f
11 f=f f>f=1

The next set of rules apply to operators that are commutative, so these identities are also valid with
the two arguments swapped.

0&f=0 olf=f Oxorf=f 0<>f=1f
tef=f 11f=1 lxorf=1f 1<>f=f
faf=f flf=f fxorf=0 f<>f=1

The ‘4" and ‘|” operators are associative, so they are actually implemented as n-ary operators
(i.e., not binary): this allows us to reorder all arguments in a unique way (e.g. alphabetically). For
instance the two expressions ‘a&c&b&!d’ and ‘c&!d&b&a’ are actually represented as the operator
‘%" applied to the arguments {a,b,c,!d}. Because these two expressions have the same internal
representation, they are actually considered equal for the purpose of the above identities. For instance
“(akc&bk!d) ->(c&!d&b&a)” will be rewritten to ‘1" automatically.

2.4. Temporal Operators

Given two temporal formulas f, and g, the following temporal operators can be used to construct
another temporal formula.

preferred other supported UTEFS characters supported

operator syntax syntaxes preferred others
(Weak) Next Xf Of O U+25CB O U+25EF
Strong Next X0f ® U+24CD
Eventually Ff <> f O U+25C7 O U+22C4 U+2662
Always Gf 0of 0 U+25A1 [U+2B1C U+25FB
(Strong) Until fug
Weak Until fwg
(Weak) Release fRY fvg

Strong Release fMg

2.4.1. Semantics

CEXf «— o f
CEX[f «— o f
CEFf «— JieN, ok f
CEGf < YieN, o E f
. Vi<j, ot e f
U Jjew, {"
CEfUg « Jje {(ﬂ“}:g
T fug < (0= fUQ Vv (CEGS)
, Vi<j o Eeg
M JjeN, { "
cEfMg < 3Jje {aﬁbf
o fRg = (0F fHg)v(r=Gyg)

Note that the semantics of X (weak next) and X[!] (strong next) are identical in LTL formulas. The
two operators make sense only to build LTLf formulas (i.e., LTL with finite semantics), for which

support is being progressively introduced in Spot.

Appendix [A] explains how to rewrite the above LTL operators using only X and one operator chosen
among U, W, Mand R. This could be useful to understand the operators R, M, and W if you are only

familiar with X and U.

2.4.2. Syntactic Sugar

The syntax on the left is equivalent to the syntax on the right. Some of rewritings taken from the
syntax of TSLF [15] are performed from left to right when parsing a formula. They express the fact

that some formula f has to be true in n steps, or at some or all times between n and m steps.

X[nf =%XX...Xf

n occurrences of X

Fln:mlf = XX...X(f | X(f | X(... 1 Xf)))

n occ. of X m—n occ. of X

Gln:mlf = XX...X(f&X(f&X(...&Xf)))
— -
n occ. of X m—n occ. of X

X[n']f =X0IX0T ... X[f
n occurrences of X[!]

Fln:m!1f =X0IX0T X0 I XOI(F I X0NI(.. 1 X0NTS)))

n occ. of X[!] m—n occ. of X[!]
Gln:m!1f =X[NIX0T ... XDI(f&XDI(f&XDMI(...&X[11f)))
n occ. of X[!] m—n occ. of X[!]

2.4.3. Trivial Identities (Occur Automatically)

X['Jo=o FO=0
X1=1 Fi=1

FFf=Ff

Fln:1f =Xl Ff

Gln:1f =Xl Gf

Fln:'1f=XxMn']Ff

Gln:'1f =xMn'1Gf

GO=0
G1=1
GGf=Gf

fUlEl leEl fMOEO leEl

0Uf=f oOwf=f OMf=0 fRO=0
fuo=o 1Wf=1 IMf=f 1Rf=f
fuf=f fuf=f fuf=f fRf=S

2.5. SERE Operators

The “SERE” acronym will be translated to different word depending on the source. It can mean
either “Sequential Extended Regular Expression” [11) 1], “Sugar Extended Regular Expression” [4], or
“Semi-Extended Regular Expression” [12]. In any case, the intent is the same: regular expressions with
traditional operations (union “|’, concatenation ‘;’, Kleene star ‘[*]’) are extended with operators
such as intersection ‘&&’, and fusion “:’.

Any Boolean formula (section is a SERE. SERE can be further combined with the following
operators, where f and g denote arbitrary SERE.

preferred other supported UTEF8 characters supported
operation syntax syntaxes preferred others
empty word [*0]
union flg fllg f\/g f+g v U+2228 U U+2224
intersection fa&kg f/\g N U+2229 A U+2227
NLM intersectiorﬂ fé&
concatenation fig
fusion f:g

bounded ;-iter. flxi..j1 fIxi:j] fIxi to j1 fxi,j]
unbounded ;-iter. flxi..] fxi:] f*i to] fIxi,]
bounded :-iter. fl:*i..j]1 fl:*xi:j] fl:%i to j1 fl:%i,j]
unbounded :-iter. flexio. 1 fle*i:] fl:i*i to]l fl:*i,]
first match ~ first_match(f)

The character ‘$’ or the string “inf’ can also be used as value for j in the above operators to denote
an unbounded rangeE] For instance ‘a[*i,$]’, ‘a[*i:inf]” and ‘a[*i..]" all represent the same SERE.

2.5.1. Semantics

The following semantics assume that f and g are two SEREs, while 4 is an atomic proposition.

o0
CEl < |0 =1
0l [¥0] < |o| =0
clEa < o0(0)a)=1Alc] =1
clflg <= (cEf)v(clg)
ClEf&g < (CEf)A(CIEY)
either (I f) A (%K1 e g)
or (@ T AA(cIEg)
clf;g < 3JdkeN, (UO“kfl = f) A (U'k“ = g)

clkf&g — er]N,{

2Non-Length-Matching intersection.
3SVA uses ‘$’ while PSL uses “inf’.

Ok f:g « ke, (" ik f) A (@ Eg)
either i=0Aj=0A0c=c¢
olF fl*i..j] < [or i=0Aj>0n((c=¢) v (ol fl*1../1))
i>0Aj>0nAGkeNN, (% 1 f)a (b Ik flxi—1..j—11))
either i=0A ((c=¢) v (0l fl*1..1))
i>0n(GkeN, ("1 YA (@™ flxi—1..1))

{elther i=0Aj=0A0I1

ol flxi..] <

ol fl:*i..jl — i=0nj>0A((CE1) v (I fL:*1..71))
i>0Aj>0nAGkeN, (% iEf)a (@™ I flixi—1..j—11))
either i=0A ((cIE1) v (0l fL:%1..1))
i>0AGkelN, (" I f)a(c™ I fl:ixi—1..1))

0 |- firstmatch(f) < (0 I= f) A (Vk < |0, cF1 £ f)

ol fli*i..] <

Notes:
* The semantics of && and & coincide if both operands are Boolean formulas.

* The SERE f : g will never hold on [*0], regardless of the value of f and g. For instance
al[*] : b[*] is actually equivalent to a[*] ; {a&& b} ; b[*].

® The [:*i..] and [:*i..j] operators are iterations of the : operator just like The [*i..] and
[*i..j] are iterations of the ; operator. More graphically:

f*i..jl = fsfs..osf flixi.j] = feofeoof
—_— —_—
between i and j copies of f between i and j copies of f

with the convention that
f[*¥0..0] = [*0] fl:*0..0] =1

¢ The [:*i..] and [:*i..j] operators are not defined in PSL. While the bounded iteration can be
seen as syntactic sugar on :, the unbounded version really is a new operator.

[:*1..], for which we define the [:+] syntactic sugar below, actually corresponds to the @
operator introduced by Dax et al. [9]. With this simple addition, it is possible to define a subset
of PSL that expresses exactly the stutter-invariant w-regular languages.

* The first_match operator does not exist in PSL. It comes from SystemVerilog Assertions
(SVA) [2]. One intuition behind first match(f) is that the DFA for first_match(f) can be
obtained from the DFA for f by removing all transitions leaving accepting states.

2.5.2. Syntactic Sugar

The syntax on the left is equivalent to the syntax on the right. These rewritings are performed from
left to right when parsing a formula, and some are performed from right to left when writing it for
output. b must be a Boolean formula.

b->i..j1 = {1 b}[%0..7 ; b}[*i..j1 bl=i..j1 = {{1b}[%0..7; b}[*i..j1; {1 b}[*0..]
bI->i..]1 = {{1b}[*0..] ; b}[*i..] bl=i..]1={{1b}[¥0..]1;b}[*i..]; {1b}[*0..]ifi >0
b[=0..] =1[*0..]

f*x=f[x0..]
fI¥] = f[x0..] fl:*] = fl:%0..] fl=1=fI[=0..] fl->1 = f[->1..1]
flx..1=f[*0..] fl:*..1=f[:%0..] f[=..1=f[=0..]1 f[->..1=f[->1..]
flx..jl=f[x0..1 fl:*x..j1=f[:%0..j1 f[=..71=f[=0..71 f[->..j1 =f[->1..]]
fIxkl = f*k. .k] fLixk] = fl:*k. k] fl=k]l = fl=k. .k] fI->k] = f[->k. .k]
fI+] = f*1..] fl:+4] = fl:¥1..]
[+k] = 1[*k. . k] [*] = 1[*0..] [+] = 1[*1..]

The following adds input support for the SVA concatenation (or delay) operator [2]. The simplest
equivalence are that f ##0 g, f ##1 g, f ##2 ¢ mean respectively f : g, f ; g, and f ; 1 ; g, but the delay
can be a range, and f can be omitted.

furli. lg=fi1lxi—1..j—11;¢ ifi>0
f##00..j1g=f:(1[*0..j1;9) ifeltf

fa##[0. .1 o= (f;10%0..71):g) ifelrfreltg
f##00..71g=(f:9) | (f;1[x0..j—11;g) ifelfrelg
f##li..1g=f;1xi—1..1;g9 ifi>0
f##[0..1g=f:(1[x1;g) ifeltf
f##00..1g=(f;1[*]):g) ifelrfreltg
f##[0..Tg=(f:8) 1 (f;1[¥];g) ifelrfrelrg

##li..jlg=10*i..j1 ;¢ ##li..Jg=1[xi..1; ¢
fanig=fauli..ilg #hig=1[*;g
fH#l+]1 g= f##(1..1g ##[+l1g =##01..1g
fH##[x] g= f##[0..1¢ ##[x1g =##[0..1g
f##l..j1g= f##[0..j1g} ##[..j1g=1##[0..71 g}
furl..1g=f##[0..]fg} #l..]g=1##[0..]1¢g}

2.5.3. Trivial Identities (Occur Automatically)

The following identities also hold if j or / are missing (assuming they are then equal to). f can be
any SERE, while b, by, by are assumed to be Boolean formulas.

0[*0..j] = [*0] O[xi..j1=0ifi>0
[x0] [*%..j]1 = [*0] fxi. j10*k. .11 = fIxik. .jll ifi(k+1) < jk+1
f[x0] = [*0] flx1l=f
bl:%0..j1=1 bl:*i..j1=bifi>0
(0] [:*%0..j1 =1 [(*0] [:*i..j1=0ifi >0
flexio jl0exk. 01 = flexik. I ifi(k+1) <jk+1
fl:x01 =1 flexil =fifel f
firstmatch(b) =b first match(f) = [*0] ife |- f

first match(first_match(f)) = firstmatch(f)

The following rules are all valid with the two arguments swapped.

10

0&& f=0 0&f=0 olf=f 0:f=0 0;f=0

_ _Jlifelf _ e
1&&b="b 1&f_{fifs;éf1|b_1 1:f=fifeff
[«l&&f=f [x] | f = [*] (¥ ; f= [+l ifelk f
L _J¥lifel=f
(+l&& f=fifelft f [+]|f{[+]if£|}éf
_Jx0]ife |k f _ — = S f =
[*o]&&f—{o e f (x0l&f=f (0] | f=fifel=f [*¥0]:f=0 [x01; f=f
faaf=f fef=f flf=f fef=flx2] f;f=flx2]
by &by = by && by by :bp = by && by

flxi..jl; f=flxi+1..j+1] fl*io 1 flxk. .1 = fl*xi+k..j+1]
flexio gl f=flexi+1..j+11 flexi.o j1: flexk. 11 = fli*xi+k..j+1]
blxi..jl : b=0bl*max(i1)..j] blxi..jl : bl*k..I] = bl*max(i, 1) + max(k, 1) —1..j+1—1]

2.6. SERE-LTL Binding Operators

The following operators combine a SERE r with a PSL formula f to form another PSL formula.

preferred other supported
operation syntax syntaxes
(universal) suffix implication {r}[1->f {r}|->f {r}(f)
existential suffix implication {r}<>->f
weak closure {r}
negated weak closure 1{r}

For technical reasons, the negated weak closure is actually implemented as an operator, even if it is
syntactically and semantically equal to the combination of ! and {r}.

UTE-8 input may combine one box or diamond character from section 2.4 with one arrow character
from section [2.3|to replace the operators []1->, <>->, as well as the operators []1=> and <>=> that will
be defined in Additionally, |-> may be replaced by — U+2146, and |=> by = U+2907.

2.6.1. Semantics

The following semantics assume that r is a SERE, while f is a PSL formula.

ok {r}o->f «— 3k =0,(° H=r) (% & f)
ce{r}1->f «— Vk> ,(Fler) — (0 = f)
cE{r} — (FK=0,0" r)v (Vk=0,3Ime (B, (K <) A (T 7))
o= Hr} = (Vk=0,0%F r) A 3k =0, Ve (BADY, ("% < 1) — (m £ 1))

The < symbol should be read as “is a prefix of”. So the semantic for ‘c = {r}’ is that either there
is a (non-empty) finite prefix of ¢ that is a model of 7, or any prefix of ¢ can be extended into a

11

finite sequence 7t that is a model of r. An infinite sequence a;aj;a;a;a; ... is therefore a model
of the formula ‘{a[+] ; ! a}’ even though it never sees ‘! a’. The same sequence is not a model of
al+] ; 'a; (al*] && (al*] ; 'a; alx]))} because this SERE does not accept any word.

2.6.2. Syntactic Sugar

The syntax on the left is equivalent to the syntax on the right. These rewritings are performed from

left to right when parsing a formula. Except the one marked with ;, the opposite rewritings are also
preformed on output to ease reading.

{ryo=>f={r; 1}<>->f {ry0=>f ={r; 1}00->f
{r}r = {r}<>->1 {r}I=>f il {r;1}[->f

[1=> and |=> are synonyms in the same way as []-> and |-> are.
The {r}! operator is a strong closure operator.

2.6.3. Trivial Identities (Occur Automatically)

For any PSL formula f, any SERE r, and any Boolean formula b, the following rewritings are system-
atically performed (from left to right).

{ojd->f=1 {o}>->f =0 {o}=o0 1{o} =1
{1}0->f=f {t}o>f=f {i}=1 {1} =o0
{[x0]1}[1->f=1 {[*0]}<>->f =0 {[x0]} =0 H{[*x01} =1
{brA->f=0b)If {by<>->f=baf {b} =b H{by=10b
{r}tll1->1=1 {r}<>->0=0
{[*¥]1}[1->0=0 {[¥1}<>>1=1

12

3. Grammar

For simplicity, this grammar gives only one rule for each operator, even if the operator has multiple
synonyms (like 1", “I 17, and “\/’).

constant ::=0 | 1

atomic_prop ::= see secn [2.2]

bformula ::= constant | Cbformula) | bformula xor bformula

| atomic_prop
| atomic_prop=0
| atomic_prop=1

::= bformula

| {sere}

| (sere)

| sere | sere

| sere & sere

| sere && sere
| sere ; sere

| sere : sere

tformula ::= bformula

| Ctformula)
| 1 tformula
| tformula & tformula
| tformula | tformula

| ! bformula
| bformula & bformula
| bformula | bformula

| [*i..f]

| [+]

| sere[*i. .f]

| sere [+]

| sere[:*i. .f]
| sere[:+]

| sere[=i. .j]

| sere[->i. .f]
| X tformula

| X[1] tformula

| X[i. .j] tformula

| X[i..j!] tformula
| F tformula

| bformula <-> bformula

| bformula -> bformula

| ##isere

| ##[i..]] sere

| sere ##i sere

| sere ##[i. .f] sere

| first match(sere)

| {sere} [1->tformula
| {sere} [1=>tformula
| {sere} <>=> tformula
| {sere} <>=> tformula

| {sere}

| tformula => tformula | FLi..j] tformula

| FLi. .j!] tformula
| G tformula

| GLi. .j] tformula

| Gi. .j!] tformula

| {sere} !

| tformula xor tformula
| tformula <=> tformula
| tformula U tformula
| tformula W tformula
| tformula R tformula
| tformula M tformula

3.1. Operator precedence

The following operator precedence describes the current parser of Spot. It has not always been this
way. Especially, all operators were left associative until version 0.9, when we changed the associativity
of ->, <->, U, R, W, and M to get closer to the PSL standard [1} [11].

13

assocC.

operators

priority

right
left
left
left

right
left
left
left

right

[O->, [I=>, <>=>, <>=>

>

i, w0 7]

->, <=>

Xor

I

%, &&

U, W, M R

F, G Fli..j1, Gl. .f]
X, X[i. .j]

Dki. 1, [+1, Doxioj1, [e#d, [=in], [->i.]
!

=0, =1

lowest

highest

Beware that not all tools agree on the associativity of these operators. For instance Spin, 1tl2ba (same
parser as spin), Wring, psl2ba, Modella, and NuSMYV all have U and R as left-associative, while Goal
(hence Biichi store), LTL2AUT, and LTL2Biichi (from JavaPathFinder) have U and R as right-associative.
Vis and LBTT have these two operators as non-associative (parentheses required). Similarly the tools
do not agree on the associativity of -> and <->: some tools handle both operators as left-associative,
or both right-associative, other have only -> as right-associative.

14

4. Properties

When Spot builds a formula (represented by an AST with shared subtrees) it computes a set of
properties for each node. These properties can be queried from any spot: :formula instance using

the following methods:
is_boolean()
is_sugar_free_boolean()

is_in nenoform()
is X_free()
is_1tl_formula()

is_psl_formula()
is_sere_formula()
is_finite()

is_eventual()
is_universal()
is_syntactic_safety()
is_syntactic_guarantee()
is_syntactic_obligation()
is_syntactic_recurrence()
is_syntactic_persistence()
is_syntactic_deltal()
is_syntactic_pi2()
is_syntactic_sigma2()
is_syntactic_delta2()

is marked()

accepts_eword ()

has_1bt_atomic_props ()

Whether the formula uses only Boolean operators.

Whether the formula uses only &, |, and ! operators. (Especially, no
-> or <-> are allowed.)

Whether the formula is in negative normal form. See section 5.3}
Whether the formula avoids the X operator.

Whether the formula uses only LTL operators. (Boolean operators
are also allowed.)

Whether the formula uses only PSL operators. (Boolean and LTL
operators are also allowed.)

Whether the formula uses only SERE operators. (Boolean operators
are also allowed, provided no SERE operator is negated.)

Whether a SERE describes a finite language (no unbounded stars),
or an LTL formula uses no temporal operator but X.

Whether the formula is a pure eventuality.

Whether the formula is purely universal.

Whether the formula is a syntactic safety property.

Whether the formula is a syntactic guarantee property.

Whether the formula is a syntactic obligation property.

Whether the formula is a syntactic recurrence property.

Whether the formula is a syntactic persistence property.

Whether the formula belongs to the A; class.

Whether the formula belongs to the I1; class.

Whether the formula belongs to the ¥ class.

Whether the formula belongs to the A; class.

Whether the formula contains a special “marked” version of the
<>-> or !{r} operators.!

Whether the formula accepts [*0]. (This can only be true for a SERE
formula.)

Whether the atomic propositions of the formula are all of the form
“pnn” where nn is a string of digits. This is required when converting
formula into LBT’s format.?

4.1. Pure Eventualities and Purely Universal Formulas

These two syntactic classes of formulas were introduced by Etessami and Holzmann [14] to simplify
LTL formulas. We shall present the associated simplification rules in Section for now we only

define these two classes.

Pure eventual formulas describe properties that are left-append closed, i.e., any accepted (infinite)
sequence can be prefixed by a finite sequence and remain accepted. From an LTL standpoint, if ¢ is a

IThese “marked” operators are used when translating recurring <>-> or ! {r} operators. They are rendered as <>+> and !+{r}
and obey the same simplification rules and properties as their unmarked counterpart (except for the is_marked () property).
Zhttp://www.tcs.hut.fi/Software/maria/tools/1bt/

15

http://www.tcs.hut.fi/Software/maria/tools/lbt/

— General Biichi Automata

Deterministic Reactivity Weak Biichi

Figure 4.1.: The temporal Bichi AGFp; vFGg; Automata

hierarchy of Manna and Automata Ay /

Pnueli [16] with their associ- ™~) 4 Weak

ated classes of automata [6]. Recurrence Persistence ca C .

The formulas associated to GFp FGp L D.?ter.mlnlstlc

each class are more than 1T, 2 Biichi

canonical examples: they L Automata

show the normal forms un- Terminal Obligation

der which any LTL formula co-Biichi A\Gpi vVEq; Terminal

of the class can be rewritten, Automata Ay L Biichi

assuming that p, p;,q,q; de- N / Automata

note subformulas involving Ny Safet Guarantee

only Boolean operators, X, G y F

and past temporal operators P P

(Spot does not support the In Ay X

latter).

left-append closed formula, then F ¢ = ¢.

Purely universal formulas describe properties that are suffix-closed, i.e., if you remove any finite
prefix of an accepted (infinite) sequence, it remains accepted. From an LTL standpoint if ¢ is a
suffix-closed formula, then G ¢ = ¢.

Let ¢ denote any arbitrary formula and ¢ (resp. ¢y;) denote any instance of a pure eventuality
(resp. a purely universal) formula. We have the following grammar rules:

pp=0|1|X¢p |X[119e [Fo |Goe | pe& e | (e | 9E) | ! @u
| ¢U@E |1UQ | e RQE | peW@E | e MoE | @M1

pu=0|1|Xeu |[X[eu |Foul|Gelou&eoul (pul eu) | ¢k
louU@u | 9Rou |ORQ | uWeu | WO | puMey

Given a formula £, its membership to these two classes can be tested with f.is_eventual () and
f.is_universal().

4.2. Syntactic Hierarchy Classes

The hierarchy of linear temporal properties was introduced by Manna and Pnueli [16] and is illustrated
on Fig. In the case of the LTL subset of the hierarchy, a first syntactic characterization of the classes
was presented by Chang et al. [7], but other presentations have been done including negation [6] and
weak until [17].

Spot implements two versions of a syntactic hierarchy, and extend them to deal with PSL operators.

The first hierarchy, usually denoted with names such as ¥; and I1;, as shown in Fig. Following
Esparza et al. [13], we also introduce the Ag, A1, and A, classes.

Intuitively, those classes are related to how the weak operators (G, W, R) alternate with the strong
operators (U, F, M) in formula:

¢ the class Ag contains all formulas that may only use X as temporal operator,
¢ formulas in I'l; contains no strong operators,

¢ formulas in X1 contains no weak operators,

16

¢ the class Aq contains all boolean combinations of IT; and ¥,

¢ in each branch of a formula of I, that contains both types of operator, weak operators are all
above strong operators,

¢ in each branch of a formula of ¥, that contains both types of operator, strong operators are all
above weak operators,

¢ the class A, contains all boolean combinations of I'T, and X.

Those classes can be captured by the following grammar rules, where v denotes any variable, r any
SERE, rr any bounded SERE (no loops), and r; any unbounded SERE.

Py =0 1] 0] 1 oay | Pag & Pay | (Pag | Pag) | Pag <> @y | Pag x0T @ay | Pag => Py | X @,
| {re} [{re}

oy 5= @ag | L ps | om & oy | (o 1 o) [@5 => ¢ | X oy [Fom, [¢m Uen, | om Mo,
| H{r} [{ryo>=>m, [{re} 0->¢m,

P, =9y | Vo, | 95, & 05, | (95, 1 @5) | o, —> @5, | Xox, | Gos, | ¢, Ros, | o5, Wos,
| {r} [{rey<>=>0z, [{r} 1->95,

o, = omm | @z, | oa, | 9a & oa, | (9a, | 9a;) | @Ay <> @a, | 9o, XOT @A, | A, => Pa,
| Xoa, [{rr}<>=>qn, [{rr}0->¢4,

P, = ¢a | Lo, | 95, & 95, | (93, | 95,) | 911, => 9,
| Xox, | Fox, | 95, Uy, | 9z, Moy, | {r}<>->¢s, | {re} 1->¢s,

PrL, 2= Py | Loy, | P11, & P11, | (q)nz l q’Hz) | Px, => P11,
| X, | Gory, | o, Ror, | @, Weor, | {r} 0->¢r, | {re}<>=>¢r,

P, = P11, | ¢x, | ! Pn, | PN, &(PAz | ((pAz | (pA2) ‘ PAy, <> Pp, | @A, XOT Pp, | Pr, => Pa,
| X, | {rey<>=>qn, | {rr} 1->¢a,

A nice property of these classes, is that they are as expressive as their corresponding automata
classes. For instance any LTL/PSL property that is representable by a deterministic Biichi automaton
(the recurrence class) can be represented by an LTL/PSL formula in the I, fragment, even if the
original formula isn’t in the I, fragment originally.

If the objective is to classify properties syntactically, it is useful to use some slightly more complete
grammar rules. In the following list, the rules the initial G, S, O, P, R of their corresponding property
clases, as listed in Fig. (i.e., Guarantee, Safety, Obligation, Persistence, Recurrence). Additionally,
B denotes the “bottom” class (a.k.a. Ag). Note that ¢p, ¢, and ¢s are rigorously equivalent to ¢,,,

¢11,, and ¢y, . The difference in the higher classes are highlighted . There is no generalization of @a,
since any LTL/PSL formula is a reactivity property.

17

pp=0|1|v|'ep|pp&ep|(¢p| ¢B)| ¢p<->¢p | ¢pxor ¢p | ¢p->¢p | Xpp
| {re} | H{re}

¢ =95 | ' ¢s | pc&ec | (¢c | 9c) | ¢s—>¢c | X9c [Fec | ocUpc | ocMec
| H{r} [{r}<>=>9c [{rr} 1->¢c

¢s =@ | ' 9c | ps& @s | (@s | 95) | ¢G> ¢s | X @5 [G s | psR s | ¢sW @s
| {r} [{re}<>—>0s | {r} [1->¢s

9o == ¢ | ¢s | ' 9o | o & o | (9o | 90) | 9o <=> @0 | 9o xor 90 | $0 > $0
| X9o | 9oUg¢c | poRes | ¢sWeo | 9cMeo

| {rey<>=>¢0 | {ri}<>=>¢¢g | {re}0->¢0 | {ri}0->¢s

pp=¢o | '¢r | ep&p | (9p | 9p) | ¢r > ¢p
| Xpp |Fop | opUg@p | @pRPs | ¢sWep | opMep

| {r}<>->¢p | {re}1->¢p | {r1}[0->¢s
pr:=9@0 | '@p | pr& PR | (PR | PR) | PP > @R
| Xor | Gor | PRU QG | RR QR | PRV QR | @M @R

[{r}(1->¢r | {rr}<>—>@r | {ri}<>->¢¢

It should be noted that a formula can belong to a class of the temporal hierarchy even if it does
not syntactically appears so. For instance the formula (G(q | FGp) &G(r | FG!p)) | Gg | Gr is not
syntactically safe (and isn’t even in A;), yet it is a safety formula equivalent to Gg | Gr (which is in
I1;, the syntactical class of safety formulas). Such a formula is usually said to be a pathological safety
formula.

To illustrate the difference in the grammar for the higher classes, consider the formula G((Ga) Ub).
This formula can be converted to a deterministic Biichi automaton, so it specifies a recurrence property.
It is captured by the grammar rule for gr above, yet it does not belong to the I, class because of the
alternation between weak (G), strong (U), and weak (G) operators. However the equivalent formula
G((Ga)Wb)) A GF b belongs to IT.

Spot computes the membership to each of those class whenever a formula f is constructed. Here is
how the membership to each of those class can be tested:

felo f.is_syntactic_safety() && f.is_syntactic_guarantee()
fell;, feS f£f.is_syntactic_safety()
feXy, feG f.is_syntactic_guarantee()

feh f.is_deltal()

feO f.is_syntactic_obligation()

fellp f.is_pi2()

feR f.is_syntactic_recurrence()

fely f.is_sigma2()

feP f.is_syntactic_persistence()

feh f.is_delta2()

18

5. Rewritings

5.1. Unabbreviations

The “unabbreviate ()’ function can apply the following rewriting rules when passed a string denoting
the list of rules to apply. For instance passing the string "~ei" will rewrite all occurrences of xor, <->
and ->.

i f>g=0f)lg

fe>g=(frg) 1 ((1g)a(!)

frorg=(fe'1g)l(ge"f)

“~” without “e” fxrorg=1(f<->g)

“F” Fe=e when e is a pure eventuality
“p Ff=1Uf

“G” Gu=u when u is purely universal
“G” without “R” Gf=O0RSf

“GR” without “W” Gf=fuo

“GRW” Gf=IF!f

“M” fMe=F(f&e) when ¢ is a pure eventuality
mr fug=gu(g&f)

“R” fRu=u when u is purely universal
“R” without “W” fRg=gW(f&g)

“R” fRg=gU((fEg) |Gy

“W” fWwu=G(flu) when u is purely universal
“W” without “R” fWwg=gR(g!f)

“UR” fug=1u(gics)

Among all the possible rewritings (see Appendix [A) the default rules for R, W and ¥, those were
chosen because they are easier to translate in a tableau construction [10} Fig. 11].

Besides the ‘unabbreviate ()’ function, there is also a class ‘unabbreviator() that implements the
same functionality, but maintains a cache of abbreviated subformulas. This is preferable if you plan
to abbreviate many formulas sharing identical subformulas.

5.2. LTL simplifier

’

The LTL rewritings described in the next three sections are all implemented in the ‘t1_simplifier
class defined in spot/tl/simplify.hh. This class implements several caches in order to quickly
rewrite formulas that have already been rewritten previously. For this reason, it is suggested that
you reuse your instance of ‘t1_simplifier’ as much as possible. If you write an algorithm that will
simplify LTL formulas, we suggest you accept an optional ‘t1_simplifier’ argument, so that you can
benefit from an existing instance.

The ‘t1_simplifier’ takes an optional ‘t1_simplifier_options’ argument, making it possible to
tune the various rewritings that can be performed by this class. These options cannot be changed
afterwards (because changing these options would invalidate the results stored in the caches).

19

5.3. Negative normal form

This is implemented by the ‘t1_simplifier: :negative_normal_form’ method.

A formula in negative normal form can only have negation operators (!) in front of atomic proper-
ties, and does not use any of the xor, -> and <-> operators. The following rewriting arrange any PSL
formula into negative normal form.

'Xf=xtf H(fug) = Rr(g) (fag) = (f) (g
'Ff=G!f 'fRE)=(1))Uu('g) W1 =0 fe(tg)
'ef=F'f Hfwg)=(f)mM('g) '({ryt->f) ={r}o—>1f
({r}) = {r} Hfug) = Hu(g) H({ryo=>f) ={r}l->1f

Recall that the negated weak closure !{r} is actually implemented as a specific operator, so it is not
actually prefixed by the ! operator.

frorg=((tf)&g) 1 (f&'g) W(fxorg)=((1l&(tg) I (f&g) '(feg) =(!
f< >g ((rHerg)(feg) Hf<>g)=((1f&g) I (fatg) Hfrg) =
f=>8=0f1g Wf>8)=f&tg

Note that the above rules include the “unabbreviation” of operators “<->”, “~>”, and “xor”, corre-
sponding to the rules "ei™ of function ‘unabbreviate () as described in Section Therefore it is
never necessary to apply these abbreviations before or after ‘t1_simplifier: :negative_normal_form’.

If the option ‘nenoform_stop_on_boolean’ is set, the above recursive rewritings are not applied to
Boolean subformulas. For instance calling ‘t1_simplifier: :negative_normal_form’ on ! FG(a xor b)
will produce GF(((! a) & (! b)) | (a&b)) if ‘nenoform_stop_on_boolean’ is unset, while it will produce
GF(!(axorb)) if nenoform_stop_on_boolean’ is set.

5.4. Simplifications

The ‘t1_simplifier::simplify’ method performs several kinds of simplifications, depending on
which ‘t1_simplifier_options’ was set.
The goals in most of these simplification are to:

¢ remove useless terms and operator.

* move the X operators to the front of the formula (e.g., XG f is better than the equivalent GX f).
This is because LTL translators will usually want to rewrite LTL formulas in a kind of disjunctive

form: \/ (Bi A X1p;) where B;s are Boolean formulas and ;s are LTL formulas. Moving X to the
i
front therefore simplifies the translation.

e move the F operators to the front of the formula (e.g., F(f | g) is better than the equivalent
(Ff) | (Fg)), but not before X (XF f is better than FX f). Because F f incurs some indeterminism,
it is best to factorize these terms to limit the sources of indeterminism.

Rewritings defined with = are applied only when ‘t1_simplifier_options::favor_event_univ’
is true: they try to lift subformulas that are both eventual and universal higher in the syntax tree.
Conversely, rules defined with = are applied only when ‘favor_event_univ’ is false: they try to
lower subformulas that are both eventual and universal.

Currently all these simplifications assume LTL semantics, so they make no differences between X
and X[!]. For simplicity, they are only listed with X.

20

5.4.1. Basic Simplifications

These simplifications are enabled with ‘t1_simplifier_options::reduce_basics’. A couple of them

may enlarge the size of the formula: they are denoted using Z instead of =, and they can be disabled
by setting the ‘t1_simplifier_options::reduce_size_strictly’ option to true.

Basic Simplifications for Temporal Operators

The following are simplification rules for unary operators (applied from left to right, as usual).
The terms dnf(f) and cnf(f) denote respectively the disjunctive and conjunctive normal forms if f,
handling non-Boolean sub-formulas as if they were atomic propositions.

XFGf=FGf F(fug)=Fg G(fRg)=Gg
XGFf=GFf F(fug) = (f&g) G(fwg) = (flg)
FXf=XFf G(f&Xg)=FG(f&g) GF(f 1Xg) =GF(f 1g)
GXf=XGf G(f&Gg) =FG(f&g) GF(fIFg)=GF(f1g)
X0=0 FG(f1Gg)=F(GfI1Gg) GF(f&Fg) =G(Ff&Fg)
GF f = GF(dnf(f)) G(f&FQg) =FGf&GFg GF(f&GQ) ZGF f&FGQ
FGf = FG(cnf(f)) G(fIFg)=FGf|GFg GF(f1Gg) =GFf|FGg

G(fil-ool ful GF(g1) |- 1 GF(gm)) =G(fil ...l fu) 1GF(g1 | ... | gm)

Here are the basic rewriting rules for binary operators (excluding | and & which are considered in

Spot as n-ary operators). b denotes any Boolean formula.

1Uf=Ff fWo=Gf
fM1=Ff ORf=Gf
(Xf)U(xg) =X(fUg) Xflu(xg) =X(fwg)
(Xf)M(Xg) =X(fMg) (Xf)R(Xg) =X(fRQ)
(Xf)UbZb | X(bMf) (Xf)WbZb | X(fRb)
(Xf)MbZb&X(bU f) (Xf)RbZ b&aX(fwb)
fuGf)=af fw@f)=af
fUFf)=Ff fR(Ff)=Ff
fugla(f))=fug fW(gIG(f) =fug
fUM(EEF(f)) = fMg fR($EF(f)) = fMg
fugef)=gnf fu(gsf)=gRf
fu@glf)=guf fREGIf)=gWf

21

Here are the basic rewriting rules for n-ary operators (& and |):

(FGf)&(FGg) =FG(f&g) (GFf) 1 (GFg) =GF(f |g)
(Xfle(xg) =X(f&g) X1 (Xg=X(f1g)
(Xf)&(FGE) = X(f&FGg) (Xf) | (GFE) = X(f | GFg)
Gfle(Gg) =G(f&g) (FfII(Fg) =F(f1g)
(AUR)&(fsUf) =(fr&f3)Ufa (AUR) I (AUf3)=ATU(f2] f3)
(AUR)&(fsWf)=(fikfs)Uf (AUL) I (AWf3) =fiv(fal f3)
(iWf)&(f3Wfh)=(fikfz)Wf (i)l (AWf3)=fW(f2l f3)
(fiRf2)&(fiRf3) = fiR(f2&f3) (firf2) | (AR 2)=(f1l B)RS2
(ARA)&(fiMfs) = fiM(f2& f3) (ARA) I (fsMf)=(fil f5)Rf3
(AMf)&(fiMfz) = AM(f2& f3) (AMf) I (Mf)=(fil f3)Mf3
(Fg&(fug)=fug G (fug)=fwg
(Fge(fug)=fug G (fug)=fwg
(Ffl&(frRg) = fMg (Gg) I (fRg) =fRgQ
(Ffl&(fug) =fMg (Gg) I (fMg)=fRg
fe(Xf)wg)=gRf fI(Xf)Rg) =gWf
fe(Xf)ug) =gMf fI{Xf)Mg)=gUf
f&(g1X(QRSf)) =gRf fl(g&X(gwWf)) =gWf
fe(glIX(gMf)) =gMf f1(g&X(gUuf)) =gUf

The above rules are applied even if more terms are presents in the operator’s arguments. For instance
FG(a) &G(b) & FG(c) & X(d) will be rewritten as X(d &FG(a&c)) & G(D).
The following more complicated rules are generalizations of f&XGf=Gfand f | XFf =F f:

fex(G(fags..) aha...)

G(f)eX(G(g&..) &hk..)
fIXESf)IR]...)=F

(F) I X(h1...)

The latter rule for f | X(F(f) | h...) is only applied if all F-formulas can be removed from the argument
of X with the rewriting. For instancea | b | ¢ | X(F(a | b) | F(c) | Gd) will be rewrittento F(a | b | ¢) | XGd
butb | c|X(F(alb)|F(c) | Gd) will only become b | ¢ | X(F(a | b | ¢c) | Gd).

Finally the following rule is applied only when no other terms are present in the OR arguments:

F(fi) | ... |F(fu) IGF(Q) =F(f1 | ... | fu | GE(g))

Basic Simplifications for SERE Operators

The following rules, mostly taken from Cimatti et al. [8] are not complete yet. We only show those that are imple-

mented.

The following simplification rules are used for the n-ary operators &&, &, and |. The patterns are of
course commutative. b or b; denote any Boolean formula while # or r; denote any SERE.

22

bt rlxi.] = bagr ifi<1<] bar bl{b:r} %fsnzri
0 else b:r if € £ r;
b&&{ri:...:r,} =b&&r 1 &&... &&ry
b&gr; if 3%, e |1
b&&{r1;...;ru=<b&&(ri|...1ry) ifVielkr
0 else
{b1;rm}&&{by; 1} ={b1&&by}; {r1&&r} {r1; 1} &&{ry; by} ={r1 &&ry}; {b1 && by}
{bl : 1’1}&& {bz : 1’2} = {bl && bz} : {1’1 &&Tz} {1’1 : bl}&& {1’2 : bz} = {1’1 && 1’2} : {bl && bz}

{by;r1}&{by; 1} ={b1&&br} ; {r1&r}
{by :r}&{by:r} ={b1&&by} : {r1&mn} ifeErirneclErm

firstmatch(b[*i..j1) = b[*i]
firstmatch(r[*i..j]1) = firstmatch(r[*i])
firstmatch(r[:*i..j]) = first match(r[:*i])
firstmatch(ry ; rp[*i..j1) = first match(ry ; ro[*i])
firstmatch(ry ; rol:*i..j]1) = first match(ry ; rp[:*i])
firstmatch(ry : rp[*i..j]1) = firstmatch(ry : rp [¥max(i, 1)1)
firstmatch(ry : rp[:*i..j]1) = firstmatch(ry : rp [:*i])
first_match(b;r) =b; first_match(r)
first match(b[*i..j] ;) = b[*i] ; first match(b[*0..j—1] ;)
firstmatch(b[*i..j] : v) = b[*i—1] ; firstmatch(b[*1..j—i+1]:7) ifi>1
firstmatch(ry ; rp) = first match(r;) ifel=r
first match(first_match(ry) ;) = first_match(rq) ; first_match(rp)
first_match(firstmatch(ry) : rp) = first_match(rq) : first_match(l : rp)

Starred subformulas are rewritten in Star Normal Form [5] with:

rix] =1r7[x]
where r° is recursively defined as follows:
rP=rifelr
[x0]° =0 (r1;m)° =r{lryifelrr;andel=r
rixi..j1° =r°ifi=0orel=r (r1&r)° =r{ Iryifelrry and € IE 1y
(r11m)° =r]lr3 (r1&&1)° =11 && 17

Note: the original SNF definition [5] does not include ‘%" and ‘&&” operators, and it guarantees
that Vr, e ¢ r° because r° is stripping all the stars and empty words that occur in r. For instance
{al*]1 ; b[x] ; {[*0]1 | ¢}}°[*] = {a | b | c} [¥]. Our extended definition still respects this property in
presence of ‘&’ operators, but unfortunately not when the ‘&&” operator is used.

We extend the above definition to bounded repetitions with:

rlxi..j1 =r"[*%0..j1 if elrrixi..jl,elfr°, andj>1
rlxi..jl=r"[*1..j] if elri*i..jl,elrr” andj>1
rlxi..jl=r if elrrandj=1

23

where 7” is recursively defined as follows:

ri=rifelfr

[x0]” =0 (r1;r)" =r;n
rxi..j1% = v [*max(1,i)..jlifi=0orelr (rm&r)” =1 Irnifelrrand el
(rilr)"=r1r (r &&)" =11 && 1y

The differences between " and ° are in the handling of 7 [i. .j] and in the handling of 71 ; ro.

Basic Simplifications SERE-LTL Binding Operators

The following rewritings are applied to the operators [1-> and <>->. They assume that b, denote a
Boolean formula.

As noted at the beginning for section rewritings denoted with Z can be disabled by setting

the “t1_simplifier_options::reduce_size_strictly’ option to true.

{[x1}[1->f=Gf
{(bx1}->f=fW!b
(b[+1}0->f=fW'b
{r(x0. .j1}(1->f = {rl*1. .1} [1->f
{rixi. 1Y 0->f = {r}0->X{r}0->X(.. 0->X(r[*1..j—i+1])))ifi > 1and e ¢ r
{r; K1}0->f={r}(1->Gf
{r; bI¥1}0->f = [P} ->(F&X(fFW b)) if e o 7
{+1 5 1} ->f = 6({r} [1->f)
(b5 0->F = (D) R{rIO->f) ife e r
{r1;r}->f = {n}O->X{r}0->f)ife e ryand e £ 1y
{r1: 2} 0->f = {n}0->({r2} 0->f)
{r1 1 }0->f = ({r} 00> & ({r2} 0->f)
{[¥1}<>—>f=Ff
{blxI1}<>->f = fMD
{b[+1}<>->f = fMD
{rx0..j1}<>=>f = {rl*1..jl1}<>->f
{rlxi. .j1}<>=>f = {r}<>=->X({r}<>=>X(...<>->X(r[*1..j—i+1]))) ifi > 1and e }¢ r
{r; ¥1}<>->f = {r}<>->Ff
{r; bIx1}>=>f = {r}<>=>(f | X(fMb)) if e | 7
{[¥] ; r}<>—>f = F({r}<>->f)
{bI*] ; r}o>>F Z U ({r}>—>f)ife e r
{r1; ra}<>=->f z {rn}<o>=>X{r}<>->f)ife e ryand e 1y
{r1 : }<o>=—>f = {r1}o->{r}<>->f)
{r1 1 a}o>=>f = ({r1}o>=>f) | ({ra}<>->f)

24

Here are the basic rewritings for the weak closure and its negation:

{rix1} = {r} H{rix1} = {r}
{1} ={r} ifelrr r1} = 1{r} ifepr
{r1}=1 ifelr H{r,1} =0 ifel=r

{rira} ={r}
{rirt ={rn}1{r}
{b;r} £ bax{r}
(bl*i..j1;r} Zb&X(b... &X{b[*0..j—il ; r})
(S
i occurences of b
{bl*i..j1} Zb&X(b&X(...D))
—_——
i occurences of b

{r1 12} = {r} 1 {2}

ifeltrinelen Hrymt =} ifelerinelEn

Hrirh = 1{rn& ! {rn}

1{b;r} = (1h) | X 1 {r}

b, .17} = (b)) I X((1h)... I X1{b[*0..j—11 ; r})
i occurences of ! b

bl 1Y Z (1 b) 1 X((1b) | X(... (1 b))

i occurences of !b

Hri I} = 1} & {r}

ifelerinelen ifeleriAnelEm

5.4.2. Simplifications for Eventual and Universal Formulas

The class of pure eventuality and purely universal formulas are described in section

In the following rewritings, we use the following notation to distinguish the class of subformulas:

f, fi, 8, & any PSL formula
e, e; a pure eventuality
u, u; apurely universal formula
9, q; a pure eventuality that is also purely universal
Fe=e fUe=e eMg=e&g ulMuZ%(Ful)&uz
Fu) l[q=F(ulq) fu(gle)=(fug)le fu(gzu)=(fug)eu qUXf=X(qUf)
fulgeq) = (fug)eq (fequg=(fug)eq
Gu=u uwg=ulg fRu=u 61We2%(Ge1)|ez
Gle)kq=Glexq) fu(gle)=(fwg)le fR(g&u)=(fRg)&u qRXf=X(qRf)
Xq=q qEXf=x(q&f) qIXf=x(q1f)
X(q&f) = quxf Xqlf)=qIxf

25

G(ik.. &fukXer k.. . &Xep) =G(f1&...&fnker&.. &ep)
G(i&.. &fu&F(g1&...&gp&Xer&.. . &Xey)) =G(f1&... & fu&F(g1&...8gp)ker&.. &ey)
F(fi I oo U fu IRty Lo I Xup) = F(fi Lo | fu Lug |ees L)
F(f Lol fu 1G(g1 e I gp I Xty Lo I Xtty)) = F(f1 | & fr 1G(g1 1 oe 1 gp) Lt | | thy)
Gl I fulgul...lgp)=G(fil...lfu)lgqrl...1qp
F(fi&. . .8 fulqr&...&qp) =F(fi&...&f)&q1&...%4,
C(fi&.. . &fnkqi&...8qy) =C(fi&...&fu)&q&...&qp
GF(fik...&fulqi&...&qy) =GF(fi&...&f)&q1&...&qp)
G(fi&.. & fuker&.. . &em&Glemin)&. . &G(ep)) =G(fi&... & fy)&Gler&...&ep)
G(f1&... & fn&G(g1)&.. . &G(gm)) =G(f1&... & fn&g1&...&m)
FOfi leeo |l fu bug beee Vit VF(ugn) 1o VF(up)) = F(FL Lo | fu) TF(up 1o L)
F(fil ool fu lE(@) 1. 1G(gm) =F(f1 1ol ful g 1ol gm)
G(f1)&. .. &G(fu) &Gler) &... &Glep) =G(f1&...& fu) &Gler &. .. &ep)
F(f1) 1o VF(f) L F(ua) 1o L F(up) S F(F Lo | fu) (g | ee)

Finally the following rule is applied only when no other terms are present in the OR arguments:

F(f) I ... IF(f) lqil ool gp=F(fil ...l fulqul...qp)

5.4.3. Simplifications Based on Implications

The following rewriting rules are performed only when we can prove that some subformula f implies
another subformula g. Showing such implication can be done in two ways:

Syntactic Implication Checks were initially proposed by Somenzi and Bloem [18]. This detection
is enabled by the ‘t1_simplifier_options::synt_impl’ option. This is a cheap way to detect
implications, but it may miss some. The rules we implement are described in Appendix

Language Containment Checks were initially proposed by Tauriainen [19]. This detection is enabled
by the ‘t1_simplifier_options::containment_checks’ option.

In the following rewritings rules, f = g means that ¢ was proved to be implied by f using

either of the above two methods. Additionally, implications denoted by f 5 g are only checked if
the “t1_simplifier_options::containment_checks_stronger’ option is set (otherwise the rewriting
rule is not applied). We write f = g iff f = gand g = f.

As in the previous section, formulas e and u represent respectively pure eventualities and purely
universal formulas.

Finally |f|, denote the length of f were all Boolean subformulas are counted as one.

iff=1g then flg=1
iff=1g then f&g=0
if (f = &) A (Ifly < [8lp) then fleg=f
iff=g¢ then flg=g
if (f = 8) ~ (Iglp < [flp) then feg=g

26

iff=g then feg=f
iff=g then f<>g=g9->f

if f=g then f—>g=1
f(lfl=¢ then frorg=g->!f
iff=1g then fxorg=(19)—>f
if (F = §) A (Ifls < Igls) then fug=f

if f=g then fug=g
if(ng)Qg then fug=g
if('f)=¢g then fug=Fg
ifg=e then eUg=Fg
iff=g then fU(gUh)=gUh
iff=g¢ then fU(gWh)=gWh
ifg=f then fU(gUh)=fUh

if f=nh then fU(gR(hUk)) =gR(hUk)
iff=h then fU(gR(hWk)) =gR(hWk)
iff=h then fU(gM(hUk)) =gM(hUk)
if f=nh then fU(gM(hWk)) =gM(hWk)
iff=h then (fUug)Uh=gUh
iff=h then (fWwg)Uh=gUh
ifg=h then (fug)Uh=(fUg) |
ifg=nh then (flg)Uh=fUh
f(lfl=¢ then fug=1

if (F = §) A (fls < Igls) then fug=f

if f=g then fug=g
if(fWg);,g then fuwg=g
iff=g then fu(gwh)=gWwh
ifg=f then fW(gUh)=fWh
ifg=f then fWw(gwh)=fwh

if f=h then (fug)Wh=gWh

if f=nh then (fWg)Wh=gWh
ifg=nh then (fug)Wwh=(fwg) lh
ifg=nh then (fug)Wwh=(fUg) | h
ifg=nh then (flg)Wh=fwh

if (f = g) A (Ifly < Igls) then fRg=f
ifg=f then fRg=g
ifg=1tf then fRg=Gg
ifu=g then uRg=Gg
ifg=f then fR(gRh)=gRhA
ifg=f then fR(gMh)=gMh
iff=g¢ then fR(gRh)=fRh
ifth=f then (fRg)Rh=gRh

27

ifh=f then (fMg)Rh=gRh
ifg=nh then (fRg)Rh=(f&g)RhK
ifg=nh then (fMg)Rh=(f&g)Rh
ifth=g then (f&g)Rh=fRh

if (f = 8) A (Iflp < Iglp) then frug=f
ifg=f then fMg=g
ifg=1tf then fMg=0
ifg=f then fM(gMh)=gMh
iff=g then fM(gMh)= fMh
iff=g then fM(gRh)= fMh
ifh=f then (fMg)Mh=gMh
ifh=f then (fRg)Mh=gMh
ifg=h then (fMg)Mh= (f&g)Mh
ifh=g then (f&g)Mh= fMh

Many of the above rules were collected from the literature [18, 19} 3] and sometimes generalized to
support operators such as M and W.

The first six rules, about n-ary operators & and |, are implemented for n operands by testing each
operand against all other. To prevent the complexity to escalate, this is only performed with up to 16
operands. That value can be changed in “t1_simplifier_options::containment_max_ops’.

The following rules mix implication-based checks with formulas that are pure eventualities (e) or
that are purely universal (u).

if (! f) = g then fU(g&e)=F(g&e)
iff=1¢g then fR(glu)=aG(gle)
if (1 f) = gthenG(f) |F(g&e)=fW(g&e)
if f=1g thenF(f)&G(gle)=fM(gle)

28

A. Defining LTL with only one of U, W, R, or M

//////////

of ‘U’, ‘W, ‘R’, or ‘M". This property is usually used to simplify proofs. These equivalences can also help
to understand the semantics of section if you are only familiar with some of the operators.

Equivalences using U:

Ff=1Uf
GfE !F!fE !(lU!f)
fug=(fug)lGf=(fug) I t(1U!f)
=fUu(glGf)=fU(glt(1U!f))
fMg=gU(f&g)
fRg=gW(f&g)=(gU(f&g) I !(1U!g)
=gU((f&g)l!(1utyg))

Equivalences using W:

Ff=1G!f=1(('f)Wo)

Gf=O0Rf=fW0
fug=(fug)&(Fg) = (fwg)&!((tg)Wo)
fug=(gW(f&g))&F(fag)=(gW(f&g)) & ((!(f&g))WO)
fRE=gW(f&g)

Equivalences using R:

FfE !G!fE !(OR!f)
Gf=ORf
fug=(((Xg)Rf&Fg) 1g=((Xg)Rf)&(*(OR!Q))) I g
fug=gR(f1g)
=((xg)Rf) | g
fug=(fRg)&Ff=(fRE)&!(OR!f)
=fR(g&Fg) =fR(g& ' (OR! f))

Equivalences using M:

Ff=/fM1
Gf=!F!f=1(('f)M1)
fug=gM(f1g)
=(XgMf)lg
fug=(fug)lGf=(XgMf) I gl (! fHm)
fRg=(fMg)1Gg=(fMg)l((tg)M1)

29

These equivalences make it possible to build artificially complex formulas. For instance by applying
the above rules to successively rewrite U - M — R — U we get

fug=(XgMf)lg
((xg)Rf)&!(OR!XQ)) | g
((fu@Egaf) I r(aur f)a!(((1Xg)U(0&!Xg)) I 1(1ULIXQ))) lg

trivially false

(fuxg&f)) 111U f)&(1UXQ)) I g

Spot is able to simplify most of the above equivalences, but it starts to have trouble when the X
operator is involved. For instance (fWg) &F g = f U g is one of the rewriting rules from But the
formula (f WX g) & FXg, which looks like it should be reduced similarly to f UXg, will be rewritten
instead to (fWXg) &XFg, because XFg = FXg is another rule that gets applied first during the
bottom-up rewriting.

30

B. Syntactic Implications

Syntactic implications are used for the rewriting of Section The rules presented bellow extend
those first presented by Somenzi and Bloem [18].

A few words about implication first. For two PSL formulas f and g, we say that f — g if
Vo, (0 = f) = (0 = g). For two SERE f and g, we say that f = gifVrm, (mlk f) = (Tl Q).

The recursive rules for syntactic implication are rules are described in table B.1} in which = denotes
the syntactic implication, f, f1, f2, g, g1 and g» denote any PSL formula in negative normal form, and
fu and gg denote a purely universal formula and a pure eventuality.

The form on the left of the table syntactically implies the form on the top of the table if the condition
in the corresponding cell holds.

Note that a given formula may match several forms, and require multiple recursive tests. To limit
the number of recursive calls, some rules have been removed when they are already implied by other
rules.

For instance it one would legitimately expect the rule “F f = Fg if f = ¢” to appear in the table.
However in that case F g is pure eventuality, so we can reach the same conclusion by chaining two
rules: “Ff = Fg if f= Fg "andthen“f=Fgif f=g".

R

8E
The rules from table should be completed by the following cases, where f; and g, denote
Boolean formulas:

we have if

f=1 always
0=g always
fo =8 BDD(fp) A BDD(g;) = BDD(f)

31

i | se | Xg [&Ugp [&iWgp [g@1Rgy | giMg | Fg Gg | sl | sikg |
B N . f=a f=a . f=a f=&
f f=3 f=8 f=g A= A= f=g vi=o A=
Ju fu=g fu=g
Xf =8| f=¢
=g fi=& =& waw meN N
fUf Ae=g | rh=a =g
Npr=g A= | rh=
>\NH\r%m >\NHVNN
=g
fi=g fi=8 fi=sa . fi=g
fivfa ANf2=81
Nr=g Ne=g | Aa=g Nfr=g
>\N“v%M
fi=2 fi=g =%
R = =
fikf2 f2=8 Afo= g1 "nph=& | rh=g f2=8
fiMf hesg fi=g =g =& fi=& =g
=g | Ae=a | Ah=Sn | Ah=o | vh=g
Ff =3 - -
Hw%p Hv%~
G = = =
f f=zg f=g Voo f=g Nfo e
=g
|
filse Npr=g
=g
&
hiat vh=g

Table B.1.: Recursive rules for syntactic implication.

32

Bibliography

[1]

(2]

3]

[7]

(8]

[9]

[10]

[11]

[12]

Property Specification Language Reference Manual v1.1. Accellera, June 2004. URL http://www.eda,
org/viv/\

1800-2017 - IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification
Language. IEEE, February 2018. doi:10.1109/IEEESTD.2018.8299595.

Tomés Babiak, Mojmir Kietinsky, Vojtéch Rehak, and Jan Strejéek. LTL to Biichi automata
translation: Fast and more deterministic. In Proceedings of the 18th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS'12), volume 7214 of Lecture
Notes in Computer Science, pages 95-109. Springer, 2012. doi:10.1007/978-3-642-28756-5_8.

Ilan Beer, Shoham Ben-David, Cindy Eisner, Dana Fisman, Anna Gringauze, and Yoav Rodeh. The
temporal logic Sugar. In Gérard Berry, Hubert Comon, and Alain Finkel, editors, Proceedings of the
13th international conferance on Computer Aided Verification (CAV’01), volume 2102 of Lecture Notes
in Computer Science, pages 363-367. Springer, July 2001. ISBN 978-3-540-42345-4. d0i:10.1007/3-
540-44585-4_33.

Anne Briiggemann-Klein. Regular expressions into finite automata. Theoretical Computer Science,
120:87-98, 1996. doi:10.1007 /BFb0023820.

Ivana Cernd and Radek Pelanek. Relating hierarchy of temporal properties to model check-
ing. In Branislav Rovan and Peter Vojtaa, editors, Proceedings of the 28th International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS’03), volume 2747 of Lecture Notes
in Computer Science, pages 318-327, Bratislava, Slovak Republic, August 2003. Springer-Verlag.
doi:10.1007 /978-3-540-45138-9_26.

Edward Y. Chang, Zohar Manna, and Amir Pnueli. Characterization of temporal property
classes. In Proceedings of the 19th International Colloquium on Automata, Languages and Programming
(ICALP’92), pages 474-486, London, UK, 1992. Springer-Verlag. doi:10.1007/3-540-55719-9_97.

Alessandro Cimatti, Marco Roveri, and Stefano Tonetta. Symbolic compilation of PSL. IEEE
Transactions on Computer Aided Design of Integrated Circuits and Systems, 27(10):1737-1750, 2008.
doi:10.1109/TCAD.2008.2003303. URL https://es.fbk.eu/people/tonetta/tests/tcad07/.

Christian Dax, Felix Klaedtke, and Stefan Leue. Specification languages for stutter-invariant
regular properties. In Proceedings of the 7th International Symposium on Automated Technology for
Verification and Analysis (ATVA’09), volume 5799 of Lecture Notes in Computer Science, pages 244-254.
Springer-Verlag, 2009. doii10.1007 /978-3-642-04761-9_19.

Alexandre Duret-Lutz. LTL translation improvements in Spot. In Proceedings of the 5th Interna-
tional Workshop on Verification and Evaluation of Computer and Communication Systems (VEC0S'11),
Electronic Workshops in Computing, Tunis, Tunisia, September 2011. British Computer Society.
URL http://ewic.bcs.org/category/15853|

Cindy Eisner and Dana Fisman. A Practical Introduction to PSL. Series on Integrated Circuits and
Systems. Springer, 2006. doi:10.1007 /978-0-387-36123-9.

Cindy Eisner and Dana Fisman. Structural contradictions. In Hana Chockler and Alan Hu,
editors, Proceedings of the 4th International Haifa Verification Conference (HVC'2008), volume 5394 of
Lecture Notes in Computer Science, pages 164-178. Springer, October 2009. ISBN 978-3-642-01701-8.
doi:10.1007 /978-3-642-01702-5_17.

33

http://www.eda.org/vfv/
http://www.eda.org/vfv/
https://doi.org/10.1109/IEEESTD.2018.8299595
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/3-540-44585-4_33
https://doi.org/10.1007/3-540-44585-4_33
https://doi.org/10.1007/BFb0023820
https://doi.org/10.1007/978-3-540-45138-9_26
https://doi.org/10.1007/3-540-55719-9_97
https://doi.org/10.1109/TCAD.2008.2003303
https://es.fbk.eu/people/tonetta/tests/tcad07/
https://doi.org/10.1007/978-3-642-04761-9_19
http://ewic.bcs.org/category/15853
https://doi.org/10.1007/978-0-387-36123-9
https://doi.org/10.1007/978-3-642-01702-5_17

[13]

[14]

[15]

[16]

[17]

[18]

[19]

34

Javier Esparza, Rubén Rubio, and Salomon Sickert. Efficient normalization of linear temporal
logic. Journal of the ACM, 71(2), April 2024. ISSN 0004-5411. doi:10.1145/3651152.

Kousha Etessami and Gerard]J. Holzmann. Optimizing Biichi automata. In C. Palamidessi,
editor, Proceedings of the 11th International Conference on Concurrency Theory (Concur’00), volume
1877 of Lecture Notes in Computer Science, pages 153-167, Pennsylvania, USA, 2000. Springer-
Verlag. doi:10.1007/3-540-44618-4_13, Beware of a typo in the version from the proceedings: fU g
is purely eventual if both operands are purely eventual. The revision of the paper available at
http://wuw.bell-labs.com/project/TMP/|is fixed. We fixed the bug in Spot in 2005, thanks to
LBTT. See also http://arxiv.org/abs/1011.4214v2 for a discussion about this problem.

Swen Jacobs, Felix Klein, and Sebastian Schirmer. A high-level LTL synthesis format: TLSF v1.1.
In Proceedings Fifth Workshop on Synthesis (SYNT@CAV'16), volume 229 of Electronic Proceedings in
Theoretical Computer Science, pages 112-132, 2016. doi:10.4204/EPTCS.229.10.

Zohar Manna and Amir Pnueli. A hierarchy of temporal properties. In Proceedings of the sixth
annual ACM Symposium on Principles of distributed computing (PODC’90), pages 377-410, New
York, NY, USA, 1990. ACM. doi:10.1145/93385.93442.

Klaus Schneider. Improving automata generation for linear temporal logic by considering the
automaton hierarchy. In Proceedings of the 8th International Conference on Logic for Programming,
Avtificial Intelligence and Reasoning, volume 2250 of Lecture Notes in Artificial Intelligence, pages
39-54, Havana, Cuba, 2001. Springer-Verlag. doi:10.1007 /3-540-45653-8_3.

Fabio Somenzi and Roderick Bloem. Efficient Biichi automata for LTL formulae. In Proceed-
ings of the 12th International Conference on Computer Aided Verification (CAV’00), volume 1855 of
Lecture Notes in Computer Science, pages 247-263, Chicago, Illinois, USA, 2000. Springer-Verlag.
doi:10.1007/10722167_21.

Heikki Tauriainen. On translating linear temporal logic into alternating and nondeterministic au-
tomata. Research Report A83, Helsinki University of Technology, Laboratory for Theoretical Com-
puter Science, Espoo, Finland, December 2003. URL http://www.tcs.hut.fi/Publications/
A83.shtml. Reprint of Licentiate’s thesis.

https://doi.org/10.1145/3651152
https://doi.org/10.1007/3-540-44618-4_13
http://www.bell-labs.com/project/TMP/
http://arxiv.org/abs/1011.4214v2
https://doi.org/10.4204/EPTCS.229.10
https://doi.org/10.1145/93385.93442
https://doi.org/10.1007/3-540-45653-8_3
https://doi.org/10.1007/10722167_21
http://www.tcs.hut.fi/Publications/A83.shtml
http://www.tcs.hut.fi/Publications/A83.shtml

	Reasoning with Infinite Sequences
	Finite and Infinite Sequences
	Usage in Model Checking

	Temporal Syntax & Semantics
	Boolean Constants
	Semantics

	Atomic Propositions
	Examples
	Semantics

	Boolean Operators (for Temporal Formulas)
	Semantics
	Trivial Identities (Occur Automatically)

	Temporal Operators
	Semantics
	Syntactic Sugar
	Trivial Identities (Occur Automatically)

	SERE Operators
	Semantics
	Syntactic Sugar
	Trivial Identities (Occur Automatically)

	SERE-LTL Binding Operators
	Semantics
	Syntactic Sugar
	Trivial Identities (Occur Automatically)

	Grammar
	Operator precedence

	Properties
	Pure Eventualities and Purely Universal Formulas
	Syntactic Hierarchy Classes

	Rewritings
	Unabbreviations
	LTL simplifier
	Negative normal form
	Simplifications
	Basic Simplifications
	Simplifications for Eventual and Universal Formulas
	Simplifications Based on Implications

	Defining LTL with only one of U, W, R, or M
	Syntactic Implications
	Bibliography

