
The Mealy-Machine Reduction Functions of Spot

Florian Renkin, Philipp Schlehuber-Caissier, Alexandre Duret-Lutz, and
Adrien Pommellet

EPITA’s Research Laboratory, Le Kremlin-Bicêtre, France

Abstract

We present functions for reducing Mealy machines, initially detailed in our
FORTE’22 article. These functions are now integrated into Spot 2.11.2,
where they are used as part of the ltlsynt tool for reactive synthesis. Of
course, since Spot is a library, these functions can also be used on their own,
and we provide Python bindings for easy experiments. The reproducible
capsule benchmarks these functions on Mealy machines from various sources,
and compare them to the MeMin tool.

Keywords: Mealy machines, synthesis, SAT

Metadata

Nr. Code metadata description Please fill in this column
C1 Current code version Spot 2.11.2
C2 Permanent link to code/repository

used for this code version
https://gitlab.lre.epita.fr/

spot/spot

C3 Permanent link to Reproducible
Capsule

https://codeocean.com/

capsule/4358262/tree/v1

C4 Legal Code License GPL v3+
C5 Code versioning system used git

C6 Software code languages, tools, and
services used

C++17, Python 3.5+

C7 Compilation requirements, operat-
ing environments and dependencies

Linux or MacOS with a C++17
compiler and Python 3.5 or later

C8 Link to developer documentation https://spot.lre.epita.fr

C9 Support email for questions spot@lrde.epita.fr

Preprint submitted to Science of Computer Programming May 27, 2023

https://gitlab.lre.epita.fr/spot/spot
https://gitlab.lre.epita.fr/spot/spot
https://codeocean.com/capsule/4358262/tree/v1
https://codeocean.com/capsule/4358262/tree/v1
https://spot.lre.epita.fr
spot@lrde.epita.fr


latch

xa

Figure 1: A switching circuit that reads one sig-
nal a, and outputs one signal x. The latch is
initially 0 and delays the signal by one tick.

ā/x̄

a/x

a/x̄
ā/x̄

Figure 2: A Mealy machine representing
the behavior of the circuit on the left.

1. Motivation and significance

Mealy machines were invented as a model of synchronous reactive circuits,
also known as switching circuits. [1] For instance the simple circuit shown on
Fig. 1 reads a signal a and outputs a signal x such that x is true until a is
false, and x then remains false forever. The behavior of this circuit can be
given by the Mealy machine on Fig. 2: this is a finite automaton where edges
are labeled by input/output pairs, and that is deterministic with respect to
the input. The states of the Mealy machine are used to represent the internal
state of the circuit, i.e., the value of all latches. Of course switching circuits
and Mealy machines can use multiple input signals, multiple output signals,
and multiple latches.

The techniques we discuss here are used to reduce Mealy machines so that
they use fewer states. Using fewer states usually means that the circuit gen-
erated from the Mealy machine will use fewer latches and gates. Minimizing
Mealy machines in presence of don’t care outputs or destinations has been
studied for a long time [2]. The problem is known to be NP-complete [3] and
several approaches have been proposed over the time, including: enumerating
all possible solutions [2], reducing to other covering problems [4, 5], incre-
mentally reducing machines one state at a time [6], incrementally searching
equivalent machines by adding one state at a time and then using counter-
examples to refine the machines [7, 8]. MeMin is a tool implementing the
strategy of trying to build equivalent machines of increasing size, but using
a SAT solver to check their feasibility; it was shown to outperform other
approaches [9].

Our original motivation comes from the problem of reactive LTL synthe-
sis [10, 11]: build a reactive circuit whose input and output signals are tied
by a specification provided as an LTL formula. For instance the circuit of
Figure 1 is a possible solution to the specification a ↔ Fx which indicates
that x should eventually be true if and only if a was true initially.

Because LTL specifications can be relatively lax, it is possible that for
some given input signals and state of the circuit, multiple possible outputs
are compatible with the LTL formula. For this reason, our synthesis pipeline

2



produces a version of Mealy machines called “Incompletely-specified Gener-
alized Mealy Machines” (IGMMs [12]). The generalization is that the output
part of an edge can be any arbitrary Boolean function to indicate that the
machine is free to output any set of signals that satisfies this function (this
is finer than traditional models using don’t care outputs as it can express
some constraints). Reducing such IGMMs can then take advantage of the
fact that ultimately, the circuit needs only to settle on a specialized version
of the machine with a unique set of output signals for each pair of state and
input signals.

We have implemented two different reductions procedures. The first one
is a heuristic that finds sets of states of the Mealy machine that could be
merged if their output would be reduced to a compatible subset. This search
is achieved by computing and comparing signatures for each state, in a way
inspired by how Babiak et al. [13] check for trace inclusion; the reduction is
then performed by building a specialization graph that will help select one
representative for each state.

The second one is a SAT-based minimization procedure that solves the
NP-hard problem of finding the minimal Mealy machine that specializes the
original one. [12] This second procedure is inspired by an existing tool called
MeMin [9]; but MeMin’s model of generalized Mealy machines only sup-
ports output functions that are cubes (i.e., conjunction of literals), not arbi-
trary functions. While there are cases in the synthesis competitions where
we can really benefit from not being restricted to cubes, the benchmarks we
have performed are restricted to cubic outputs, for fairness with MeMin.

2. Software description

Our reduction functions are implemented in Spot [14], a C++ library for
LTL formula and ω-automata manipulation. It additionally comes with a set
of command-line tools (such as the LTL synthesis tool ltlsynt), as well as
Python bindings for interactive use, prototyping, and testing.

2.1. Software functionalities

The functions implementing the reductions discussed in our FORTE’22 [12]
paper and in greater details in F. Renkin’s Ph.D thesis [15]. They are called
reduce mealy(aut,oa) and minimize mealy(aut). The former implements
the heuristic-based reduction, while the latter performs SAT-based mini-
mization. When oa is false, the reduce mealy simply merges states that
are bisimilar (i.e., states that behave identically). When oa (output assign-
ment) is true, it merges states that can become bisimilar once restricted to
a common set of output signals.

3



They can both be used as part of our pipeline for LTL synthesis (for
instance when running the tool ltlsynt, passing option --simplify=bisim,
--simplify=bwoa will cause reduce mealy to be used with oa to set to false
or true, passing option --simplify=sat will cause minimize mealy to be
used, and passing option --simplify=bwoa-sat will first reduce the Mealy
machine before minimizing it).

Additionally, these two functions can be called directly and interactively
using the Python bindings. We demonstrate this in the artifact.

2.2. Software architecture

Spot uses a class called twa graph to store an ω-automaton whose struc-
ture is stored as a graph. These ω-automata allow the representation of
set of infinite words labeled by valuations of Boolean propositions. Because
one often want to restrict the sets of infinite runs that are accepted, these
automata are equipped with an acceptance condition which are Boolean for-
mulas telling which transitions of the automaton may be visited infinitely
often or finitely often.

The ω-automaton class in Spot is very flexible and can be extended by
attaching named properties to it (this is similar to the attribute system of
the R programming language). For instance any automaton that declares
the synthesis-output property (a list of propositions that represent output
signals) and whose acceptance condition is true (all infinite runs are accepted)
can be handled like a Mealy machine. This in turn allows the code for
displaying automata to be specialized for this case and separate input and
output signals for display.

The two functions reduce mealy and minimize mealy take a twa graph

as argument, and then check that this automaton actually represents a Mealy
machine before attempting to reduce it.

To find compatible states that can be fused together, the reduce mealy

function uses Binary Decision Diagrams (BDDs) to encode a signature for
each state. The BDD library used by Spot is BuDDy [16].

On the other hand the minimize mealy functions encodes the minimiza-
tion as a SAT problem, and solves this problem with PicoSAT [17], a SAT-
solver chosen for its ease of distribution.

3. Illustrative examples

Our artifact contains a Python notebook demonstrating how to use the
above two functions on Mealy machines from our benchmark. Additionally,
the notebook shows how to call MeMin on similar machines for comparison.

4



10
0

10
1

10
2

10
3

10
4

10
5

size SAT machine

10
0

10
1

10
2

10
3

10
4

10
5

si
z
e
m
e
th

o
d

m
a
c
h
in

e

bisim.

bisim. w/ o.a.

Figure 3: Sizes of the different simulation-
based methods, compared to the SAT-based
output.

10
1

10
3

10
5

10
7

10
9

MeMin

10
1

10
3

10
5

10
7

10
9

S
A
T

variables

clauses

Figure 4: Comparison of the number of vari-
ables and clauses in our encoding and in
MeMin’s

4. Impact

As mentioned earlier, we use these functions in our ltlsynt tool for LTL
synthesis. Our FORTE’22 paper [12] has shown:

• That our SAT-based encoding generally uses fewer clauses and variables
compared to MeMin (Fig. 4).

• That our BDD-based reductions (reduce mealy) are generally much
faster than our SAT-based minimization (minimize mealy) (Fig. 5–6).

• That our BDD-based reduction (reduce mealy) with output assign-
ment (bwoa) often produce results that are close to optimal (Fig. 3),
and is therefore a good compromise between speed and quality.

Note that Figure 5 differs from its counterpart in our FORTE’22 pa-
per [12] because the latter is based on a development branch of Spot that
uses a memory representation of Mealy labels that differs significantly from
existing releases, and that has not been merged yet. We have decided to
stick to a public release for this original software publication.

5. Future Work

We are currently investigating methods to further reduce the number of
variables and clauses in the SAT-based minimization as well as speeding up

5



10
−4

10
−2 10

0
10

2

time MeMin [s]

10
−4

10
−2

10
0

10
2

ti
m
e
m
e
th

o
d

[s
]

bisim. 53/591

bisim. w/ o.a. 53/591

SAT 354/290

Figure 5: Runtime of our methods compared
to the runtime of MeMin.

500 520 540 560 580 600 620 640

instances solved

10
−1

10
0

10
1

10
2

10
3

c
u
m
u
la
ti
v
e
ti
m
e
[s
]

MeMin

bisim.

bisim. w/ o.a.

SAT

Figure 6: Cactus-plot of the number of cases
solved by each methods, with cases sorted
for each method by increasing runtime.

the computation by introducing new variables, a technique applicable to both
approaches.

References

In addition to the GitLab repository mentioned on first page, each release
of Spot is archived at SoftwareHeritage. A copy of the source code is therefore
permanently available from https://archive.softwareheritage.org/swh:

1:rel:85d32fb5235cc4606676fe9e4b5f839c21fdbf8f

References

[1] G. H. Mealy, A method for synthesizing sequential circuits, The Bell
System Technical Journal 34 (5) (1955) 1045–1079. doi:10.1002/j.

1538-7305.1955.tb03788.x.

[2] M. C. Paull, S. H. Unger, Minimizing the number of states in incom-
pletely specified sequential switching functions, IRE Transactions on
Electronic Computers EC-8 (3) (1959) 356–367. doi:10.1109/TEC.

1959.5222697.

[3] C. P. Pfleeger, State reduction in incompletely specified finite-state ma-
chines, IEEE Transactions on Computers C-22 (12) (1973) 1099–1102.
doi:10.1016/j.compeleceng.2006.06.001.

6

https://archive.softwareheritage.org/swh:1:rel:85d32fb5235cc4606676fe9e4b5f839c21fdbf8f
https://archive.softwareheritage.org/swh:1:rel:85d32fb5235cc4606676fe9e4b5f839c21fdbf8f
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1109/TEC.1959.5222697
https://doi.org/10.1109/TEC.1959.5222697
https://doi.org/10.1016/j.compeleceng.2006.06.001


[4] G. Hachtel, J.-K. Rho, F. Somenzi, R. Jacoby, Exact and heuristic algo-
rithms for the minimization of incompletely specified state machines, in:
Proceedings of the European Conference on Design Automation, 1991,
pp. 184–191. doi:10.1109/EDAC.1991.206387.

[5] T. Kam, T. Villa, R. Brayton, A. Sangiovanni-Vincentelli, A fully
implicit algorithm for exact state minimization, in: Proceedings of
the 31st Annual Design Automation Conference (DAC’94), Associa-
tion for Computing Machinery, New York, NY, USA, 1994, p. 684–690.
doi:10.1145/196244.196615.
URL https://doi.org/10.1145/196244.196615

[6] A. Alberto, A. Simao, Iterative minimization of partial finite state ma-
chines, Central European Journal of Computer Science 3 (2) (2013) 91–
103. doi:10.2478/s13537-013-0106-0.

[7] J. Pena, A. Oliveira, A new algorithm for exact reduction of incompletely
specified finite state machines, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 18 (11) (1999) 1619–1632.
doi:10.1109/43.806807.

[8] S. Gören, F. J. Ferguson, On state reduction of incompletely specified
finite state machines, Journal of Computers and Electrical Engineering
33 (2007) 58–69. doi:10.1016/j.compeleceng.2006.06.001.

[9] A. Abel, J. Reineke, MeMin: SAT-based exact minimization of incom-
pletely specified Mealy machines, in: Proceedings for the 34th Interna-
tional Conference on Computer-Aided Design (ICCAD’15), IEEE Press,
2015, pp. 94–101. doi:10.1109/ICCAD.2015.7372555.

[10] S. Jacobs, R. Bloem, M. Colange, P. Faymonville, B. Finkbeiner,
A. Khalimov, F. Klein, M. Luttenberger, P. J. Meyer, T. Michaud,
M. Sakr, S. Sickert, L. Tentrup, A. Walker, The 5th reactive synthesis
competition (SYNTCOMP 2018): Benchmarks, participants & results,
CoRR abs/1904.07736 (2019).

[11] T. Michaud, M. Colange, Reactive synthesis from LTL specification with
Spot, in: Proceedings of the 7th Workshop on Synthesis (SYNT’18),
2018.
URL http://www.lrde.epita.fr/dload/papers/michaud.18.synt.

pdf

7

https://doi.org/10.1109/EDAC.1991.206387
https://doi.org/10.1145/196244.196615
https://doi.org/10.1145/196244.196615
https://doi.org/10.1145/196244.196615
https://doi.org/10.1145/196244.196615
https://doi.org/10.2478/s13537-013-0106-0
https://doi.org/10.1109/43.806807
https://doi.org/10.1016/j.compeleceng.2006.06.001
https://doi.org/10.1109/ICCAD.2015.7372555
http://www.lrde.epita.fr/dload/papers/michaud.18.synt.pdf
http://www.lrde.epita.fr/dload/papers/michaud.18.synt.pdf
http://www.lrde.epita.fr/dload/papers/michaud.18.synt.pdf
http://www.lrde.epita.fr/dload/papers/michaud.18.synt.pdf


[12] F. Renkin, P. Schlehuber-Caissier, A. Duret-Lutz, A. Pommellet, Ef-
fective reductions of Mealy machines, in: Proceedings of the 42nd In-
ternational Conference on Formal Techniques for Distributed Objects,
Components, and Systems (FORTE’22), Vol. 13273 of Lecture Notes in
Computer Science, Springer, 2022, pp. 114–130.

[13] T. Babiak, T. Badie, A. Duret-Lutz, M. Křet́ınský, J. Strejček, Com-
positional approach to suspension and other improvements to LTL
translation, in: Proceedings of the 20th International SPIN Sympo-
sium on Model Checking of Software (SPIN’13), Vol. 7976 of Lec-
ture Notes in Computer Science, Springer, 2013, pp. 81–98. doi:

10.1007/978-3-642-39176-7_6.

[14] A. Duret-Lutz, E. Renault, M. Colange, F. Renkin, A. G. Aisse,
P. Schlehuber-Caissier, T. Medioni, A. Martin, J. Dubois, C. Gillard,
H. Lauko, From Spot 2.0 to Spot 2.10: What’s new?, in: Proceedings
of the 34th International Conference on Computer Aided Verification
(CAV’22), Vol. 13372 of Lecture Notes in Computer Science, Springer,
2022, pp. 174–187. doi:10.1007/978-3-031-13188-2_9.

[15] F. Renkin, Transformations d’ω-automates pour la synthèse de
contrôleurs réactifs, Ph.D. thesis, Sorbonne University, Paris, France
(Oct. 2022).

[16] J. Lind-Nielsen, BuDDy: Binary Decision Diagram package, Release 2.2
(Nov. 2002).
URL http://www.itu.dk/research/buddy/

[17] A. Biere, PicoSAT essentials., Journal on Satisfiability, Boolean Model-
ing and Computation 4 (2008) 75–97. doi:10.3233/SAT190039.

8

https://doi.org/10.1007/978-3-642-39176-7_6
https://doi.org/10.1007/978-3-642-39176-7_6
https://doi.org/10.1007/978-3-031-13188-2_9
http://www.itu.dk/research/buddy/
http://www.itu.dk/research/buddy/
https://doi.org/10.3233/SAT190039

	Motivation and significance
	Software description
	Software functionalities
	Software architecture

	Illustrative examples
	Impact
	Future Work

