Tiger Compiler Reference Manual

Edition February 9, 2004

Akim

The Tiger Project

This document describes the Tiger project for EPITA students as of February 9, 2004. More
information is available on the EPITA Tiger Compiler Project Home Page®.

Tiger is a language introduced by Andrew Appel? in his book Modern Compiler Imple-
mentation®. This document is by no means sufficient to produce an actual Tiger compiler,
nor to understand compilation. You are strongly encouraged to buy and read Appel’s book:
it is an excellent book.

There are several differences with the original book, the most important being that
EPITA students have to implement this compiler in C++ and using modern object oriented
programming techniques. You ought to buy the original book, nevertheless, pay extreme
attention to implementing the version of the language specified below, not that of the book.

L EPrTA Tiger Compiler Project Home Page, http://www.lrde.epita. fr/cgi—bin/twiki/view/Projects/TigerCompiler.I
2 Andrew Appel, http://www.cs.princeton.edu/ appel/.
3 Modern Compiler Implementation, http://www.cs.princeton.edu/ appel/modern/java/.

Chapter 1: Tiger Language Reference Manual 2

1 Tiger Language Reference Manual

1.1 Lexical Specifications

Keywords ‘array’, ‘if’, ‘then’, ‘else’, ‘while’, ‘for’, ‘to’, ‘do’, ‘let’, ‘in’, ‘end’, ‘of’,
‘break’, ‘nil’, ‘function’, ‘var’, and ‘type’

Symbols 4’7’ ‘:’7 4;77 4(77 ()77 4[7’ ‘]’7 4{7’ 4}77 (.77 C+7’ 4_57 4*7’ 4/’7 3 7, £<>77 4<77 (<=77 L>7,
L>=77 ‘&,7 (I?7 and L:=7

White characters
Space and tabulations are the only white space characters supported. Both
count as a single character when tracking locations.

End-of-line
End of lines are ‘\n\r’, and ‘\r\n’, and ‘\r’, and ‘\n’, freely intermixed.

‘o

Strings The strings are ANSI-C strings: enclosed by ‘"’ with support for the following

escapes:
4\a7’ (\b7, ‘\f’, t\n7, 6\r7’ ‘\t’, L\V7
control characters.

\num The character which code is num in octal. num is composed of
exactly three octal characters, and any invalid value is a scan error.

\xnum The character which code is num in hexadecimal (upper case or
lower case or mixed). num is composed of exactly 2 hexadecimal
characters.

AN A single backslash.

A\ A double quote.

\character

If no rule above applies, this is an error.

All the other characters are plain characters and are to be included in the string.
In particular, multi-line strings are allowed.

Comments
Like C comments, but can be nested:

Code

/* Comment
/* Nested comment */
Comment */

Code

Identifiers Identifiers start with a letter, followed by any number of alphanumeric charac-
ters plus the underscore. Case sensitive.

Chapter 1: Tiger Language Reference Manual 3

id ::= letter { letter | digit | ‘_" }

letter ::=
La7 | 4b7 I (C7 I td’ | Le7 I (f’ I tg7 | Lh’ | (i? I (j? I tk? | Ll? I
tm’ | 4n7 l 407 | 4p7 | £q7 I (r? | ‘S’ | Lt’ | 4u7 l ‘V’ | ‘W’ | £X7 I
Gy’ | 627 I
(A7 | LB7 I (C? | ‘D’ | ‘E, I ‘F’ I (G? | (H7 | LI7 I (J? | ‘K’ | (L7 I
LM7 | 4N7 I 407 I £P7 | (Q? I 4R7 I tS? | LT7 | 4U7 I ¢V7 I ﬁw? | (X? I
LY? | 427

digit ==0" | ‘17 |22 |3 |4 |56 |78]9|

Numbers There are only integers in Tiger.
integer ::= digit { digit }
Op = 6+7 I [| L*’ | 4/7 I 4=7 | (<>7 | L>’ | 4<7 I 4>=7 I (<=7 | (&7 | (I’

Invalid characters
Any other character is invalid.

1.2 Syntactic Specifications

We use Extended BNF, with ‘[’ and ‘]’ for zero or once, ‘(’ and ‘)’ for grouping, and ‘{’
and ‘} for any number of repetition including zero.

program ::= exp

Chapter 1: Tiger Language Reference Manual

Literals.
‘nil’

| integer

| string

Array and record creations.
| type-id ‘[’ exp ‘]’ ‘of’ exp
| type-id ‘{’[id ‘=> exp { ¢,? id ‘=? exp } 1 ‘¥’

Variables, field, elements of an array.
| lvalue

H*

Function call.
| id ‘C [exp { “,” exp }])’

Operations
‘=7 exp

exXp op exp
“(’ exps ‘)’

—— — %

Assignment
| lvalue ‘:=’ exp

Control structures

| “if’ exp ‘then’ exp [‘else’ exp]

| ‘while’ exp ‘do’ exp

| ‘for’ id ‘:=’ exp ‘to’ exp ‘do’ exp
| ‘break’

| ‘let’ decs ‘in’ exps ‘end’

lvalue ::= id
| lvalue ‘.’ id
| lvalue ‘[’ exp ‘]’
exps ::= [exp { “;” exp } 1]

decs ::= { dec }
dec ::=
Type declaration
‘type’ id ‘=’ ty
Variable declaration
| ‘var’ id [“:’ type-id]
Function declaration
| ‘function’ id ‘(’ tyfields €)’ [‘:’ type-id 1 ‘=’ exp

‘1=’ exp

Chapter 1: Tiger Language Reference Manual 5

Types
ty ::= type-id
| ‘{’ tyfields ‘}’
| ‘array’ ‘of’ type-id

tyfields ::= [id “:’ type-id { ¢,’ id ¢:’ type-id }]

type-id ::= id

op ::= 47 | =2 | Gk | /0| =] S |]] s] =2
1.3 Semantics
1.3.1 Declarations
arrays The size of the array does not belong to the type. Arrays are always initialized.

let type int_array = array of int
var table := int_array[100] of 0
in ... end

builtin types
There are two builtin types, int and string. They may be redefined.

equivalence
Two record types or two array types are equivalent iff there are issued from the
same definition. As in C, unlike Pascal, structural equivalence is rejected.

Type aliases do not build new types, hence they are equivalent.

let
type a = int
type b = int

var a := 1

var b := 2
in

a=> /* 0K x/
end

Name spaces
There are three name spaces: types, variables and functions. Appel uses only
two, since variables and functions share the same name space. The motivation,
as suggested by Sbastien Carlier, is probably related to the fact that in the sec-
ond part of his book, while describing functional extensions of Tiger, functions
can be assigned to variables.

let type a = {a : int}

var a := 0

function a (a : a) : a = afa = a.a}
in

a (afa = a})

end

But three name spaces is easier to implement than two.

t&)

(l;l

Chapter 1: Tiger Language Reference Manual 6

1.3.2 Expressions

Boolean operators
Appel is not clear wrt the values returned by the operators && and | |. Because
they are implemented as syntactic sugar, one could easily make ‘123 || 456’
return ‘1’ or ‘123’. For the time being the “right” result is considered being
‘123’. Similarly ‘123 && 456’ is ‘456’. This is unnatural, but it is what is the
most consistent with the suggested implementation. In the future (a different
class), this might change. But anyway, no test will depend on this.

Precedence and Associativity
Precedence of the op (high to low):

* /
+ -—
&
I

All the associative operators are associative to the left.

Chapter 2: Predefined Entities 7

2 Predefined Entities

These entities are predefined, i.e., they are available when you start the Tiger compiler, but
a Tiger program may redefine them.

2.1 Predefined Types
There are two predefined types:

3

int’ which is the type of all the literal integers.
‘string’ which is the type of all the literal strings.

2.2 Predefined Functions

Some runtime function may fail if some assertions are not fulfilled. In that case, the program
must exit with a properly labelled error message, and with exit code 120. Please, note that
the error messages are standardized, and must be exactly observed. Any difference, in
better or worse, is a failure to comply with the (this) Tiger Reference Manual.

chr (code : int) [string]
Return the one character long string containing the character which code is code. If
code does not belong to the range [0..255], raise a runtime error: ‘chr: character
out of range’.

concat (first: string, second: string) [string]
exit (status: int) [void]
Exit the program with exit code status.
flush () [void]
getchar () [string]
not (boolean: int) [int]
ord (string: string) [int]
print (string: string) [void]
print_int (int: int) [void]

Note: this is an EPITA extension. Output int in its decimal canonical form (equiva-
lent to ‘%d’ for printf).

size (string: string) [int]

substring (string: string, first: int, length: int) [string]
Return a string composed of the characters of string starting at the first character
(0 being the origin), and composed of length characters (i.e., up to and including the
character first + length).

Let size be the size of the string, the following assertions must hold:
e 0 <= first
e (0 <= length
e first + length <= size

otherwise a runtime failure is raised: ‘substring: arguments out of bounds’.

Chapter 3: Implementation

3 Implementation

3.1 Invoking tc
Synopsis:
tc option... file
where file can be ‘-’; denoting the standard input.

Global options are:

(_h7
‘-—help’ Display the help message, and exit successfully.

‘--version’
Display the version, and exit successfully.

‘-—task-list’
List the registered tasks.

‘--task-order’
Report the order in which the tasks will be run.

The options related to scanning and parsing (T1) are:

‘-—scan-trace’
Enable Flex scanners traces.

‘--parse-trace’
Enable Bison parsers traces.

‘-—parse’ Parse the file given as argument.

The options related to the AST (T2) are:

4_A7
‘-—ast-display’
Display the AST.
L_D7
‘-—ast-delete’
Reclaim the memory allocated for the AST.

The options related to type checking (T4) are:

(_T7
‘~-—types-check’
Perform type checking (which is not done by default). Note the spelling.

The options related to escapes computation (T3) are:

Chapter 3: Implementation 9

c_e7

‘-—escapes-compute’
Compute the escapes.

R

‘-—escapes-display’
Display the escapes. Note that this option does mnot imply
‘-—escapes-compute’, so that it is possible to check that the defaults
(everybody escapes) are properly implemented.

The options related to the high level intermediate representation are:
‘~=hir-compute’
Translate to HIR. Implies ‘--types-check’.
L_H7
‘-~hir-display’
Display the high level intermediate representation. Implies ‘~~hir-compute’.

The options related to the low level intermediate representation are:

‘~-—canon-trace’
Trace the canonicalization of HIR to LIR.

‘-—canon-compute’
Canonicalize the LIR fragments.

(el

‘-—canon-display’
Display the canonicalized intermediate representation before basic blocks and
traces computation. Implies ‘--lir-compute’. It is convenient to determine
whether a failure is due to canonicalization, or traces.

‘-—traces-trace’
Trace the basic blocks and traces canonicalization of HIR to LIR.

‘-—traces-compute’
Compute the basic blocks from canonicalized hir fragments. Implies
‘-—canon-compute’.

‘~-lir-compute’
Translate to LIR. Implies ‘--traces-compute’. Actually, it is nothing but a
nice looking alias for the latter.

¢

L_L7
‘--lir-display’
Display the low level intermediate representation. Implies ‘--1lir-compute’.

The options related to the instruction selection are:

‘-—inst-compute’
Convert from LIR to pseudo assembly with temporaries. Implies
‘--lir-compute’.

Chapter 3: Implementation 10

O

‘-—inst-display’
Display the pseudo assembly, (without the runtime prologue). Implies
‘-—inst-compute’.

6_R7

‘-—runtime-display’
Display the assembly runtime prologue for the current target.

The options related to the liveness information are:

O el

‘-—flowgraphs-dump’
Save each function flow graph in a Graphviz file. Implies ‘~-inst-compute’.

4_V7

‘--liveness-dump’
Save each function flow graph enriched with liveness information in a Graphviz
file. Implies ‘--inst-compute’.

(_N7

‘-—interference-dump’

Save each function interference graph in a Graphviz file. Implies
‘~—inst-compute’.

3.2 Errors

Compile errors must be reported on the standard error flow with precise error location.
Examples include:

$ echo "1 + + 2" | ./tc -

standard input:1.4: syntax error, unexpected "+"

Parsing Failed
and

$ echo "1+ O + 2" | ./tc -T -

standard input:1.0-5: type mismatch

right operand type: void

expected type: int

Note that the symbol is not part of the actual output. It is only used in this
document to highlight that the message is produced on the standard error flow. Do not
include it as part of the compiler’s messages.

The compiler exit value should reflect faithfully the compilation status. The possible
values are:

0 Everything is all right.

1 Some error which does not fall into the other categories occurred. For instance,
malloc or fopen failed, a file is missing etc.

Chapter 3: Implementation 11

Note that an optional option (such as ‘--hir-use-ix’) must cause tc to exit

1 if it does not support it. If you don’t, be sure that your compiler will be
exercised on these optional features, and it will most probably have 0.

2 Error detected during the scanning, e.g., invalid character.
3 Parse error.
4 Semantical error such as type incompatibility.

64 (EX_USAGE)
The command was used incorrectly, e.g., with the wrong number of arguments,
a bad flag, a bad syntax in a parameter, or whatever. This is the value used by

argp.

When several errors have occurred, the least value should be issued, not the earliest. For
instance:

(let error in end; %)

should exit 2, not 3, although the parse error was first detected.

In addition to compiler errors, the compiled programs may have to raise a runtime error,
for instance when runtime functions received improper arguments. In that case use the exit
code 120, and issue a clear diagnostic. Note that because of the basic MIPS model we target
which does not provide the standard error output, the message is to be output onto the
standard output.

3.3 Extensions

A strictly compliant compiler must behave exactly as specified in this document and in
Andrew Appel’s book, and as demonstrated by the samples exhibited in this document,
and in the “Reports”! document.

Nevertheless, you are entirely free to extend your compiler as you wish, as long as this
extension is enabled by a non standard option. Extensions include:

ANSI Colors
Do not do that by default, in particular without checking if the output isatty,
as the correction program will not appreciate.

Language Extensions
If for instance you intend to support loop-expression, the construct must be
rejected (as a syntax error) if the corresponding option was not specified.

In any case, if you don’t implement an extension that was suggested (such as
‘-~hir-use-ix’, then you must not accept the option. If the compiler accepts an option,
then the effect of this option will be checked. For instance, if your compiler accepts
‘-—hir-use-ix’ but does not implement it, then be sure to get 0 on these tests.

L “Reports”, http://www.lrde.epita.fr/people/akim/compil/reports.html.

