
The Tiger Compiler Project
Edition February 24, 2004

Akim Demaille

i

Table of Contents

1 Introduction . 3
1.1 How to Read this Document . 3
1.2 Why the Tiger Project . 3
1.3 What the Tiger Project is not. 5
1.4 History . 6

1.4.1 Fair Criticism . 6
1.4.2 Tiger 2002 . 7
1.4.3 Tiger 2003 . 7
1.4.4 Tiger 2004 . 9
1.4.5 Tiger 2005 . 10
1.4.6 Tiger 2006 . 12

2 Instructions . 13
2.1 Interactions . 13
2.2 Groups . 13
2.3 Coding Style . 15

2.3.1 No Draft Allowed . 15
2.3.2 Use of Foreign Features . 15
2.3.3 Use of C++ Features . 16
2.3.4 Use of STL . 20
2.3.5 File Conventions . 21
2.3.6 Matters of Style . 22

2.4 Delivery . 25
2.5 Evaluation . 25

2.5.1 Automated Evaluation . 26
2.5.2 During the Examination . 26
2.5.3 Human Evaluation . 27
2.5.4 Marks Computation . 27

3 Tarballs . 29
3.1 Given Tarballs . 29
3.2 Project Layout . 29

3.2.1 The Top Level . 29
3.2.2 The ‘src’ Directory. 30
3.2.3 The ‘src/misc’ Directory . 30
3.2.4 The ‘src/task’ Directory . 30
3.2.5 The ‘src/symbol’ Directory . 30
3.2.6 The ‘src/ast’ Directory . 31
3.2.7 The ‘src/parse’ Directory . 31
3.2.8 The ‘src/type’ Directory . 31
3.2.9 The ‘src/temp’ Directory . 32
3.2.10 The ‘src/tree’ Directory . 32
3.2.11 The ‘src/frame’ Directory . 32
3.2.12 The ‘src/translate’ Directory . 33
3.2.13 The ‘src/canon’ Directory . 33
3.2.14 The ‘src/assem’ Directory . 34
3.2.15 The ‘src/target’ Directory . 34

ii The Tiger Compiler Project Assignment

3.2.16 The ‘src/codegen’ Directory . 35
3.2.17 The ‘src/codegen/mips’ Directory . 36
3.2.18 The ‘src/codegen/ia32’ Directory . 36
3.2.19 The ‘src/graph’ Directory . 37
3.2.20 The ‘src/liveness’ Directory . 37
3.2.21 The ‘src/regalloc’ Directory . 37

3.3 Given Test Cases . 38

4 Compiler Stages . 39
4.1 Stage Presentation . 39
4.2 T0, Naive Scanner and Parser . 39

4.2.1 T0 Goals . 40
4.2.2 T0 Samples . 40
4.2.3 T0 Code to Write . 41
4.2.4 T0 Improvements. 42

4.3 T1, Scanner and Parser . 42
4.3.1 T1 Goals . 42
4.3.2 T1 Samples . 43
4.3.3 T1 Given Code . 45
4.3.4 T1 Code to Write . 45
4.3.5 T1 FAQ . 46
4.3.6 T1 Improvements. 46

4.4 T2, Building the Abstract Syntax Tree . 46
4.4.1 T2 Goals . 47
4.4.2 T2 Samples . 47

4.4.2.1 T2 Pretty-Printing Samples. 47
4.4.2.2 T2 Chunks . 49
4.4.2.3 T2 Error Recovery . 51

4.4.3 T2 Given Code . 52
4.4.4 T2 Code to Write . 52
4.4.5 T2 FAQ . 53
4.4.6 T2 Improvements. 53

4.5 T3, Computing the Escaping Variables . 53
4.5.1 T3 Goals . 53
4.5.2 T3 Samples . 54
4.5.3 T3 Code To Write . 55
4.5.4 T3 FAQ . 56
4.5.5 T3 Improvements. 56

4.6 T4, Type Checking . 56
4.6.1 T4 Goals . 56
4.6.2 T4 Samples . 56
4.6.3 T4 Given Code . 57
4.6.4 T4 Code to Write . 57
4.6.5 T4 Options . 58
4.6.6 T4 FAQ . 59
4.6.7 T4 Improvements. 59

4.7 T5, Translating to the High Level Intermediate Representation 60
4.7.1 T5 Goals . 60
4.7.2 T5 Samples . 60

4.7.2.1 T5 Primitive Samples . 61
4.7.2.2 T5 Optimizing Cascading If . 63
4.7.2.3 T5 Builtin Calls Samples . 66

iii

4.7.2.4 T5 Samples with Variables . 68
4.7.3 T5 Given Code . 76
4.7.4 T5 Code to Write . 76
4.7.5 T5 Options . 76

4.7.5.1 T5 Bounds Checking . 76
4.7.5.2 T5 Optimizing Static Links . 77

4.7.6 T5 Improvements. 78
4.8 T6, Translating to the Low Level Intermediate Representation 79

4.8.1 T6 Goals . 79
4.8.2 T6 Samples . 80

4.8.2.1 T6 Canonicalization Samples . 80
4.8.2.2 T6 Scheduling Samples . 89

4.8.3 T6 Given Code . 92
4.8.4 T6 Code to Write . 92
4.8.5 T6 Improvements. 92

4.9 T7, Instruction Selection . 92
4.9.1 T7 Goals . 93
4.9.2 T7 Samples . 93
4.9.3 T7 Given Code . 98
4.9.4 T7 Code to Write . 99
4.9.5 T7 Improvements . 100

4.10 T8, Liveness Analysis . 100
4.10.1 T8 Goals . 100
4.10.2 T8 Samples . 100
4.10.3 T8 Given Code. 104
4.10.4 T8 Code to Write . 105
4.10.5 T8 Improvements . 105

4.11 T9, Register Allocation . 105
4.11.1 T8 Goals . 105
4.11.2 T9 Samples . 105
4.11.3 T9 Given Code. 111
4.11.4 T9 Code to Write . 111
4.11.5 T9 FAQ . 112
4.11.6 T9 Improvements . 112

5 Tools . 113
5.1 Modern Compiler Implementation . 113
5.2 Bibliography . 114
5.3 The GNU Build System . 121

5.3.1 Package Name and Version . 122
5.3.2 Bootstrapping the Package . 122
5.3.3 Making a Tarball . 122

5.4 GCC, The GNU Compiler Collection . 123
5.5 Valgrind, The Ultimate Memory Debugger . 123
5.6 Flex & Bison . 125
5.7 HAVM . 126
5.8 Mipsy . 126
5.9 SPIM . 126
5.10 SWIG . 127
5.11 Python . 127
5.12 Doxygen . 128

iv The Tiger Compiler Project Assignment

Appendix A Appendices . 129
A.1 Glossary . 129
A.2 GNU Free Documentation License . 130

A.2.1 ADDENDUM: How to use this License for your documents 136
A.3 Colophon . 136
A.4 List of Files . 138
A.5 Index . 139

1

Nul n’est censé ignorer la loi.

Everything exposed in this document is expected to be known.
This document1 details the various tasks the “Compilation” students must complete.

It was last edited on February 24, 2004.

1 http://www.lrde.epita.fr/~akim/compil/assignments/assignments.html.

2 The Tiger Compiler Project Assignment

Chapter 1: Introduction 3

1 Introduction

This document presents the Tiger Project as part of the EPITA1 curriculum. It aims at the
implementation of a Tiger compiler (see Section 5.1 [Modern Compiler Implementation],
page 113) in C++.

1.1 How to Read this Document

If you are a newcomer, you might be afraid by its sheer size. Don’t worry, but in any case,
do not give up: as stated in the very beginning of this document,

Nul n’est censé ignorer la loi.

That is to say everything exposed in this document is considered to be known. If it
is written but you didn’t know, you are wrong. If it is not written and was not clearly
reported in the news, I am wrong.

Basically this document contains three kinds of informations:

Initial and Permanent
What you must read and know since the very beginning of the project. This
includes most the following chapters: Chapter 1 [Introduction], page 3 (except
the Section 1.4 [History], page 6 section), Chapter 2 [Instructions], page 13,
and Section 2.5 [Evaluation], page 25.

Incremental
You should read these parts as and when needed. This includes mostly Chap-
ter 4 [Compiler Stages], page 39.

Auxiliary This information is provided to help you: just go there when you feel the need,
Chapter 5 [Tools], page 113, and Chapter 3 [Tarballs], page 29. If you want
to have a better understanding of the project, if you are about to criticize
something, be sure to read Section 1.4 [History], page 6 beforehand.

There is additional material on the Internet:
− The Wiki page for the Tiger Compiler Project2 is the official home page of the project.

It holds related material (e.g., links).
− The packages of the tools that we use (Bison, Autoconf etc.) can be found in my

download area3.
− The developer documentation of the Tiger Compiler4.
− Most of the material I provide (lecture notes, older exams, current tarballs etc.) is in

my compilation area5.

1.2 Why the Tiger Project

This project is quite different from most other EPITA projects, and has aims at several
different goals, in different areas:

Several iterations
This project is about the only one with which you will live for 9 months, with
the constant needs to fix errors found in earlier stages.

1 http://www.epita.fr/.
2 http://tiger.lrde.epita.fr/.
3 http://www.lrde.epita.fr/~akim/download.
4 http://www.lrde.epita.fr/~akim/compil/tc-doc/.
5 http://www.lrde.epita.fr/~akim/compil.

4 The Tiger Compiler Project Assignment

Complete Project
While the evaluation of most student projects is based on the code, this project
restores the deserved emphasis on documentation and testing. Because of the
duration of the project, you will value the importance of a good (developer’s)
documentation (why did we write this 4 months ago?), and of a good test
suite (why does T2 fails now that we implemented T4? When did we break
it?).

This also means that you have to design a test suite, and maintain it through
out the project. The test suite is an integral part of the project.

Team Management
The Tiger Compiler is a long project, running from January to September
(and optionally further). Each four person team is likely to experience nasty
“human problems”. This is explicitly a part of the project: the team manage-
ment is a task you have to address. That may well include exclusion of lazy
members.

C++ C++ is by no means an adequate language to study compilers (C would be even
worse). Languages such as Haskell6, Ocaml7, Stratego8 are much better suited
(actually the latter is even designed to this end). But, as already said, the
primary goal is not to learn how to write a compiler: for an EPITA student,
learning C++, Design Patterns, and Object Oriented Design is much more
important.

Note, however, that implementing an industrial strength compiler in C++
makes a lot of sense9. Bjarne Stroustrup’s list of C++ Applications10 men-
tions Metrowerks (CodeWarrior), HP, Sun, Intel, M$ as examples.

Understanding Computers
Too many students still have a very fuzzy mental picture of what is a com-
puter, and how a program runs. Studying compilers helps understanding how
it works, and therefore how to perform a good job. Although most students
will never be asked to write a single line of assembly during their whole lives,
knowing assembly is also of help. See [Bjarne Stroustrup], page 114, for in-
stance, says:

Q: What is your opinion, is knowing assembly language useful for
programmers nowadays?

BS: It is useful to understand how machines work and knowing
assembler is almost essential for that.

English English is the language for this project, starting with this very document,
written by a French person, for French students. You cannot be a good com-
puter scientist with absolutely no fluency in English. The following quote is
from Bjarne Stroustrup, who is danish ([The Design and Evolution of C++],
page 120):

English has an important role as a common language for pro-
grammers, and I suspect that it would be unwise to abandon that
without serious consideration.

6 http://www.haskell.org.
7 http://caml.inria.fr/index.html.
8 http://www.stratego-language.org.
9 The fact that the compiler compiles C++ is virtually irrelevant.

10 http://www.research.att.com/~bs/applications.html.

Chapter 1: Introduction 5

Any attempt to break the importance of English is wrong. For instance, do
not translate this document nor any other. Ask support to the Yakas, or to the
English team. By the past, some oral and written examinations were made in
English. It may well be back some day. Some books will help you to improve
your English, see [The Elements of Style], page 120.

Compiler The project aims at the implementation of a compiler, but this is a minor
issue. The field of compilers is a wonder place where most of computer science
is concentrated, that’s why this topic is extremely convenient as long term
project. But it is not the major goal, the full list of all these items is.

The Tiger project is not unique in these regards, see [Cool: The Classroom Object-
Oriented Compiler], page 116, for instance, with many strikingly similar goals, and some
profound differences. See also [Making Compiler Design Relevant for Students who will
(Most Likely) Never Design a Compiler], page 119, for an explanation of why compilation
techniques have a broader influence than they seem.

1.3 What the Tiger Project is not

This section could have been named “What Akim did not say”, or “Common misinterpre-
tations”.

The first and foremost misinterpretation would be “Akim says C sucks and is useless”.
Wrong. C sucks, definitely, but today C is probably the first employer of programmers
in the world, so let’s face it: C is mandatory in your education. The fact that C++ is
studied afterward does not mean that learning C is a loss of time, it means that since C is
basically a subset of C++ it makes sense to learn it first, it also means that (let it be only
because it is a superset) C++ provides additional services so it is often a better choice, but
even more often you don’t have the choice.

C++ is becoming a common requirement for programmers, so you also have to learn
it, although given its roots, it naturally suffers from many defects. But it’s an industrial
standard, so learn it, and learn it well: know its strengths and weaknesses.

And by the way, of course C++ sucks++.
Another common rumor in EPITA has it that “C/Unix programming does not deserve

attention after the first period”. Wrong again. First of all its words are wrong: it is a
legacy belief that C and Unix require each other: you can implement advanced system
features using other languages than C (starting with C++, of course), and of course C
can be used for other tasks than just system programming. Note for instance that Bjarne
Stroustrup’s list of C++ Applications11 mentions that the following ones are written in
C++:

Apple OS X is written in a mix of language, but a few important parts
are C++. The two most interesting are:
− Finder
− IOKit device drivers. (IOKit is the only place where we use

C++ in the kernel, though.)[...]

Ericsson
− TelORB - Distributed operating system with object oriented

Microsoft Literally everything at Microsoft is built using various flavors of
Visual C++ - mostly 6.0 and 7.0 but we do have a few holdouts still
using 5.0 :-(and some products like Windows XP use more recent

11 http://www.research.att.com/~bs/applications.html.

6 The Tiger Compiler Project Assignment

builds of the compiler. The list would include major products
like:
− Windows XP
− Windows NT (NT4 and 2000)
− Windows 9x (95, 98, Me)
− Microsoft Office (Word, Excel, Access, PowerPoint, Out-

look)[...]

CDE The CDE desktop (the standard desktop on many UNIX systems)
is written in C++.

Know C. Learn when it is adequate, and why you need it.
Know C++. Learn when it is adequate, and why you need it.
Know other languages. Learn when they are adequate, and why you need them.
And then, if you are asked to choose, make an educated choice. If there is no choice to

be made, just deal with Real Life.

1.4 History

The Tiger Compiler Project evolves every year, so as to improve its infrastructure, to
demonstrate more instructional material and so forth. This section tries to keep a list of
these changes, together with the most constructive criticisms from students (or ourselves).

If you have information, including criticisms, that should be mentioned here, please
send it to me.

The years correspond to the class, e.g., Tiger 2005 refers to EPITA class 2005, i.e., the
project ran from January 2003 to September 2003.

1.4.1 Fair Criticism

Before diving into the history of the Tiger Compiler Project in EPITA, a whole project
in itself for ourselves, with experimental tries and failures, it might be good to review
some constraints that can explain why things are the way they are. Understanding these
constraints will make it easier to criticize actual flaws, instead of focusing on issues that
are mandated by other factors.

Bear in mind that Tiger is an instructional project, the purpose of which is detailed
above, see Section 1.2 [Why the Tiger Project], page 3. Because the input is a stream
of students with virtually no knowledge whatsoever in C++, and our target is a stream
of students with good fluency in many constructs and understanding of complex matters,
we have to gradually transform them via intermediate forms with increasing skills. In
particular this means that by the end of the project, evolved techniques can and should be
used, but at the beginning only introductory knowledge should be needed. As an example
of a consequence, we cannot have a nice and high-tech AST.

Because the insight of compilers is not the primary goal, when a choice is to be made
between (i) more interesting work on compiler internals with little C++ novelty, and (ii)
providing most of this work and focusing on something else, then we are most likely to
select the second option. This means that the Tiger Project is doomed to be a low-tech
featureless compiler, with no call graph, no default optimization, no debugging support
(outputting comments in the assembly showing the original code), no bells, no whistles, no
etc. This also implies that sometimes interested students will feel we “stole” the pleasure
to write nice pieces of code from them; understand that we actually provided code to the
other students. However, you are free to rewrite everything if you wish.

Chapter 1: Introduction 7

1.4.2 Tiger 2002

This is not standard C++
We used to run the standard compiler from NetBSD: egcs 1.1.2. This was
not standard C++ (e.g., we used to include ‘<iostream.h>’, we could use
members of the std name space unqualified etc.). In addition, we were using
hash_map which is an SGI extension that is not available in standard C++. It
was therefore decided to upgrade the compiler in 2003, and to upgrade the
programming style.

Wrapping a tarball is impossible
During the first edition of the Tiger Compiler project, students had to write
their own Makefiles — after all, knowing Make is considered mandatory for
an Epitean. This had the most dramatic effects, with a wide range of creative
and imaginative ways to have your project fail; for instance:
− Forget to ship some files
− Ship object files, or even the executable itself. Needless to say that

NetBSD executables did not run properly on my GNU/Linux box.
− Ship temporary files (‘*~’, ‘#*#’, etc.).
− Ship core dumps (“Wow! This is the heck of an heavy tarball...”).
− Ship tarballs in the tarball.
− Ship tarballs of other groups in the tarball. It was then hard to demon-

strate they were not cheating :)
− Have incorrect dependencies that cause magic failures.
− Have completely lost confidence in dependencies and Make, and therefore

define the all target as first running clean and then the actual build.

As a result I grew tired of fixing the tarballs, and in order to have a robust,
efficient (albeit some piece of pain in the neck sometimes) distributions12 we
moved to using Automake, and hence Autoconf.
There are reasons not to be happy with it, agreed. But there are many more
reasons to be sad without it. So Autoconf and Automake are here to stay.
Note, however, that you are free to use another system if you wish. Just obey
to the standard package interface (see Section 2.4 [Delivery], page 25).

The SemantVisitor is a nightmare to maintain
The SemantVisitor, which performs both the type checking and the transla-
tion to intermediate code, was near to impossible to deliver in pieces to the
students: because type checking and translation were so much intertwined,
it was not possible to deliver as a first step the type checking machinery
template, and then the translation pieces. Students had to fight with non ap-
plicable patches. This was fixed in Tiger 2003 by splitting the SemantVisitor
into TypeVisitor and TranslationVisitor. The negative impact, of course,
is a performance loss.

Akim is tired during the student defenses
Seeing every single group for each compiler stage is a nightmare. Sometimes
I was not enough aware.

1.4.3 Tiger 2003

During this year, I was helped by:

12 See the shift of language? From tarball to distribution.

8 The Tiger Compiler Project Assignment

Comaintainers
Alexandre Duret-Lutz, Thierry Géraud.

Delivery date were:

Stage Delivery
T1 Monday, December 18th 2000 at

noon
T2 Friday, February 23th 2001 at noon
T3 Friday, March 30th 2001 at noon
T4 Tuesday, June 12th 2001 at noon
T5 Monday, September 17th 2001 at

noon
Some groups have reached T6.
Criticisms include:

The C++ compiler is broken
I had to install an updated version of the C++ compiler since the system team
did not want non standard software. Unfortunately, NetBSD turned out to
be seriously incompatible with this version of the C++ compiler (its ‘crt1.o’
dumped core on the standard stream constructors, way before calling main).
We had to revert to using the bad native C++ compiler.
It is to be noted that some funny guy once replaced the g++ executable from
my account into ‘rm -rf ~’. Some students and myself have been bitten. The
funny thing is that this is when the system administration realized the teacher
accounts were not backed up.
Fortunately, since that time, we have decent compilers made available by
students, and the Tiger Compiler is now written in strictly standard C++.

The ast is rigid
Because the members of the ast objects were references, it was impossible to
implement any change on it: simplifications, optimization etc. This is fixed in
Tiger 2004 where all the members are now pointers, but the interface to these
classes still uses references.

Akim is even more tired during the student defenses
Just as the previous year, see Section 1.4.2 [Tiger 2002], page 7, but with
more groups and more stages. But now there are enough competent students
to create a group of assistants, the Yakas, to help the students, and to share
the load of defenses.

Upgrading is not easy
Only tarballs were delivered, making upgrades delicate, error prone, and time
consuming. The systematic use of patches between tarballs since the 2004
edition solves this issue.

Upgraded tarballs don’t compile
Students would like at least to be able to compile a tarball with its holes. To
this end, much of the removed code is now inside functions, leaving just what
it needed to satisfy the prototype. Unfortunately this is not very easy to do,
and conflicts with the next complaint:

Filling holes is not interesting
In order to scale down the amount of code students have to write, in order
to have them focus on instructional material, more parts are delivered almost

Chapter 1: Introduction 9

complete except for a few interesting places. Unfortunately, some students
decided to answer the question completely mechanically (copy, paste, tweak
until it compiles), instead of focusing of completing their own education. There
is not much I can do about this. Some parts will therefore grow; typically some
files will be left empty instead of having most of the skeleton ready (prototypes
and so forth). This means more work, but more interesting I guess. But it
conflicts with the previous item...

1.4.4 Tiger 2004

During this year, I was helped by:

Comaintainers
Alexandre Duret-Lutz, Raphaël Poss, Robert Anisko, Yann Régis-Gianas,

Assistants Arnaud Dumont, Pascal Guedon, Samuel Plessis-Fraissard,

Students Cédric Bail, Sébastien Broussaud (Darks Bob), Stéphane Molina (Kain),
William Fink.

Delivery date were:

Stage Delivery
T2 Tuesday, March 4th 2002 at noon
T3 Friday, March 15th 2002 at noon
T4 Friday, April 12th 2002 at noon
T5 Friday, June 14th 2002, at noon
T6 Monday, July 15th 2002 at noon

Criticisms include:

The driver is not maintainable
The compiler driver was a nightmare to maintain, extend etc. when delivering
additional modules etc. This was fixed in 2005 by the introduction of the Task
model.

No sane documentation
This was addressed by the use of Doxygen in 2005.

No UML documentation
The solution is yet to be found.

Too many visitors
It seems that some students think there were too many visitors to implement.
I do not subscribe to this view (after all, why not complain that “there are too
many programs to implement”, or, in a more C++ vocabulary “there are too
many classes to implement”), nevertheless in Tiger 2005 this was addressed
by making the EscapeVisitor “optional” (actually it became a rush).

Too many memory leaks
The only memory properly reclaimed is that of the ast. No better answer
for the rest of the compiler. This is the most severe flaw in this project,
and definitely the worst thing to remember of: what we showed is not what
student should learn to do. Note too, that even though using a garbage
collector is tempting and well suited for our tasks, its pedagogical content
is less interesting: students should be taught how to properly manage the
memory.

10 The Tiger Compiler Project Assignment

Upgraded tarballs don’t compile
Filling holes is not interesting

Cannot be solved, see Section 1.4.3 [Tiger 2003], page 7.

Ending on T6 is frustrating
Several students were frustrated by the fact we had to stop at T6: the reference
compiler did not have any back-end. Continuing onto T7 was offered to several
groups, and some of them actually finished the compiler. We took there work,
adjusted it, and it became the base of the reference compiler of 2005. The
most significant effort was made by Daniel Gazard.

Double delivery is intractable
Students were allowed to deliver twice their project — with a small penalty —
if they failed to meet the so-called “first delivery deadline”, or if they wanted
to improve their score. But it was impossible to organize, and led to too
much sloppiness from some students. These problems were addressed with
the introduction of “uploads” in Tiger 2005.

1.4.5 Tiger 2005

A lot of the following material is the result of discussion with several people, including,
but not limited to13:

Comaintainers
Benôıt Perrot, Raphaël Poss,

Assistants Alexis Brouard, Sébastien Broussaud (Darks Bob), Stéphane Molina (Kain),
William Fink,

Students Claire Calméjane, David Mancel, Fabrice Hesling, Michel Loiseleur.

I here thank all the people who participated to this edition of this project. It has been
a wonderful vintage, thanks to the students, the assistants, and the members of the lrde.

Deliveries were:

Stage Delivery
T0 Friday, January 24th 2003 at noon
T1 Friday, February 14th 2003 at noon
T2 Friday, March 14th 2003 at noon
T4 Friday, April 25th 2003 at noon
T3 Rush from Saturday, May 24th at 18:00 to Sunday at noon
T56 Friday, June 20th 2003, at noon
T7 Friday, July 4th 2003 at noon
T78 Friday, July 18th 2003 at noon
T9 Monday, September 8th 2003 at noon

Criticisms about Tiger 2005 include:

Too many memory leaks
See Section 1.4.4 [Tiger 2004], page 9. This is the most significant failure
of Tiger as an instructional project: we ought to demonstrate the proper
memory management in big project, and instead we demonstrate laziness.
Please, criticize us, denunciate us, but do not reproduce the same errors.
The factors that had pushed to a weak memory management is mainly a lack
of coordination between developers: we should have written more things. So

13 Please, let me know who I forgot!

Chapter 1: Introduction 11

don’t do as we did, and make sure you define the memory management policy
for each module, and write it.
The 2006 edition pays strict attention to memory allocation.

Too long to compile
Too much code was in ‘*.hh’ files. Since then the policy wrt file contents was
defined (see Section 2.3.5 [File Conventions], page 21), and in Tiger 2006 was
adjusted to obey these conventions. Unfortunately, although the improvement
was significant, it was not measured precisely.
The interfaces between modules have also been cleaned to avoid excessive
inter dependencies. Also, when possible, opaque types are used to avoid ad-
ditional includes. Each module exports forward declarations in a ‘fwd.hh’ file
to promote this. For instance, ‘ast/ast-tasks.hh’ today includes:

// Forward declarations of ast:: items.
#include "ast/fwd.hh"
// ...

/// Global root node of abstract syntax tree.
extern ast::Exp* the_program;

// ...

where it used to include all the ast headers to define exactly the type ast::Exp.

Upgraded tarballs don’t compile
Filling holes is not interesting

Cannot be solved, see Section 1.4.3 [Tiger 2003], page 7.

No written conventions
Since its inception, the Tiger Compiler Project lacked this very section (see
Section 1.4 [History], page 6) and that dedicated to coding style (see Sec-
tion 2.3 [Coding Style], page 15) until the debriefing of 2005. As a result,
some students or even so co-developers of our own tc reproduced errors of the
past, changed something for lack of understanding, slightly broke the homo-
geneity of the coding style etc. Do not make the same mistake: write down
your policy.

The ast is too poor
One would like to insert annotations in the ast, say whether a variable is
escaping (to know whether it cannot be in a register, see Section 4.5 [T3],
page 53, and Section 4.7 [T5], page 60), or whether the left hand side of an
assignment in Void (in which case the translation must not issue an actual
assignment), or whether ‘a < b’ is about strings (in which case the translation
will issue a hidden call to strcmp), or the type of a variable (needed when
implementing object oriented Tiger), etc., etc.
As you can see, the list is virtually infinite. So we would need an extensible
system of annotation of the ast. As of September 2003 no solution has been
chosen. But we must be cautious not to complicate T2 too much (it is already
a very steep step).

People don’t learn enough C++
It seems that the goal of learning object oriented programming and C++ is
sometimes hidden behind the difficult understanding of the Tiger compiler
itself. Sometimes students just fill the holes.
To avoid this:
− The holes will be bigger (conflicting with the ease to compile something,

of course) to avoid any mechanical answering.

12 The Tiger Compiler Project Assignment

− Each stage is now labeled with its "goals" (e.g., Section 4.4.1 [T2 Goals],
page 47) that should help students to understand what is expected from
them, and examiners to ask the appropriate questions.

The computation of the escapes is too hard
The computation of the escapes is too easy

If you understood what it means that a variable escapes, then the implemen-
tation is so straightforward that it’s almost boring. If you didn’t understand
it, you’re dead. Because the understanding of escapes needs a good under-
standing of the stack management (explained more in details way afterward,
during T5), many students are deadly lost.
We are considering splitting T5 into two: T5- which would be limited to
programs without escaping variables, and T5+ with escaping variables and
the computation of the escapes.

The static-link optimization pass is improperly documented
Todo.

The use of references is confusing
We used to utilize references instead of pointers when the arity of the relation
is one; in other words, we used pointers iff 0 was a valid value, and references
otherwise. This is nice and clean, but unfortunately it caused great confusion
amongst students (who were puzzled before ‘*new’, and, worse yet, ended
believing that’s the only way to instantiate objects, even automatic!), and also
confused some of the maintainers (for whom a reference does not propagate
the responsibility wrt memory allocation/deallocation).
Since Tiger 2006, the coding style enforces a more conventional style.

Not enough freedom
The fact that the modelisation is already settled, together with the extensive
skeletons, results in too tight a space for a programmer to experiment alter-
natives. We try to break these bounds for those who want by providing a
generic interface: if you comply with it, you may interchange with your full
re-implementation. We also (now explicitly) allow the use of a different tool
set (see Section 2.3.2 [Use of Foreign Features], page 15). Hints at possible
extensions are provided, and finally, alternative implementation are suggested
for each stage, for instance see Section 4.4.6 [T2 Improvements], page 53.

1.4.6 Tiger 2006

Deliveries were:

Stage Delivery
T0 Wednesday, February 4th 2004 at noon
T1 Sunday, February 8th 2004 at noon
T2 Sunday, March 7th 2004 at noon
T3 Sunday, March 21th 2004

Chapter 2: Instructions 13

2 Instructions

2.1 Interactions

Bare in mind that if you are writing, it is to be read, so pay attention to your reader.

The right place
Using mails is almost always wrong: first ask around you, then try to find the
assistants in their lab, and finally post into epita.cours.compile. You need
to have a very good reason to send a message to the assistants or to Akim, as
it usually annoys us, what is not in your interest.
The news group epita.cours.compile is dedicated to the compilation lec-
ture, the Tiger project, and attached matters (e.g., assignments in Tiger it-
self). Any other material is off topic.

A meaningful title
Find a meaningful subject.

Don’t do that Do this
Problem in T1 Cannot generate location.hh
make check make check fails on test-ref

A legal content
Pieces of critical code (e.g., precedence section in the parser, or the string
handling in the scanner, or whatever you are supposed to find by yourself)
are not to be published.
This includes the test cases. While posting a simple test case is tolerated,
sending many of them, or simply one that addresses a specific common failure
(e.g., some obscure cases for escapes) is strictly forbidden.

A complete content
If you experience a problem that you fail to solve, make a report as complete
as possible: include pieces of code (unless the code is critical and shall not be
publicized) and the full error message from the compiler/tool.

A legible content
Use French or English. Epitean is definitely not a language.

A pertinent content
Trolls are “exvited” from here, invite them elsewhere.

2.2 Groups

Starting with T1, assignments are to be done by groups of four.
The first cause of failures to the Tiger project is human problems within the groups. I

cannot stress too much the importance of constituting a good group of four people! The
Tiger project starts way before your first line of code: it begins with the selection of your
partners.

Here are a few tips, collected wisdom from the previous failures.

You work for yourself, not for grades
Yes, I know, when you’re a student grades are what matters. But close your
eyes, make a step backwards, and look at yourself for a minute, from behind.
You see a student, some sort of a larva, which will turn into a grownup. The
larva stage lasts 3 to 4 years, while the hard working social insect is there

14 The Tiger Compiler Project Assignment

for 40+ years: a 5% ratio without the internships. Three minutes out of an
hour. These years are made to prepare you to the rest of your life, to provide
you with what it takes to enjoy a life long success in jobs. So don’t waste
these three minutes by just cheating, paying little attention to what you are
given, or by just waiting for this to end. The opportunity to learn is a unique
moment in life: treasure it, even if it hurts, if it’s hard, because you may well
regret these three minutes for much of your life.

Start recruiting early
Making a team is not easy. Take the time to know the people, talk with them,
and prepare your group way before beginning of the project. The whole P1 is
a testbed for you to find good partners.

Don’t recruit good lazy friends
If s/he’s lazy, you’ll have to scold her/him. If s/he’s the friends, that will be
hard. Plus it will be even harder to reveal the problems your group is having.

Recruit people you can depend on
Trust should be your first criterion.

Members should have similar programming skills
Weak programmers should run away from skill programmers

The worst “good idea” you could have is “I’m a poor programmer, I should
be in a group of skilled programmers: I will learn a lot from them”. By
experience, I can assure you that this is wrong. What actually happens is as
follows.

At the first stage, the leader assigns you a task. You try, and fail for weeks.
In the meanwhile, the other members teach you lots of facts, but (i) you can’t
memorize everything and end up saying “hum hum” without having under-
stood, and (ii) because they don’t understand you don’t understand, they are
often poor teachers. The day before the delivery, the leader does your assign-
ments, because saving the group is now what matters. You learned nothing, or
quite. Second stage: same beginning, you are left with your assignment, but
the other members are now bothered by your asking questions: why should
they answer, since you don’t understand what they say (remember: they are
poor teachers because they don’t understand your problems), and you don’t
seem to remember anything! The day before the delivery, they do your work.
From now on, they won’t even ask you for anything: “fixing” you is much
more time consuming than just doing it by themselves. Oral examinations
reveal you neither understand nor do anything, hence your grades are bad,
and you win another round of first year...

Take my advice: if you have difficulties with programming, be with other
people like you. Your chances are better together.

And don’t forget you are allowed to ask for assistance from other groups.

Don’t mix repeaters with first year students
Repeaters have a much better understanding of the project than they think:
they know its history, some parts of the code, etc. This will introduce a
difference of skills from the beginning, which will remain till the end. It will
result in the first year student having not participated enough to learn what
was to be learned. Three first year students with one repeater is OK, but a
different ratio is asking for troubles.

Chapter 2: Instructions 15

Don’t pick up old code
This item is especially intended to repeaters: you might be tempted to keep
the code from last year, believing this will spare you some work. It may not
be so. Indeed, every year the specifications and the provided code change,
sometimes with dramatic impact on the whole project. Struggling with an
old tarball to meet the new standard is a long, error prone, and uninteresting
work. You might spend more time trying to preserve your old code than what
is actually needed to implement the project from scratch. Not to mention that
of course the latter has a much stronger educational impact.

Diagnose and cure drifts
When a dysfunction appears, fix it, don’t let it grow. For instance, if a member
never works in spite of the warnings, don’t cover him: he will have the whole
group drown. It usually starts with one member making more work on Tiger,
less on the rest of the curriculum, and then he gets tired all the time, with bad
mood etc. Don’t walk that way: denunciate the problem, send ultimatums
to this person, and finally, warn the assistants you need to reconfigure your
group.

Reconfigure groups when needed
Members can leave a group for many reasons: dropped EPITA, dropped Tiger,
joined the LRDE or LSE or 3ie, etc. If your group is seriously unbalanced
(three skilled people is OK, otherwise be four), ask for a reconfiguration in
the news.

Tiger is a part of your curriculum
Tiger should neither be 0 nor 100% of your curriculum: find the balance. It
is not easy to find it, but that’s precisely one thing EPITA teaches: balancing
overloads.

2.3 Coding Style

This section could have been named “Strong and Weak Requirements”, as it includes not
only mandatory features from your compiler (memory management), but also advices and
tips. As the captain Barbossa would put it, “actually, it’s more of a guideline than a rule.”

2.3.1 No Draft Allowed

The code you deliver must be clean. In particular, when some code is provided, and you
have to fill in the blanks denoted by ‘FIXME: Some code has been deleted.’. Sometimes
you will have to write the code from scratch.

In any case, dead code and dead comments must be removed. You are free to leave
comments spotting places where you fixed a ‘FIXME:’, but never leave a fixed ‘FIXME:’ in
your code. Nor any irrelevant comment.

The official compiler for this project, is GNU C++ Compiler, 3.2 or higher (see Sec-
tion 5.4 [GCC], page 123).

2.3.2 Use of Foreign Features

If, and only if, you already have enough fluency in C++ to be willing to try something
wilder, then the following exception is made for you. Be warned: along the years the
Tiger project was polished to best fit the typical epitean learning curve, trying to escape
this curve is also taking a major risk. By the past, some students tried different approaches,
and ended with unmaintainable pieces of code.

If you and your group are sure you can afford some additional difficulty (for additional
benefits), then you may use the following extra tools. You have to warn the examiners

16 The Tiger Compiler Project Assignment

that you use these tools. You also have to take care of harnessing ‘configure.ac’ to make
sure that what you need is available on the testing environment. Be also aware that you
are likely to obtain less help from us if you use tools that we don’t master: You are on
your own, but, hey!, that’s what you’re looking for, ain’t it?

The Loki Library
As is provided by the unstable Debian package loki. See [Modern C++ De-
sign], page 119, for more information about Loki.

The Boost Library
As provided by the unstable Debian packages libboost-*. See [Boost.org],
page 115.

Any Other Parser or Scanner Generator
If you dislike Flex and/or Bison but you already know how to use them, then
you are welcome to use other technologies.

If you think about something not listed here, please send me your proposal; acceptance
is required to use them.

2.3.3 Use of C++ Features

[Rule]Hunt Leaks
Use every possible means to release the resources you consume, especially memory.
Valgrind can be a nice assistant to track memory leaks (see Section 5.5 [Valgrind],
page 123). To demonstrate different memory management styles, you are invited to
use different features in the course of your development: proper use of destructors for
the ast, use of a factory for Symbol, Temp etc., use of std::auto_ptr starting with
the Translate module, and finally use of reference counting via smart pointers for the
intermediate representation.

[Rule]Hunt code duplication
Code duplication is your enemy: the code is less exercised (if there are two routines
instead of one, then the code is run half of the time only), and whenever an update is
required, you are likely to forget to update all the other places. You should strive to
prevent code duplication to sneak into your code. Every C++ feature is good to prevent
code duplication: inheritance, templates etc.

[Rule]Prefer dynamic_cast of references
Of the following two snippets, the first is preferred:

const IntExp &ie = dynamic_cast <const IntExp &> (exp);
int val = ie.value_get ();

const IntExp *iep = dynamic_cast <const IntExp *> (&exp);
assert (iep);
int val = iep->value_get ();

While upon type mismatch the second aborts, the first throws a std::bad_cast: they
are equally safe.

[Rule]Use virtual methods, not type cases
Do not use type cases: if you want to dispatch by hand to different routines depending
upon the actual class of objects, you probably have missed some use of virtual functions.
For instance, instead of

bool
comparable_to (const Type &lhs, const Type &rhs)
{

Chapter 2: Instructions 17

if (&lhs == &rhs)
return true;

if (dynamic_cast <Record *> (&lhs))
if (dynamic_cast <Nil *> (&rhs))

return true;
if (dynamic_cast <Record *> (&rhs))
if (dynamic_cast <Nil *> (&lhs))

return true;
return false;

}

write

bool
Record::comparable_to (const Type &rhs)
{

return &rhs == this || dynamic_cast <Nil *> (&rhs);
}

bool
Nil::comparable_to (const Type &rhs)
{

return &rhs == this || dynamic_cast <Record *> (&rhs);
}

bool
comparable_to (const Type &lhs, const Type &rhs)
{

return lhs->comparable_to (rhs);
}

[Rule]Use dynamic_cast for type cases
Did you read the previous item, “Use virtual methods, not type cases”? If not, do it
now.

If you really need to write type dispatching, carefully chose between typeid and
dynamic_cast. In the case of tc, where we sometimes need to down cast an ob-
ject or to check its membership to a specific subclass, we don’t need typeid, so use
dynamic_cast only.

They address different needs:

dynamic_cast for (sub-)membership, typeid for exact type
The semantics of testing a dynamic_cast vs. a comparison of a typeid are
not the same. For instance, think of a class A with subclass B with subclass
C; then compare the meaning of the following two snippets:

// Is ‘a’ containing an object of exactly the type B?
bool test1 = typeid (a) == typeid (B);
// Is ‘a’ containing an object of type B, or a subclass of B?
bool test2 = dynamic_cast <B*> (&a);

Non polymorphic entities
typeid works on hierarchies without vtable, or even builtin types (int
etc.). dynamic_cast requires a dynamic hierarchy. Note that the ability
of typeid on static hierarchies can be a pitfall; for instance consider the
following code, courtesy from Alexandre Duret-Lutz:

18 The Tiger Compiler Project Assignment

#include <iostream>

struct A
{

// virtual ~A () {};
};

struct B: A
{
};

int
main ()
{

A* a = new B;
std::cout << typeid (*a).name () << std::endl;

}

it will “answer” that the typeid of ‘*a’ is A(!). Using dynamic_cast here
will simply not compile1. Note that if you provide A with a virtual methods
table (e.g., uncomment the destructor), then the typeid of ‘*a’ is B.

Compromising the future for the sake of speed
Because the job performed by dynamic_cast is more complex, it is also
significantly slower that typeid, but hey! better slow and safe than fast
and furious.

You might consider that today, a strict equality test of the object’s class is
enough and faster, but can you guarantee there will never be new subclasses
in the future? If there will be, code based dynamic_cast will probably
behave as expected, while code based typeid will probably not.

More material can be found the chapter 9 of see [Thinking in C++ Volume 2], page 121:
Run-time type identification2.

[Rule]Use const references in arguments to save copies (EC22)
We use const references in arguments (and return value) where otherwise a passing
by value would have been adequate, but expensive because of the copy. As a typical
example, accessors ought to return members by const reference:

const Exp &
OpExp::lhs_get () const
{

return lhs_;
}

Small entities can be passed/returned by value.

[Rule]Use references for aliasing
When you need to have several names for a single entity (this is the definition of
aliasing), use references to create aliases. Note that passing an argument to a function
for side effects is a form of aliasing. For instance:

1 For instance, g++ reports an ‘error: cannot dynamic_cast ‘a’ (of type ‘struct A*’) to type

‘struct B*’ (source type is not polymorphic)’.
2 http://www.cs.virginia.edu/~th8k/ticpp/vol2/html/Chap09.htm.

Chapter 2: Instructions 19

template <typename T>
void
swap (T &b, T &b)
{

T c = a;
a = b;
b = c;

}

[Rule]Use pointers when passing an object together with its
management

When an object is created, or when an object is given (i.e., when its owner leaves the
management of the object’s memory to another entity), use pointers. Note that new
creates an object, returns it together with the responsibility to call delete: it uses
pointers. For instance, note the three pointers below, one for the return value, and two
for the arguments:

OpExp *
opexp_builder (OpExp::Oper oper, Exp *lhs, Exp *rhs)
{

return new OpExp (oper, lhs, rhs);
}

[Rule]Name your classes LikeThis
Class should be named in mixed case; for instance Exp, StringExp, TempMap,
InterferenceGraph etc. This applies to class templates. See [CStupidClassName],
page 116.

[Rule]Name public members like_this
No upper case letters, and words are separated by an underscore.

[Rule]Name private/protected members like_this_
It is extremely convenient to have a special convention for private and protected mem-
bers: you make it clear to the reader, you avoid gratuitous warnings about conflicts
in constructors, you leave the “beautiful” name available for public members etc. We
used to write _like_this, but such words are likely to be used by your compiler or
standard library3.
For instance, write:

class IntPair
{
public:

IntPair (int first, int second) :
first_ (first), second_ (second)
{
}

protected:
int first_, second_;

}

See [CStupidClassName], page 116.

[Rule]Name your typedef foo_type
We declaring a typedef, name the type foo_type (where foo is obviously the part that
changes). For instance:

3 Actually, it is ‘_[A-Z]’ which is reserved.

20 The Tiger Compiler Project Assignment

typedef std::map< const Symbol, Entry_T > map_type;
typedef std::list< map_type > symtab_type;

We used to use foo_t, unfortunately this pseudo name space is reserved by posix.

[Rule]Name the parent class super_type
It is often handy to define the type of “the” super class (when there is a single one);
use the name super_type in that case. For instance most Visitors of the ast start with:

class TypeVisitor : public ast::DefaultVisitor<ast::non_const_kind>
{
typedef ast::DefaultVisitor<ast::non_const_kind> super_type;
using super_type::visit;

// ...

2.3.4 Use of STL

[Rule]Specify comparison types for associative containers of
pointers (ES20)

For instance, instead of declaring
typedef set::set<const Temp *> temp_set_t;

declare
/** Object function to compare two Temp*. */
struct temp_compare :

public binary_function<const Temp *, const Temp*, bool>
{

bool
operator() (const Temp *s1, const Temp *s2) const
{

return *s1 < *s2;
}

};

typedef set::set<const Temp *, temp_compare> temp_set_t;

Scott Meyers mentions several good reasons, but leaves implicit a very important one:
if you don’t, since the outputs will be based on the order of the pointers in memory,
and since (i) this order may change if your allocation pattern changes and (ii) this
order depends of the environment you run, then you cannot compare outputs (including
traces). Needless to say that, at least during development, this is a serious misfeature.

[Rule]Make functor classes adaptable (ES40)
When you write unary or binary predicates to use in interaction with stl, make sure to
derive from std::unary_function or std::binary_function. For instance:

/// Object function to compare two Temp*.
struct temp_ptr_less

: public std::binary_function <const Temp*, const Temp*, bool>
{

bool operator() (const Temp *s1, const Temp *s2) const;
};

[Rule]Prefer algorithm call to hand-written loops (ES43)
Using for_each, find, find_if, transform etc. is preferred over explicit loops. This
is for (i) efficiency, (ii) correctness, and (iii) maintainability. Knowing these algorithms
is mandatory for who claims to be a C++ programmer.

Chapter 2: Instructions 21

[Rule]Prefer member functions to algorithms with the same names
(ES44)

For instance, prefer ‘my_set.find (my_item)’ to ‘find (my_item, my_set.begin (),
my_set.end ())’. This is for efficiency: the former has a logarithmic complexity, ver-
sus... linear for the latter! You may find the Item 44 of Effective STL4 on the Internet.

2.3.5 File Conventions

There are some strict conventions to obey wrt the files and their contents.

[Rule]Declarations in ‘*.hh’
The ‘*.hh’ should contain only declarations, i.e., prototypes, extern for variables etc.
Inlined short methods are accepted when there are few of them, otherwise, create an
‘*.hxx’ file, and include it at the end of this header file. The documentation should be
here too.

There is no good reason for huge objects to be defined here.

As much as possible, avoid including useless headers (GotW0075, GotW0346):

− when detailed knowledge of a class is not needed, instead of
#include "foo.hh"

write
// Fwd decl.
class Foo;

− if you need output stream, then include ‘ostream’, not ‘iostream’. Actually, if
you merely need to declare the existence of streams, you might want to include
‘iosfwd’.

[Rule]Inlined definitions in ‘*.hxx’
If there are definitions that should be loaded in different places (definitions of templates,
inline functions etc.), then declare and document them in the ‘*.hh’ file, and implement
them in the ‘*.hxx’ file. Note that this file should first include its corresponding ‘*.hh’
file, the latter including itself this file. It is indeed surprising, but the header guards
make this work properly.

[Rule]Definitions of functions and variables in ‘*.cc’
Big objects should be defined in the ‘*.cc’ file corresponding to the declara-
tion/documentation file ‘*.hh’.

There are less clear cut cases between ‘*.hxx’ and ‘*.cc’. For instance short but
time consuming functions should stay in the ‘*.cc’ files, since inlining is not expected
to speed up significantly. As another example features that require massive header
inclusions are better defined in the ‘*.cc’ file.

As a concrete example, consider the accept methods of the AST classes. They are
short enough to be eligible for an ‘*.hxx’ file:

void LetExp::accept (Visitor& v)
{

v (*this);
}

4 http://www.informit.com/isapi/product_id~%7BEB0D6EE6-6DDC-48B4-A730-

19EE22B8B486%7D/content/index.asp.
5 http://www.gotw.ca/gotw/007.htm.
6 http://www.gotw.ca/gotw/034.htm.

22 The Tiger Compiler Project Assignment

We will leave them in the ‘*.cc’ file though, since this way only the ‘*.cc’ file needs
to load ‘ast/visitor.hh’; the ‘*.hh’ is kept short, both directly (its contents) and
indirectly (its includes).

[Rule]‘lib*.hh’ and ‘lib*.cc’ are pure
There should be only pure functions in the interface of a module. That means that the
functions in these files should not depend upon globals, nor have side effects of global
objects. Of course no global variable can be defined here either.

[Rule]‘fwd.hh’ exports forward declarations
Dependencies can be a major problem during big project developments. It is not
acceptable to “recompile the world” when a single file changes. To fight this problem,
you are encouraged to use ‘fwd.hh’ files that contain simple forward declarations. These
forward files should be included by the ‘*.hh’ instead of more complete headers.
The expected benefit is manifold:
− A forward declaration is much shorter.
− Usually actual definitions rely on other classes, so other ‘#include’s etc. Forward

declarations need nothing.
− While it is not uncommon to change the interface of a class, changing its name is

infrequent.

Consider for example ‘ast/visitor.hh’, which is included directly or indirectly by
many other files. Since it needs a declaration of each AST node one could be tempted
to use ‘ast/all.hh’ which includes virtually all the headers of the ast module. Hence
all the files including ‘ast/visitor.hh’ will bring in the whole ast module, where the
much shorter and much simpler ‘ast/fwd.hh’ would suffice.
Of course, usually the ‘*.cc’ files need actual definitions.

[Rule]‘*-tasks.hh’ and ‘*-tasks.cc’ are impure
Tasks, as designed currently, are the place for side effects. That’s where globals such
as the current ast, the current assembly program, etc., are defined and modified.

2.3.6 Matters of Style

The following items are more a matter of style than the others. Nevertheless, you are
asked to follow this style.

[Rule]Order class members by visibility first
When declaring a class, start with public members, then protected, and last private
members. Inside these groups, you are invited to group by category, i.e., methods,
types, and members that are related should be grouped together. The motivation is
that private members should not even be visible in the class declaration (but of course,
it is mandatory that they be there for the compiler), and therefore they should be
“hidden” from the reader.
This is an example of what should not be done:

class Foo
{
public:

Foo (std::string, int);
virtual ~Foo ();

private:
typedef std::string string_type;

Chapter 2: Instructions 23

public:
std::string bar_get () const;
void bar_set (std::string);

private:
string_type bar_;

public:
int baz_get () const;
void baz_set (int);

private:
int baz_;

}

rather, write:

class Foo
{
public:

Foo (std::string, int);
virtual ~Foo ();

std::string bar_get () const;
void bar_set (std::string);

int baz_get () const;
void baz_set (int);

private:
typedef std::string string_type;
string_type bar_;
int baz_;

}

and add useful Doxygen comments.

[Rule]Prefer Doxygen Documentation to plain comments
We use Doxygen (see Section 5.12 [Doxygen], page 128) to maintain the developer
documentation of the Tiger Compiler.

[Rule]Use the Imperative
Use the imperative when documenting, as if you were giving order to the function
or entity you are describing. When describing a function, there is no need to repeat
“function” in the documentation; the same applies obviously to any syntactic category.
For instance, instead of:

/// \brief Swap the reference with another.
/// The method swaps the two references and returns the first.
ref& swap (ref& other);

write:

/// \brief Swap the reference with another.
/// Swap the two references and return the first.
ref& swap (ref& other);

The same rules apply to writing ChangeLogs.

24 The Tiger Compiler Project Assignment

[Rule]Write Documentation in Doxygen
Documentation is a genuine part of programming, just as testing. The quality of this
documentation can change the grade.

[Rule]Use ‘\directive’
Prefer backslash (‘\’) to the commercial at (‘@’) to specify directives.

[Rule]Prefer C Comments for Long Comments
Prefer C comments (‘/** ... */’) to C++ comments (‘/// ...’). This is to ensure
consistency with the style we use.

[Rule]Prefer C++ Comments for One Line Comments
Because it is lighter, instead of

/** \brief Name of this program. */
extern const char *program_name;

prefer

/// Name of this program.
extern const char *program_name;

For instance, instead of

/* Construct an InterferenceGraph. */
InterferenceGraph (const std::string &name,

const assem::instrs_t& instrs, bool trace = false);

or

/** @brief Construct an InterferenceGraph.
** @param name its name, hopefully based on the function name
** @param instrs the code snippet to study
** @param trace trace flag
**/
InterferenceGraph (const std::string &name,

const assem::instrs_t& instrs, bool trace = false);

or

/// \brief Construct an InterferenceGraph.
/// \param name its name, hopefully based on the function name
/// \param instrs the code snippet to study
/// \param trace trace flag
InterferenceGraph (const std::string &name,

const assem::instrs_t& instrs, bool trace = false);

write

/** \brief Construct an InterferenceGraph.
\param name its name, hopefully based on the function name
\param instrs the code snippet to study
\param trace trace flag

*/
InterferenceGraph (const std::string &name,

const assem::instrs_t& instrs, bool trace = false);

Of course, Doxygen documentation is not appropriate everywhere.

[Rule]Use foo_get, not get_foo
Accessors have standardized names: foo_get and foo_set.

Chapter 2: Instructions 25

[Rule]Use ‘rebox.el’ to markup paragraphs
Often one wants to leave a clear markup to separate different matters. For declara-
tions, this is typically done using the Doxygen ‘\name ... \{ ... \}’ sequence; for
implementation it is advised to use ‘rebox.el’ (provided in ‘config/’) to build them.
Once installed (read it for instructions), write a simple comment such as:

// Comments end with a period.

then move your cursor into this comment and press ‘C-u 2 2 3 M-q’ to get:
/*-----------------------------.
| Comments end with a period. |
‘-----------------------------*/

[Rule]Use print as a member function returning a stream
You should always have a means to print a class instance, at least to ease debugging.
Use the regular operator<< for standalone printing functions, but print as a member
function. Use this kind of prototype:

std::ostream& Class::print (std::ostream& ostr [, ...]) const

where the ellipsis denote optional additional arguments. Note that print returns the
stream.

2.4 Delivery

Each group must provide a tarball, made via ‘make distcheck’. All the information about
the delivery per se is given on the Yaka’s Delivery Page7.

If bardec_f is the head of your group, the tarball must be ‘bardec_f-tc-n.tar.bz2’
where n is the number of the “release” (see Section 5.3.1 [Package Name and Version],
page 122). The following commands must work properly:

$ bunzip2 -cd bardec_f-tc-n.tar.bz2 | tar xvf -

$ cd bardec_f-tc-n

$ export CC=gcc-3.2

$ export CXX=g++-3.2
$./configure

$ make

$ cd src

$./tc /tmp/test.tig

$ cd ..

$ make distcheck

For more information on the tools, see Section 5.3 [The GNU Build System], page 121,
Section 5.4 [GCC], page 123.

Your tarball must be done via ‘make distcheck’ (see Section 5.3.3 [Making a Tarball],
page 122). Any tarball which is not built thanks to ‘make distcheck’ (this is easy to see:
they include files we don’t want, and don’t contain some files we need...) will be penalized
with at least ‘### tarball_not_clean’.

2.5 Evaluation

Some stages are evaluated only by a program, and others are evaluated both by humans,
and a program.

7 http://etudiant.epita.fr:8000/~yaka/doc/rendus.html.

26 The Tiger Compiler Project Assignment

2.5.1 Automated Evaluation

Each stage of the compiler will be evaluated by an automatic corrector. As soon as the tar-
ball are delivered, the logs are available on ‘http://www.lrde.epita.fr/~akim/compil’,
in the directory corresponding to your class and stage. For instance, 2004 students ought
to read ‘http://www.lrde.epita.fr/~akim/compil/2004/4/bardec_f-tc-4.log’.

We stress that automated evaluation enforces the requirements: you must stick to what
is being asked. For instance, for T3 it is explicitly asked to display something like:

var /* escaping */ i : int := 2

so if you display any of the following outputs
var i : int /* escaping */ := 2
var i /* escaping */ : int := 2
var /* Escapes */ i : int := 2

be sure to fail all the tests, even if the computation is correct.

If you find some unexpected errors (your project does compile with the reference com-
piler, some files are missing, your output is slightly incorrect etc.) immediately send a
new tarball to yaka@epita.fr with ‘[Tiger]’ as prefix of the subject. This corresponds
to ‘### patch’.

Do not wait for the final marks to be computed, this is extremely irritating, and doomed
to failure. You must understand that (i) you increase our workload, and (ii) anyway this
is the wrong approach, the Tiger Compiler is a big project which must be continuously
improved.

If, anyway, you send a tarball to fix your problems long after the initial date, you will
be flagged as ‘### super_late’, which impact on the mark is quite bad...

2.5.2 During the Examination

When you are defending your projects, here are a few rules to follow:

Don’t talk Don’t talk unless you are asked to: when a person is asked a question, s/he is
the only one to answer. You must not talk to each other either: often, when
one cannot answer a question, the question is asked to another member. It is
then obvious why the members of the group shall not talk.

Don’t touch the screen
Don’t touch my display! You have nice fingers, but I don’t need their prints
on my screen.

Tell the truth
If there is something the examiner must know (someone did not work on the
project at all, some files are coming from another group etc.), say it immedi-
ately, for, if we discover that by ourselves, you will be severely sanctioned.

Learn It is explicitly stated that you can not have worked on a stage provided this
was an agreement with the group. But it is also explicitly stated that you must
have learned what was to be learned from that compiler stage, which includes
C++ techniques, Bison and Flex mastering, object oriented concepts, design
patterns and so forth.

Complain now!
If you don’t agree with the notation, say it immediately. Private messages
about “this is unfair: I worked much more than bardec f but his grade is
better than mine” are thrown away.

mailto:yaka@epita.fr

Chapter 2: Instructions 27

Conversely, there is something I wish to make clear: I, Akim, and the other examiners,
will probably be harsh (maybe even very harsh), but this does not mean I disrespect you,
or judge you badly.

You are here to defend your project and knowledge, I’m here to stress them, to make
sure they are right. Learning to be strong under pressure is part of the exercise. Don’t
burst into tears, react! Don’t be shy, that’s not the proper time: you are selling me
something, and I will never buy something from someone who cries when I’m criticizing
his product.

You should also understand that human examination is the moment where we try to
evaluate who, or what group, needs help. We are here to diagnose your project and provide
solutions to your problems. If you know there is a problem in your project, but you failed
to fix it, tell it to the examiner! Work with her/him to fix your project.

2.5.3 Human Evaluation

The point of this evaluation is to measure, among other things:

the quality of the code
How clean it is, amount of code duplication, bad hacks, standards violations
(e.g., ‘stderr’ is forbidden in proper C++ code) and so forth. It also aims at
detecting cheaters, who will be severely punished (mark = -42).

the knowledge each member acquired
While we do not require that each member worked on a stage, we do require
that each member (i) knows how the stage works and (ii) has perfectly un-
derstood the (C++, Bison etc.) techniques needed to implement the stage.
Each stage comes with a set of goals (see Section 4.2.1 [T0 Goals], page 40,
for instance) on which you will be interrogated.

Note to the examiners: the human grade.

The examiner should not take (too much) the automated tests into account to decide
the mark: the mark is computed later, taking this into account, so don’t do it twice.

Note to the examiners: broken tarballs.

If you fixed the tarball or made whatever modification, you must run ‘make distcheck’
again, and replace the tarball they delivered with the new one. Do not keep the old tarball,
do not install it in a special place: just replace the first tarball with it, but say so in the
‘eval’ file.

The rationale is simple: only tarballs pass the tests, and every tarball must be able to
pass the tests. If you don’t do that, then someone else will have to do it again.

2.5.4 Marks Computation

Because the Tiger Compiler is a project with stages, the computation of the marks depends
on the stages too. To spell it out explicitly:

A stage is penalized by bad results on tests performed for previous stages.
It means, for instance, that a T3 compiler will be exercised on T1, T2, and T3. If there

are still errors on T1 and T2 tests, they will pessimize the result of T3 tests. The older
the errors are, the more expensive they are.

As an example, here are the formulas to compute the global success rate of T3 and T5:
global-rate-T3 := rate-T3 * (+ 2 * rate-T1

+ 1 * rate-T2) / 3
global-rate-T5 := rate-T5 * (+ 4 * rate-T1

28 The Tiger Compiler Project Assignment

+ 3 * rate-T2
+ 2 * rate-T3
+ 1 * rate-T4) / 10

Because a project which fail half of the time is not a project that deserves half of 20,
the global-rate is elevated to 1.7 before computing the mark:

mark-T3 := roundup (power (global-rate-T3, 1.7) * 20 - malus-T3, 1)

where ‘roundup (x, 1)’ is x rounded up to one decimal (‘roundup (15, 1) = 15’, ‘roundup
(15.01, 1) = 15.1’).

When the project is also evaluated by a human, ‘power’ is not used. Rather, the success
rate modifies the mark given by the examiner:

mark-T2 := roundup (eval-T2 * global-rate-T2 - malus-T2, 1)

Chapter 3: Tarballs 29

3 Tarballs

3.1 Given Tarballs

The naming scheme for provided tarballs is different from the scheme you must follow (see
Section 2.4 [Delivery], page 25). Our naming scheme looks like ‘2004-tc-2.0.tar.bz2’1.
If we update the tarballs, they will be named ‘2004-tc-2.x.tar.bz2’. But your tarball
must be named ‘login-tc-2.tar.bz2’, even if you send a second version of your project.

We also (try to) provide patches from one tarball to another. For instance
‘2006-tc-1.0-2.0.diff.bz2’2 is the difference from ‘2006-tc-1.0.tar.bz2’3 to
‘2006-tc-2.0.tar.bz2’4. You are encouraged to read this file as understanding a patch
is expected from any Unix programmer. Just run ‘bzless 2006-tc-1.0-2.0.diff.bz2’.

To apply the patch:
1. go into the top level of your current tarball
2. remove any file which name might cause confusion afterward (‘find . -name

’*.orig’ -o -name ’*.rej’ | xargs rm’)
3. run ‘bzcat 2006-tc-1.0-2.0.diff.bz2 | patch -p1’
4. look for all the failures (‘find . -name ’*.rej’) and fix them by hand once you

understood why the patch did not apply

You might need to repeat the process to jump from a version x to x + 2 via version x
+ 1.

3.2 Project Layout

This section describes the mandatory layout of the tarball.

3.2.1 The Top Level

‘AUTHORS’ In the top level of the distribution, there must be a file ‘AUTHORS’ which
contents is as follows:

Fabrice Bardèche <bardec_f@epita.fr>
Jean-Paul Sartre <sartre_j@epita.fr>
Jean-Paul Deux <deux_j@epita.fr>
Jean-Paul Belmondo <belmon_j@epita.fr>

The group leader is the first in the list. Do not include emails other than
those of EPITA. I repeat: give the ‘6_1@epita.fr’ address. Note that the file
‘AUTHORS’ is automatically distributed, but pay attention to the spelling.

‘ChangeLog’
Optional. The list of the changes made in the compiler, with the dates and
names of the people who worked on it. See the Emacs key binding ‘C-x 4 a’.

‘README’ Various free information.

‘argp/’ The command line parser we use.

1 http://www.lrde.epita.fr/~akim/compil/download/2004-tc-2.0.tar.bz2.
2 http://www.lrde.epita.fr/~akim/compil/download/2006-tc-1.0-2.0.diff.bz2.
3 http://www.lrde.epita.fr/~akim/compil/download/2006-tc-1.0.tar.bz2.
4 http://www.lrde.epita.fr/~akim/compil/download/2006-tc-2.0.tar.bz2.

30 The Tiger Compiler Project Assignment

‘src/’ All the sources are in this directory.

‘tests/’ Your own test suite. You should make it part of the project, and ship it like
the rest of the package. Actually, it is abnormal not to have a test suite here.

3.2.2 The ‘src’ Directory

[File]common.hh (src/)
Used throughout the project.

[File]tc (src/)
Your compiler.

[File]tc.cc (src/)
Main entry. Called, the driver.

3.2.3 The ‘src/misc’ Directory

Convenient C++ routines.

[File]contract.hh (src/misc/)
A useful improvement over ‘cassert’.

[File]escape.hh (src/misc/)
This file implements a means to output string while escaping non printable characters.
An example:

cout << "escape (\"\111\") = " << escape ("\"\111\"") << endl;

Understanding how escape works is required starting from T2.

[File]set.hh (src/misc/)
A wrapper around std::set that introduce convenient operators (operator+ and so
forth).

[File]timer.hh (src/misc/)
[File]timer.cc (src/misc/)

A class that makes it possible to have timings of the compilation process, as when using
‘--time-report’ with gcc, or ‘--report=time’ with bison. It is used in the Task
machinery, but can be used to provide better timings (e.g., separating the scanner from
the parser).

3.2.4 The ‘src/task’ Directory

No namespace for the time being, but it should be task. Delivered for T1. A generic
scheme to handle the components of our compiler, and their dependencies.

3.2.5 The ‘src/symbol’ Directory

Namespace ‘symbol’, delivered for T1.

[File]symbol.hh (src/symbol/)
The handling of the symbols. In the program, the rule for identifiers is to be used
many times: at least once for its definition, and once for each use. Just think about
the number of occurrences of size_t in a C program for instance.
To save space one keeps a single copy of each identifier. This provides additional
benefits: the address of this single copy can be used as a key: comparisons (equality or
order) as much faster.
The class symbol::Symbol is an implementation of this idea. See the lecture notes.

Chapter 3: Tarballs 31

[File]table.hh (src/symbol/)
The handling of generic symbol tables, i.e., it is independent of functions, types and
variables.

3.2.6 The ‘src/ast’ Directory

Namespace ‘ast’, delivered for T2. Implementation of the abstract syntax tree. The file
‘ast/README’ gives an overview of the involved class hierarchy.

[File]location.hh (src/ast/)
[File]position.hh (src/ast/)

These files are now simply forwarding the definitions of yy::Position and
yy::Location as provided by Bison.

[File]visitor.hh (src/ast/)
Abstract base class of the compiler’s visitor hierarchy. Actually, it defines a class
template GenVisitor, which expects an argument which can be either non_const_
kind or const_kind. This allows to define to parallel hierarchies: ConstVisitor and
Visitor, similar to iterator and const_iterator.
The understanding of the template programming used is not required at this stage
as it is quite delicate, and goes far beyond your (average) current understanding of
templates.

[File]default-visitor.hh (src/ast/)
Implementation of the DefaultVisitor class, which walks the abstract syntax tree,
doing nothing. It is mainly used as a basis for deriving other visitors. Actually,
just as above, there is a template, so that we have two different default visitors:
DefaultVisitor<const_kind> and DefaultVisitor<non_const_kind>.

[File]print-visitor.hh (src/ast/)
Implementation of the PrintVisitor class, which performs pretty-printing in the tiger
compiler.

3.2.7 The ‘src/parse’ Directory

Namespace ‘parse’. Delivered during T1.

[File]scantiger.ll (src/parse/)
The scanner.

[File]parsetiger.yy (src/parse/)
The parser.

[File]position.hh (src/ast/)
Keeping track of a point (cursor) in a file.

[File]location.hh (src/ast/)
Keeping track of a range (two cursors) in a (or two) file.

[File]libparse.hh (src/ast/)
which prototypes what ‘tc.cc’ needs to know about the module ‘parse’.

3.2.8 The ‘src/type’ Directory

Namespace ‘type’. Type checking.

[File]libtype.hh (src/type/)
The interface of the Type module. It exports a single procedure, type_check.

32 The Tiger Compiler Project Assignment

[File]types.hh (src/type/)
The definition of all the types. You are free to use whatever layout you wish (several
files); we have a single ‘types.hh’ file.

[File]type-entry.hh (src/type/)
Definitions of type::TypeEntry, type::VarEntry, and type::FunEntry, used in
type::TypeEnv to associate data to types, variables, and functions (obviously).

[File]type-env.hh (src/type/)
The types environment, comprising three symbol tables: types, functions, and variables,
used by the type::TypeVisitor.

3.2.9 The ‘src/temp’ Directory

Namespace temp, delivered for T5.

[File]temp.hh (src/temp/)
So called temporaries are pseudo-registers: we may allocate as many temporaries as we
want. Eventually the register allocator will map those temporaries to either an actual
register, or it will allocate a slot in the activation block (aka frame) of the current
function.

[File]label.hh (src/temp/)
We need labels for jumps, for functions, strings etc.

3.2.10 The ‘src/tree’ Directory

Namespace tree, delivered for T5. The implementation of the intermediate representation.
The file ‘tree/README’ should give enough explanations to understand how it works.

Reading the corresponding explanations in Appel’s book is mandatory.

It is worth noting that contrary to A. Appel, just as we did for ast, we use n-ary
structures. For instance, where Appel uses a binary seq, we have an n-ary seq which
allows us to put as many statements as we want.

To avoid gratuitous name clashes, what Appel denotes exp is denoted sxp (Statement
Expression), implemented in translate::Sxp.

Please, pay extra attention to the fact that there are temp::Temp used to create unique
temporaries (similar to symbol::Symbol), and tree::Temp which is the intermediate rep-
resentation instruction denoting a temporary (hence a tree::Temp needs a temp::Temp).
Similarly, on the one hand, there is temp::Label which is used to create unique labels, and
on the other hand there are tree::Label which is the IR statement to define to a label,
and tree::Name used to refer to a label (typically, a tree::Jump needs a tree::Name
which in turn needs a temp::Label).

3.2.11 The ‘src/frame’ Directory

Namespace ‘frame’, delivered for T5.

[File]access.hh (src/frame/)
[File]access.cc (src/frame/)

An Access is a location of a variable: on the stack, or in a temporary.

[File]frame.hh (src/frame/)
[File]frame.cc (src/frame/)

A Frame knows only what are the “variables” it contains.

Chapter 3: Tarballs 33

3.2.12 The ‘src/translate’ Directory

Namespace ‘translate’. Translation to intermediate code translation. It includes:

[File]libtranslate.hh (src/translate/)
The interface.

[File]libtranslate.cc (src/translate/)
The compiled module.

[File]fragment.hh (src/translate/)
It implements translate::Fragment, an abstract class, translate::DataFrag to
store the literal strings, and translate::ProcFrag to store the routines.

[File]access.hh (src/translate/)
[File]access.cc (src/translate/)

Static link aware versions of level::Access.

[File]level.hh (src/translate/)
[File]level.cc (src/translate/)

translate::Level are wrappers frame::Frame that support the static links, so that
we can find an access to the variables of the “parent function”.

[File]exp.hh (src/translate/)
Implementation of translate::Ex (expressions), Nx (instructions), Cx (conditions),
and Ix (if) shells. They wrap tree::Node to delay their translation until the actual
use is known.

[File]level-entry.hh (src/translate/)
All the information that the environment must keep about variables and functions.

[File]level-env.hh (src/translate/)
The levels environment, containing ‘LevelVarEntry’’s and ‘LevelFunEntry’’s. We
don’t need to store information related to types here.

[File]translation.hh (src/translate/)
functions used by the translate::TranslateVisitor to translate the AST into HIR.
For instance, it contains ‘Exp *simpleVar (const Access &access, const Level
&level)’, ‘Exp *callExp (const temp::Label &label, std::list<Exp *> args)’
etc. which are routines that produce some ‘Tree::Exp’. They handle all the unCx etc.
magic.

[File]translate-visitor.hh (src/translate/)
Implements the class ‘TranslateVisitor’ which performs the IR generation thanks to
‘translation.hh’. It must not be polluted with translation details: it is only coor-
dinating the AST traversal with the invocation of translation routines. For instance,
here is the translation of a ‘ast::SimpleVar’:

virtual void operator() (const SimpleVar& e)
{
const Access &access = env_.var_access_get (e.name_get ());
exp_ = simpleVar (access, *level_);

}

3.2.13 The ‘src/canon’ Directory

Namespace tree.

34 The Tiger Compiler Project Assignment

3.2.14 The ‘src/assem’ Directory

Namespace assem, delivered for T7.

This directory contains the implementation of the Assem language: yet another in-
termediate representation that aims at encoding an assembly language, plus a few need
features so that register allocation can be performed afterward. Given in full.

[File]instr.hh (src/assem/)
[File]move.hh (src/assem/)
[File]oper.hh (src/assem/)
[File]label.hh (src/assem/)

Implementation of the basic types of assembly instructions.

[File]fragment.hh (src/assem/)
[File]fragment.cc (src/assem/)

Implementation of assem::Fragment, assem::ProcFrag, and assem::DataFrag. They
are comparable to translate::Fragment: aggregate some informations that must re-
main together, such as a frame::Frame and the instructions (a list of assem::Instr).

[File]visitor.hh (src/assem/)
The root of assembler visitors.

[File]layout.hh (src/assem/)
A pretty printing visitor for assem::Fragment.

[File]libassem.hh (src/assem/)
[File]libassem.cc (src/assem/)

The interface of the module, and its implementation.

3.2.15 The ‘src/target’ Directory

Namespace target, delivered for T7. Some data on the back end. Given in full.

[File]cpu.hh (src/target/)
Description of a CPU: everything about its registers, and its word size.

[File]target.hh (src/target/)
Description of a target (language): its CPU, its assembly (codegen::Assembly), and
it translator (codegen::Codegen).

[File]mips-cpu.hh (src/target/)
[File]mips-target.hh (src/target/)

The description of the MIPS (actually, SPIM/Mipsy) target.

[File]ia32-cpu.hh (src/target/)
[File]ia32-target.hh (src/target/)

Description of the i386. This is not part of the project, it is left only as an incomplete
source of inspiration.

[File]target-tasks.cc (src/target/)
[File]target-tasks.hh (src/target/)

The command line interface to specify the target architecture.

Chapter 3: Tarballs 35

3.2.16 The ‘src/codegen’ Directory

Namespace codegen, delivered for T7.

[File]mips (src/codegen/)
[File]ia32 (src/codegen/)

The instruction selection per se split into a generic part, and a target specific (MIPS
and IA32) part. See Section 3.2.17 [src/codegen/mips], page 36, and Section 3.2.18
[src/codegen/ia32], page 36.

[File]assembly.hh (src/codegen/)
The abstract class codegen::Assembly which is the interface for elementary assembly
instructions generation.

[File]codegen.hh (src/codegen/)
The abstract class codegen::Codegen which is the interface for all our back ends.

[File]libcodegen.hh (src/codegen/)
[File]libcodegen.cc (src/codegen/)

Converting translate::Fragments into assem::Fragments.

[File]codegen-tasks.hh (src/codegen/)
[File]codegen-tasks.cc (src/codegen/)

Command line interface.

[File]tiger-runtime.c (src/codegen/)
This is the Tiger runtime, written in C, based on Andrew Appel’s ‘runtime.c’5. The
actual ‘runtime.s’ file for MIPS was written by hand, but the ia32 was a compiled
version of this file. It should be noted that:

Strings Strings are implemented as 4 bytes to encode the length, and then a 0-
terminated a‘ la C string. The length part is due to conformance to the
Tiger Reference Manual, which specifies that 0 is a regular character that
can be part of the strings, but it is nevertheless terminated by 0 to be
compliant with SPIM/Mipsy’s print syscall. This might change in the
future.

Special Strings
There are some special strings: 0 and 1 character long strings are all imple-
mented via a singleton. That is to say there is only one allocated string ‘""’,
a single ‘"1"’ etc. These singletons are allocated by main. It is essential to
preserve this invariant/convention in the whole runtime.

strcmp vs. stringEqual
I don’t know how Appel wants to support ‘"bar" < "foo"’ since he doesn’t
provide strcmp. We do. But note that anyway his implementation of
‘"foo" != "fooo"’ is more efficient than ours, since he can decide just be
looking at the lengths. That could be improved in the future...

main The runtime has some initializations to make, such as strings singletons,
and then calls the compiled program. This is why the runtime provides
main, and calls t_main, which is the “main” that your compiler should
provide.

5 http://www.cs.princeton.edu/~appel/modern/java/chap12/runtime.c.

36 The Tiger Compiler Project Assignment

3.2.17 The ‘src/codegen/mips’ Directory

Namespace codegen::mips, delivered for T7. Code generation for MIPS R2000.

[File]runtime.s (src/codegen/mips/)
[File]runtime.cc (src/codegen/mips/)

The Tiger runtime in MIPS assembly language: print etc. The C++ file ‘runtime.cc’
is built from ‘runtime.s’: do not edit the former. See Section 3.2.16 [src/codegen],
page 35, ‘tiger-runtime’.

[File]spim-assembly.hh (src/codegen/mips/)
[File]spim-assembly.cc (src/codegen/mips/)

Our assembly language (syntax, opcodes and layout); it abstracts the genera-
tion of MIPS 2000 instructions. codegen::mips::SpimAssembly derives from
codegen::Assembly.

[File]codegen.hh (src/codegen/mips/)
[File]codegen.cc (src/codegen/mips/)

Our real and only back end: a translator from LIR to ASSEM using the MIPS 2000
instruction set defined by codegen::mips::SpimAssembly. It is implemented as a
maximal munch. codegen::mips::Codegen derives from codegen::Codegen.

[File]spim-layout.hh (src/codegen/mips/)
[File]spim-layout.cc (src/codegen/mips/)

How MIPS (and SPIM/Mipsy) fragments are to be displayed. In other words, that’s
where the (global) syntax of the target assembly file is selected.

3.2.18 The ‘src/codegen/ia32’ Directory

Namespace codegen::ia32, delivered for T7. Code generation for IA32. This is not part
of the student project, but it is left to satisfy their curiosity. In addition its presence is a
sane invitation to respect the constraints of a multi-back-end compiler.

[File]runtime.s (src/codegen/ia32/)
[File]runtime.cc (src/codegen/ia32/)

The Tiger runtime in IA32 assembly language: print etc. The C++ file ‘runtime.cc’
is built from ‘runtime.s’: do not edit the former. See Section 3.2.16 [src/codegen],
page 35, ‘tiger-runtime’.

[File]gas-assembly.hh (src/codegen/ia32/)
[File]gas-assembly.cc (src/codegen/ia32/)

Our assembly language (syntax, opcodes and layout); it abstracts the generation
of IA32 instructions using Gas’ syntax. codegen::ia32::GasAssembly derives from
codegen::Assembly.

[File]codegen.hh (src/codegen/ia32/)
[File]codegen.cc (src/codegen/ia32/)

The IA32 back-end: a translator from LIR to ASSEM using the IA32 instruction set
defined by codegen::ia32::GasAssembly. It is implemented as a maximal munch.
codegen::ia32::Codegen derives from codegen::Codegen.

[File]gas-layout.hh (src/codegen/ia32/)
[File]gas-layout.cc (src/codegen/ia32/)

How IA32 fragments are to be displayed. In other words, that’s where the (global)
syntax of the target assembly file is selected.

Chapter 3: Tarballs 37

3.2.19 The ‘src/graph’ Directory

Namespace graph, a generic implementation of graphs. Delivered for T7.

[File]graph.hh (src/graph/)
[File]graph.hxx (src/graph/)

Oriented and undirected graphs.

[File]handler.hh (src/graph/)
[File]handler.hxx (src/graph/)

Abstractions/indirections for graph nodes and edges.

[File]iterator.hh (src/graph/)
[File]iterator.hxx (src/graph/)

Iterating over nodes and edges of graphs.

[File]test-graph.cc (src/graph/)
Exercising this nodule.

3.2.20 The ‘src/liveness’ Directory

Namespace liveness, delivered for T8.

[File]flowgraph.hh (src/liveness/)
FlowGraph implementation.

[File]test-flowgraph.cc (src/liveness/)
FlowGraph test.

[File]liveness.hh (src/liveness/)
[File]liveness.cc (src/liveness/)

Computing the live-in and live-out information from the FlowGraph.

[File]interference-graph.hh (src/liveness/)
[File]interference-graph.cc (src/liveness/)

Computing the InterferenceGraph from the live-in/live-out information.

3.2.21 The ‘src/regalloc’ Directory

Namespace regalloc, register allocation, delivered for T9.

[File]color.hh (src/regalloc/)
Coloring an interference graph.

[File]regallocator.hh (src/regalloc/)
Repeating the coloration until it succeeds (no spills).

[File]libregalloc.hh (src/regalloc/)
[File]libregalloc.cc (src/regalloc/)

Removing useless moves once the register allocation performed, and allocating the reg-
ister for fragments.

[File]test-regalloc.cc (src/regalloc/)
Exercising this.

[File]regalloc-tasks.hh (src/regalloc/)
[File]regalloc-tasks.cc (src/regalloc/)

Command line interface.

38 The Tiger Compiler Project Assignment

3.3 Given Test Cases

We provide a few test cases: you must write your own tests. Writing tests is part of the
project. Do not just copy test cases from other groups, as you will not understand why
they were written.

The initial test suite is available for download at ‘tests.tgz’6. It contains the following
directories:

‘good’ These programs are correct.

‘scan’ These programs have lexical errors.

‘parse’ These programs have syntax errors.

‘type’ These programs contain type mismatches.

6 http://www.lrde.epita.fr/~akim/compil/download/tests.tgz.

Chapter 4: Compiler Stages 39

4 Compiler Stages

The compiler will be written in several steps, described below.

4.1 Stage Presentation

The following sections adhere to a standard layout in order to present each stage n:

Introduction
The first few lines specify the last time the section was updated, the class for
which it is written, and the delivery dates. It also briefly describes the stage.

Tn Goals, What this stage teaches
This section details the goals of the stage as a teaching exercise. Be sure that
examiners will make sure you understood these points.

Tn Samples, See Tn work
Actual examples generated from the reference compilers are exhibited to
present and “specify” the stage.

Tn Given Code, Explanation on the provided code
This subsection points to the on line material we provide, introduces its com-
ponents, quickly presents their designs and so forth. Check out the developer
documentation of the Tiger Compiler1 for more information, as the code is
(hopefully) properly documented.

Tn Code to Write, Explanation on what you have to write
But of course, this code is not complete; this subsection provides hints on
what is expected, and where.

Tn Options, Want some more?
During some stages, those who find the main task too easy can implement
more features. These sections suggest possible additional features.

Tn FAQ, Questions not to ask
Each stage sees a blossom of new questions, some of which being extremely
pertinent. We selected the most important ones, those that you should be
aware of, contrary to many more questions that you ought to find and ask
yourselves. These sections answer this few questions. And since they are
already answered, you should not ask them...

Tn Improvements, Other Designs
The Tiger Compiler is an instructional project the audience of which is learn-
ing C++. Therefore, although by the end of the development, in the latter
stages, we can expect able C++ programmers, most of the time we have to
refrain from using advanced designs, or intricate C++ techniques. These sec-
tions provide hints on what could have been done to improve the stage. You
can think of these sections as material you ought to read once the project is
over and you are a grown-up C++ programmer.

4.2 T0, Naive Scanner and Parser
2006-T0 delivery is Wednesday, February 4th 2004 at noon.

This section has been updated for EPITA-2006.
T0 is a weak form of T1: the scanner and the parser are written, but the framework is

simplified (see Section 4.3.4 [T1 Code to Write], page 45).

1 http://www.lrde.epita.fr/~akim/compil/tc-doc/.

40 The Tiger Compiler Project Assignment

Relevant lecture notes include: ‘compilation-lecture.pdf’2.

4.2.1 T0 Goals

Things to learn during this stage that you should remember:

− Writing/debugging a scanner with Flex.
− Using start conditions to handle non-regular issues within the scanner.
− Using yylval to pass token values to the parser.
− Writing/debugging a parser with Bison.
− Resolving simple conflicts due to precedences and associativities thanks to directives

(e.g., ‘%left’ etc.).
− Resolving hard conflicts with loop unrolling. The case of lvalue vs. array instantiation

is of first importance.
− First use of a C++ feature: the std::string class.

4.2.2 T0 Samples

Running T0 basically consists in looking at exit values:

print ("Hello, World!\n")

File 4.1: ‘simple.tig’

$ tc simple.tig

Example 1: tc simple.tig

The following example demonstrates the scanner and parser tracing. The glyphs
“ error ” and “⇒” are typographic conventions to specify respectively the standard error
stream and the exit status. They are not part of the output per se.

$ SCAN=1 PARSE=1 tc simple.tig

error Starting parse
error Entering state 0
error Reading a token: --(end of buffer or a NUL)
error --accepting rule at line 99 ("print")
error Next token is 259 ("identifier" simple.tig:1.0-4: print)
error Shifting token 259 ("identifier"), Entering state 2
error Reading a token: --accepting rule at line 52 (" ")
error --accepting rule at line 58 ("(")
error Next token is 264 ("(" simple.tig:1.6)
error Reducing via rule 81 (line 403), "identifier" -> funid
error state stack now 0
error Entering state 18
error Next token is 264 ("(" simple.tig:1.6)
error Shifting token 264 ("("), Entering state 59
error Reading a token: --accepting rule at line 103 (""")
error --accepting rule at line 172 ("Hello, World!")
error --accepting rule at line 159 ("\n")
error --accepting rule at line 134 (""")
error Next token is 258 ("string" simple.tig:1.7-23: Hello, World!
error)
error Shifting token 258 ("string"), Entering state 1
error Reducing via rule 19 (line 213), "string" -> exp

2 http://www.lrde.epita.fr/~akim/compil/lecture-notes/compilation-lecture.pdf.

Chapter 4: Compiler Stages 41

error state stack now 59 18 0
error Entering state 102
error Reading a token: --accepting rule at line 59 (")")
error Next token is 265 (")" simple.tig:1.24)
error Reducing via rule 46 (line 284), exp -> args.1
error state stack now 59 18 0
error Entering state 104
error Next token is 265 (")" simple.tig:1.24)
error Reducing via rule 45 (line 279), args.1 -> args
error state stack now 59 18 0
error Entering state 103
error Next token is 265 (")" simple.tig:1.24)
error Shifting token 265 (")"), Entering state 123
error Reducing via rule 20 (line 216), funid "(" args ")" -> exp
error state stack now 0
error Entering state 13
error Reading a token: --(end of buffer or a NUL)
error --accepting rule at line 53 ("
error ")
error --(end of buffer or a NUL)
error --EOF (start condition 0)
error Now at end of input.
error Reducing via rule 1 (line 163), exp -> program
error state stack now 0
error Entering state 12
error Now at end of input.

Example 2: SCAN=1 PARSE=1 tc simple.tig

A lexical error must be properly diagnosed and reported. The following (generated)
examples display the location: this is not required for T0 ; nevertheless, an error message
on the standard error output is required.

"\z does not exist."

File 4.2: ‘back-zee.tig’

$ tc back-zee.tig

error back-zee.tig:1.0-2: unrecognized escape: \z
⇒2
Example 3: tc back-zee.tig

Similarly for syntactical errors.

a++

File 4.3: ‘postinc.tig’

$ tc postinc.tig

error postinc.tig:1.2: syntax error, unexpected "+"
error Parsing Failed
⇒3
Example 4: tc postinc.tig

4.2.3 T0 Code to Write

We don’t need several directories, you can program in the top level of the package.

You must write:

42 The Tiger Compiler Project Assignment

‘scantiger.ll’
The scanner.
yylval supports strings, integers and even symbols. Nevertheless, symbols
(i.e., identifiers) are returned as plain strings for the time being: the class
symbol::Symbol is introduced in T1.
The environment variable SCAN enables Flex scanner debugging traces.

‘parsetiger.yy’
The parser, and maybe main if you wish.
There is no requirement to implement YYPRINT support.
The environment variable PARSE enables Bison parser debugging traces, i.e.,
running

PARSE=1 ./tc foo.tig

sets yydebug to 1.

‘tc.cc’ Optionally, you may write your driver, i.e., main, in this file. Putting it into
‘parsetiger.yy’ is OK in T0 as it is reduced to its simplest form with no
option support. Of course the exit status must conform to the Tiger Compiler
Reference Manual3.

‘Makefile’
This file is mandatory. Running make must build an executable tc. The GNU
Build System is not used: there is no need for Autoconf, Automake etc.

The requirements on the tarball are the same as usual, see Chapter 3 [Tarballs], page 29.

4.2.4 T0 Improvements

Possible improvements include:

4.3 T1, Scanner and Parser
2006-T1 delivery is Sunday, February 8th 2004 at noon.

This section is updated for EPITA-2006.
Scanner and parser are properly running, but the abstract syntax tree is not built yet.

Differences with T0 include:

GNU Build System
Autoconf, Automake are used.

Options, Tasks
The compiler supports basic options via in the Task module.

Locations The locations are properly computed and reported in the error messages.

Relevant lecture notes include ‘dev-tools.pdf’4 and ‘scanner.pdf’5.

4.3.1 T1 Goals

Things to learn during this stage that you should remember:

Basic use of the GNU Build System
Autoconf, Automake. The initial set up of the project will best be done via
‘autoreconf -fvim’, but once the project initiated (i.e., ‘configure’ and the

3 http://www.lrde.epita.fr/~akim/compil/tiger.html.
4 http://www.lrde.epita.fr/~akim/compil/lecture-notes/dev-tools.pdf.
5 http://www.lrde.epita.fr/~akim/compil/lecture-notes/scanner.pdf.

Chapter 4: Compiler Stages 43

‘Makefile.in’s exist) you should depend on make only. See Section 5.3 [The
GNU Build System], page 121.

Integration into an existing framework
Putting your own code into the provided tarball.

Basic C++ classes
The classes Location and Position provide a good start to study foreign
C++ classes. Your understanding them will be controlled, including the
‘operator’s.

Location Tracking
Issues within the scanner and the parser.

Implementation of a simple C++ class
The code for symbol::Symbol is incomplete.

A first standard container: std::set
The implementation of the symbol::Symbol class relies on std::set.

The Flyweight design pattern
The Symbol class is an implementation of the Flyweight design pattern.

4.3.2 T1 Samples

The only information the compiler provides is about lexical and syntax errors. If there
are no errors, the compiler shuts up, and exits successfully:

/* An array type and an array variable. */
let

type arrtype = array of int
var arr1 : arrtype := arrtype [10] of 0

in
arr1[2]

end

File 4.4: ‘test01.tig’
$ tc test01.tig

Example 5: tc test01.tig

If there are lexical errors, the exit status is 2, and a an error message is output on the
standard error output. Note that its format is standard and mandatory: file, (precise)
location, and then the message (see section “Errors” in Tiger Compiler Reference Manual).

1
/* This comments starts at /* 2.2 */

File 4.5: ‘unterminated-comment.tig’
$ tc unterminated-comment.tig

error unterminated-comment.tig:2.1-3.0: unexpected end of file in a comment
⇒2
Example 6: tc unterminated-comment.tig

If there are syntax errors, the exit status is set to 3:

let var a : nil := ()
in

1
end

File 4.6: ‘type-nil.tig’

44 The Tiger Compiler Project Assignment

$ tc type-nil.tig

error type-nil.tig:1.12-14: syntax error, unexpected "nil", expecting "identifier"
error Parsing Failed
⇒3
Example 7: tc type-nil.tig

If there are errors which are non lexical, nor syntactic (Windows will not pass by me):

$ tc C:/TIGER/SAMPLE.TIG

error tc: cannot open ‘C:/TIGER/SAMPLE.TIG’: No such file or directory
⇒1
Example 8: tc C:/TIGER/SAMPLE.TIG

The option ‘--parse-trace’, which relies on Bison’s %debug directive, and the use of
YYPRINT, must work properly:

a + "a"

File 4.7: ‘a+a.tig’

$ tc --parse-trace --parse a+a.tig
error Starting parse
error Entering state 0
error Reading a token: Next token is 259 ("identifier" a+a.tig:1.0: a)
error Shifting token 259 ("identifier"), Entering state 2
error Reading a token: Next token is 271 ("+" a+a.tig:1.2)
error Reducing via rule 76 (line 382), "identifier" -> varid
error state stack now 0
error Entering state 17
error Reducing via rule 38 (line 259), varid -> lvalue
error state stack now 0
error Entering state 14
error Next token is 271 ("+" a+a.tig:1.2)
error Reducing via rule 37 (line 255), lvalue -> exp
error state stack now 0
error Entering state 13
error Next token is 271 ("+" a+a.tig:1.2)
error Shifting token 271 ("+"), Entering state 43
error Reading a token: Next token is 258 ("string" a+a.tig:1.4-6: a)
error Shifting token 258 ("string"), Entering state 1
error Reducing via rule 19 (line 213), "string" -> exp
error state stack now 43 13 0
error Entering state 81
error Reading a token: Now at end of input.
error Reducing via rule 31 (line 244), exp "+" exp -> exp
error state stack now 0
error Entering state 13
error Now at end of input.
error Reducing via rule 1 (line 163), exp -> program
error state stack now 0
error Entering state 12
error Now at end of input.

Example 9: tc --parse-trace --parse a+a.tig

Note that (i), ‘--parse’ is needed, (ii), it cannot see that the variable is not declared nor
that there is a type checking error, since type checking... is not implemented, and (iii),

Chapter 4: Compiler Stages 45

the output might be slightly different, depending upon the version of Bison you use. But
what matters is that one can see the items: ‘"identifier" a’, ‘"string" a’.

4.3.3 T1 Given Code

Some code is provided: ‘2006-tc-1.0.tar.bz2’6. See Section 3.2.1 [The Top Level],
page 29, Section 3.2.2 [src], page 30, Section 3.2.7 [src/parse], page 31, Section 3.2.3
[src/misc], page 30.

4.3.4 T1 Code to Write

Be sure to read Flex and Bison documentations and tutorials, see Section 5.6 [Flex &
Bison], page 125.

‘src/parse/scantiger.ll’
The scanner must be completed to read strings, identifiers etc. and track
locations.
− Strings will be stored as C++ std::string. See the following code for

the basics.
...
\" yylval->str = new std::string (); BEGIN SC_STRING;

<SC_STRING>{ /* Handling of the strings. Initial " is eaten. */
\" {

BEGIN INITIAL;
return STRING;

}
...

\\x[0-9a-fA-F]{2} {
yylval->str->append (1, strtol (yytext + 2, 0, 16));

}
...
}

− Symbols (i.e., identifiers) must be returned as symbol::Symbol objects,
not strings.

− The locations are tracked. The class Location to use is produced by
Bison: ‘src/parse/location.hh’.
To track of locations, adjust your scanner, use YY_USER_ACTION and the
yylex prologue:

...
%%
%{

// Everything here is run each time yylex is invoked.
%}
"if" return IF;
...
%%
...

See the lecture notes, and have a look at the scanner and parser chapters
of this draft7.

6 http://www.lrde.epita.fr/~akim/compil/download/2006-tc-1.0.tar.bz2.
7 http://www.lrde.epita.fr/~akim/compil/gnuprog2/.

46 The Tiger Compiler Project Assignment

‘src/parse/parsetiger.yy’
− The grammar must be complete but without actions.
− Complete yy::Parser::print_ to implement ‘--parse-trace’ support

(see Section 4.3.2 [T1 Samples], page 43). yy::Parser::print_ is the
C++ equivalent of the yyprint feature for C parsers, see the Bison docu-
mentation. Pay special attention to the display of strings and identifiers.

‘src/symbol/symbol.hxx’
The class symbol::Symbol keeps a single copy of identifiers, see Section 3.2.5
[src/symbol], page 30. Its implementation in ‘src/symbol/symbol.hxx’ is
incomplete.
The most delicate part is the constructor symbol::Symbol::Symbol (const
std::string &s): just bare in mind that (i) you must make sure that the
string ‘s’ is inserted in the set, and (ii) save in this new symbol::Symbol
object a reference to this inserted string. Carefully read the documentation
of std::set::insert.

4.3.5 T1 FAQ

Bison reports type clashes
Bison may report type clashes for some actions. For instance, if you have
given a type to "string", but none to exp, then it will choke on:

exp: "string";

because it actually means
exp: "string" { $$ = $1; };

which is not type coherent. So write this instead:
exp: "string" {};

Where is ast::Exp?
Its real definition will be provided with T2, so meanwhile you have to pro-
vide a fake. We recommend for a forward declaration of ‘ast::Exp’ in
‘libparse.hh’.

‘misc/test-ref’ fails to compile properly
My bad, sorry about that: it will be activated in a later stage. Meanwhile,
comment its content.

4.3.6 T1 Improvements

Possible improvements include:

4.4 T2, Building the Abstract Syntax Tree

This section was last updated for EPITA-2006 on 2004-02-18.
2006-T2 delivery is Sunday, March 7th 2003 at noon.

At the end of this stage, the compiler can build abstract syntax trees of Tiger pro-
grams and pretty-print them. The parser is equipped with error recovery. The memory is
properly deallocated on demand.

The code must follow our coding style and be documented, see Section 2.3 [Coding
Style], page 15, and Section 5.12 [Doxygen], page 128.

Relevant lecture notes include ‘ast.pdf’8.

8 http://www.lrde.epita.fr/~akim/compil/lecture-notes/ast.pdf.

Chapter 4: Compiler Stages 47

4.4.1 T2 Goals

Things to learn during this stage that you should remember:

Strict Coding Style
Following a strict coding style is an essential part of collaborative work. Un-
derstanding the rationales behind rules is even better. See Section 2.3 [Coding
Style], page 15.

Memory Leak Trackers
Using tools such as Valgrind (see Section 5.5 [Valgrind], page 123) to track
memory leaks.

Error recovery with Bison
Using the error token, and building usable ASTs.

Using STL containers
The AST uses std::list, symbol::Symbol uses std::set.

Inheritance
The AST hierarchy is typical example of a proper use of inheritance, together
with...

Inclusion polymorphism
an intense use of inclusion polymorphism for accept.

Use of constructors and destructors
In particular using the destructors to reclaim memory bound to components.

virtual Dynamic and static bindings.

The Composite design pattern
The AST hierarchy is an implementation of the Composite pattern.

The Visitor design pattern
The PrintVisitor is an implementation of the Visitor pattern.

Writing good developer documentation (using Doxygen)
The AST must be properly documented.

4.4.2 T2 Samples

Here are a few samples of the expected features.

4.4.2.1 T2 Pretty-Printing Samples

The parser builds abstract syntax trees that can be output by a pretty-printing module:

/* Define a recursive function. */
let

/* Calculate n!. */
function fact (n : int) : int =

if n = 0
then 1
else n * fact (n - 1)

in
fact (10)

end

File 4.8: ‘simple-fact.tig’

48 The Tiger Compiler Project Assignment

$ tc -A simple-fact.tig

/* == Abstract Syntax Tree. == */
let

function fact (n : int) : int =
if (n = 0)

then 1
else (n * fact ((n - 1)))

in
fact (10)

end
Example 10: tc -A simple-fact.tig

Passing ‘-D’, ‘--ast-delete’, reclaims the memory associated to the AST. Valgrind
will be used to check that no memory leaks, see Section 5.5 [Valgrind], page 123.

No heroic effort is asked for silly options combinations.
$ tc -D simple-fact.tig

Example 11: tc -D simple-fact.tig

$ tc -DA simple-fact.tig

error tasks.cc:22: Precondition ‘the_program’ failed.
⇒134
Example 12: tc -DA simple-fact.tig

The pretty-printed output must be valid and equivalent.
Valid means that any Tiger compiler must be able to parse with success your output.

Pay attention to the banners such as ‘== Abstract...’: you should use comments: ‘/*
== Abstract... */’. Pay attention to special characters too.

print ("\"\x45\x50ITA\"\n")

File 4.9: ‘string-escapes.tig’

$ tc -AD string-escapes.tig

/* == Abstract Syntax Tree. == */
print ("\"EPITA\"\n")
Example 13: tc -AD string-escapes.tig

Equivalent means that, except for syntactic sugar, the output and the input are equal.
Syntactic sugar refers to ‘&’, ‘|’, unary ‘-’, etc.

1 = 1 & 2 = 2

File 4.10: ‘1s-and-2s.tig’

$ tc -AD 1s-and-2s.tig

/* == Abstract Syntax Tree. == */
if (1 = 1)

then (2 = 2)
else 0

Example 14: tc -AD 1s-and-2s.tig

$ tc -AD 1s-and-2s.tig >output.tig
Example 15: tc -AD 1s-and-2s.tig >output.tig

$ tc -AD output.tig

/* == Abstract Syntax Tree. == */
if (1 = 1)

then (2 = 2)

Chapter 4: Compiler Stages 49

else 0
Example 16: tc -AD output.tig

For loops must be properly displayed, i.e., although we use a ast::VarDec for the index
of the loop, you must not display ‘var’:

/* Valid let and for. */
let

var a := 0
in

for i := 0 to 100 do (a := a+1; ())
end

File 4.11: ‘for-loop.tig’
$ tc -AD for-loop.tig

/* == Abstract Syntax Tree. == */
let

var a := 0
in

for i := 0 to 100 do
(

a := (a + 1);
()

)
end
Example 17: tc -AD for-loop.tig

Parentheses must not stack for free; in fact, you must even remove them.

((((((((((0))))))))))

File 4.12: ‘parens.tig’
$ tc -AD parens.tig

/* == Abstract Syntax Tree. == */
0
Example 18: tc -AD parens.tig

As a result, anything output by ‘tc -AD’ is equal to what ‘tc -AD | tc -AD -’ displays!

4.4.2.2 T2 Chunks

In Tiger, to support recursive types and functions, continuous declarations of functions
and continuous declarations of types are considered “simultaneously”. For instance in
the following program, foo and bar are visible in each other’s scope, and therefore the
following program is correct wrt type checking.

let function foo () : int = bar ()
function bar () : int = foo ()

in
0

end

File 4.13: ‘foo-bar.tig’
$ tc -T foo-bar.tig

Example 19: tc -T foo-bar.tig

In the following sample, because bar is not declared in the same bunch of declarations,
it is not visible during the declaration of foo. The program is invalid.

50 The Tiger Compiler Project Assignment

let function foo () : int = bar ()
var stop := 0
function bar () : int = foo ()

in
0

end

File 4.14: ‘foo-stop-bar.tig’

$ tc -T foo-stop-bar.tig

error foo-stop-bar.tig:1.28-33: unknown function: bar
⇒4
Example 20: tc -T foo-stop-bar.tig

The same applies to types.
We shall name chunk a continuous series of type (or function) declaration.

Within a chunk, duplicate names are invalid, while they are valid for separated chunks:

let function foo () : int = 0
function bar () : int = 1
function foo () : int = 2
var stop := 0
function bar () : int = 3

in
0

end

File 4.15: ‘fbfsb.tig’

$ tc -T fbfsb.tig

error fbfsb.tig:3.4-28: function redefinition: foo
error fbfsb.tig:1.4-28: first definition
⇒4
Example 21: tc -T fbfsb.tig

It behaves exactly as if chunks were part of embedded let in end. This is why our
Tiger compilers will treat chunks as syntactic sugar: an internal let (i.e., a LetExp) may
only have a single chunk of declarations. If the input has several chunks, they must be
split into several let:

$ tc -A fbfsb.tig

/* == Abstract Syntax Tree. == */
let

function foo () : int =
0

function bar () : int =
1

function foo () : int =
2

in
let

var stop := 0
in

let
function bar () : int =

Chapter 4: Compiler Stages 51

3
in

0
end

end
end
Example 22: tc -A fbfsb.tig

Given the type checking rules for variables, whose definitions cannot be recursive,
chunks of variable declarations are reduced to a single variable.

let var foo := 1
var foo := foo + 1
var foo := foo + 1

in
foo

end

File 4.16: ‘fff.tig’
$ tc -A fff.tig

/* == Abstract Syntax Tree. == */
let

var foo := 1
in

let
var foo := (foo + 1)

in
let

var foo := (foo + 1)
in

foo
end

end
end
Example 23: tc -A fff.tig

4.4.2.3 T2 Error Recovery

Another part of T2 is the improvement of your parser: it must be robust to some forms
of errors. Observe that on the following input:

(
1;
(2, 3);
(4, 5);
6

)

File 4.17: ‘multiple-parse-errors.tig’
several parse errors are reported, not merely the first one:

$ tc multiple-parse-errors.tig

error multiple-parse-errors.tig:3.4: syntax error, unexpected ",", ex-
pecting ";"
error multiple-parse-errors.tig:4.4: syntax error, unexpected ",", ex-
pecting ";"

52 The Tiger Compiler Project Assignment

⇒3
Example 24: tc multiple-parse-errors.tig

Of course, the exit status still reveals the parse error. Be sure that your error recovery
does not break the rest of the compiler...

$ tc -AD multiple-parse-errors.tig

error multiple-parse-errors.tig:3.4: syntax error, unexpected ",", ex-
pecting ";"
error multiple-parse-errors.tig:4.4: syntax error, unexpected ",", ex-
pecting ";"
/* == Abstract Syntax Tree. == */
(

1;
();
();
6

)
⇒3
Example 25: tc -AD multiple-parse-errors.tig

4.4.3 T2 Given Code

Some code is provided: ‘2006-tc-2.0.tar.bz2’9. The transition from the previous ver-
sions can be done thanks to the following diffs: ‘2006-tc-1.0-2.0.diff’10.

For a description of the new modules, see Section 3.2.3 [src/misc], page 30, Section 3.2.5
[src/symbol], page 30, and Section 3.2.6 [src/ast], page 31.

4.4.4 T2 Code to Write

What is to be done:

‘src/parse/parsetiger.yy’
Implement error recovery.

There should be at least three uses of the token error. Read the
Bison documentation about it.

Chuncks In order to implement easily the type checking of declarations and
to simplify following modules, adjust your grammar to parse dec-
larations by chunks. The implementations of these chunks are in
ast::FunctionDecs, ast::VarDecs, and ast::TypeDecs; they
are implemented thanks to ast::AnyDecs).

‘src/ast’ The abstract syntax tree module must be completed. There should remain no
‘FIXME:’ anywhere in the code we gave. Several files are missing in full. See
‘src/ast/README’ for additional information on the missing classes.

‘src/ast/default-visitor.hh’
Complete the DefaultVisitor class, the neutral traversals of ASTs. The
DefaultVisitor must be a sound basis for your further work on the Tiger
compiler.

‘src/ast/print-visitor.hh’
The PrintVisitor class must be written entirely.

9 http://www.lrde.epita.fr/~akim/compil/download/2006-tc-2.0.tar.bz2.
10 http://www.lrde.epita.fr/~akim/compil/download/2006-tc-1.0-2.0.diff.

Chapter 4: Compiler Stages 53

4.4.5 T2 FAQ

‘src/ast/README’
This file should not have been shipped. Do not take its content too seriously.

A NameTy, or a Symbol
At some places, you may use one or the other. Just ask yourself which is the
most appropriate given the context.

bison Be sure to read its dedicated section: Section 5.6 [Flex & Bison], page 125.

Memory leaks in the parser during error recovery
The generated parser from current versions of Bison does not offer a means
to reclaim the memory of the symbols that are thrown away. Hence, memory
leaks won’t be tested on invalid input.

Memory leaks in the standard containers
See Section 5.5 [Valgrind], page 123, for a pointer to the explanation and
solution.

4.4.6 T2 Improvements

Possible improvements include:

Use CVS Bison
CVS Bison, i.e., the development version of Bison, provides means to release
symbols during error recovery in the C++ parsers. But much work remains to
be done. You may either try it, or even improve Bison itself. Contact Akim.

A more Elaborate Visitor Hierarchy
See [spot], page 120, for an example on how the use of a clean visitor hier-
archy and auxiliary functions enhances the readability, maintainability, and
expressiveness of the code.

Using Generic Visitors
Andrei Alexandrescu has done a very interesting work on generic implementa-
tion of Visitors, see [Modern C++ Design], page 119. It does require advanced
C++ skills, since it is based on type lists, which requires heavy use of templates.

Using Visitor Combinators
Going even further that Andrei Alexandrescu, Nicolas Tisserand proposes an
implementation of Visitor combinators, see [Generic Visitors in C++], page 118.

4.5 T3, Computing the Escaping Variables

This section was updated for Tiger 2004. The project will be taken on Friday, March 15th,
at noon.

At the end of this stage, the compiler must be able to compute and display the escaping
variables. These features are triggered by the options ‘--escapes-compute’/‘-e’ and
‘--escapes-display’/‘-E’.

Be sure to read the chapter “Escapes” in the lecture notes.

4.5.1 T3 Goals

Things to learn during this stage that you should remember:

The Command design pattern
The Task module is based on the Command design pattern.

54 The Tiger Compiler Project Assignment

Writing a Class Template
Writing a Visitor from scratch
Using methods from parents classes
Inner functions and their impact on memory management at runtime

4.5.2 T3 Samples

This example demonstrates the computation and display of escaping variables/formals.
Notice that by default, all variable must be considered as escaping, since it is safe to put
a non escaping variable onto the stack, while the converse is unsafe.

let
var escaping := "I rule the world!\n"
var not_escaping := "Peace on Earth for humans of good will.\n"
function print_slogan (not_escaping: string) =

(print (not_escaping); print (escaping))
in

print_slogan (not_escaping)
end

File 4.18: ‘variable-escapes.tig’

$ tc -EeE variable-escapes.tig

/* == Escapes. == */
let

var /* escaping */ escaping := "I rule the world!\n"
in

let
var /* escaping */ not_escaping := "Peace on Earth for humans of good will.\n"

in
let

function print_slogan (/* escaping */ not_escaping : string) =
(

print (not_escaping);
print (escaping)

)
in

print_slogan (not_escaping)
end

end
end
/* == Escapes. == */
let

var /* escaping */ escaping := "I rule the world!\n"
in

let
var not_escaping := "Peace on Earth for humans of good will.\n"

in
let

function print_slogan (not_escaping : string) =
(

print (not_escaping);
print (escaping)

)

Chapter 4: Compiler Stages 55

in
print_slogan (not_escaping)

end
end

end
Example 26: tc -EeE variable-escapes.tig

Run your compiler on ‘merge.tig’ and to study its output. There is a number of silly
mistakes that people usually do on T3: they are all easy to defeat when you do have a
reasonable test suite, and once you understood that torturing your project is a good thing
to do.

4.5.3 T3 Code To Write

ast::PrintVisitor
Be sure to display the ‘/* escaping */’ flag where needed, and only where
needed. If you don’t pay attention, you might display meaningless flags due
to implementation details.

escapes::EscapesVisitor
Write the class escapes::EscapesVisitor in ‘src/escapes/escapes-visitor.hh’.

You are suggested to implement three additional classes:

Definition
An abstract class which is used to instantiate the template class
symbol::Table into Table <Definition>.

[virtual void]escape_set (void)
Sets the escape to true.

[Variable]int depth
Depth at which this object has been created.

[int]depth_get () const
Returns the depth associated to this Definition object.

VariableDefinition
Inherits from Definition. It has one additional attribute, a
VarDec &. The method escape_set is implemented, and when
invoked, set the escapes flags of the corresponding VarDec.

FormalDefinition
Inherits from Definition. To be designed by yourself. Do not
forget that the ast class used to register formals is used else-
where, and it would be a pity that your implementation makes
no difference... Be sure to write a test that verifies that your
implementation is not abused. I have one such test...

Equip ast All the sites where variables and formals (i.e., the arguments of the functions
being defined, not being used) are introduced must be equipped with the
escape_get and escape_set methods. Most probably the code was already
given, and is using ‘const_cast’s; try to use mutable instead.

Modify the code so that each definition of an escaping variable/formal is pre-
ceded by the comment ‘/* escaping */’ if the flag display_escapes_p is
true. See the item “Driver” for an example.

56 The Tiger Compiler Project Assignment

4.5.4 T3 FAQ

Dwarf errors
It appears that at EPITA, the linker is unable to read the output of G++ 3.2
when given ‘-ggdb’. So don’t pass it.

4.5.5 T3 Improvements

Possible improvements include:

4.6 T4, Type Checking

This section was last updated for EPITA-2005 on 2003-04-08.
2005-T4 delivery is Friday, April 25th 2003 at noon.

At the end of this stage, the compiler type checks Tiger programs. Clear error messages
are required.

Relevant lecture notes include ‘type-checking.pdf’11.

4.6.1 T4 Goals

Things to learn during this stage that you should remember:
− What type-checking is

4.6.2 T4 Samples

Type checking is optional, invoked by ‘--types-check’ or ‘-T’:

1 + "2"

File 4.19: ‘int-plus-string.tig’

$ tc int-plus-string.tig

Example 28: tc int-plus-string.tig

$ tc int-plus-string.tig --types-check

error int-plus-string.tig:1.0-6: type mismatch
error right operand type: string
error expected type: int
⇒4
Example 29: tc int-plus-string.tig --types-check

When there are several type errors, it is admitted that some remain hidden by others.

unknown_function (unknown_variable)

File 4.20: ‘unknowns.tig’

$ tc unknowns.tig --types-check

error unknowns.tig:1.0-34: unknown function: unknown_function
⇒4
Example 31: tc unknowns.tig --types-check

Be sure to check the type of all the constructs.

if 1 then 2

File 4.21: ‘bad-if.tig’

$ tc bad-if.tig --types-check

error bad-if.tig:1.0-10: type mismatch

11 http://www.lrde.epita.fr/~akim/compil/lecture-notes/type-checking.pdf.

Chapter 4: Compiler Stages 57

error then clause type: int
error else clause type: void
⇒4
Example 33: tc bad-if.tig --types-check

Be aware that type and function declarations are recursive by chunks. For instance:

let type one = { hd : int, tail : two }
type two = { hd : int, tail : one }
function one (hd : int, tail : two) : one

= one { hd = hd, tail = tail }
function two (hd : int, tail : one) : two

= two { hd = hd, tail = tail }
var one := one (11, two (22, nil))

in
print_int (one.tail.hd); print ("\n")

end

File 4.22: ‘mutuals.tig’

$ tc mutuals.tig --types-check

Example 35: tc mutuals.tig --types-check

In case you are interested, the result is:
$ tc -H mutuals.tig >mutuals.hir
Example 36: tc -H mutuals.tig >mutuals.hir

$ havm mutuals.hir

22
Example 37: havm mutuals.hir

4.6.3 T4 Given Code

Some code is provided: ‘2005-tc-4.3.tar.bz2’12. The transition from the previ-
ous versions can be done thanks to the following diffs: ‘2005-tc-2.1-4.0.diff’13,
‘2005-tc-4.0-4.1.diff’14, ‘2005-tc-4.1-4.2.diff’15, ‘2005-tc-4.2-4.3.diff’16. See
Section 3.2.3 [src/misc], page 30.

4.6.4 T4 Code to Write

What is to be done.

symbol::Table< class Entry_T >
Write the class template symbol::Table in ‘src/symbol/table.hh’ which
is a table of symbols dedicated to storing some data which type is Entry_T
*. In short, it maps a symbol::Symbol to an Entry_T * (that should ring a
bell...). You are encouraged to implement something simple, based on stacks
(see std::stack or std::list) and maps (see std::map).
symbol::Table is a class template as it is used by virtually all the
AST visitors (e.g., escapes::EscapesVisitor, type::TypeVisitor,
translate::TranslateVisitor etc.)
symbol::Table must provide this interface:

12 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-4.3.tar.bz2.
13 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-2.1-4.0.diff.
14 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-4.0-4.1.diff.
15 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-4.1-4.2.diff.
16 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-4.2-4.3.diff.

58 The Tiger Compiler Project Assignment

[void]scope_begin ()
Open a new scope.

[void]scope_end ()
Close the last scope, forgetting everything since the latest scope_begin
().

[void]put (Symbol key, Entry T & value)
Associate value to key in the current scope.

[Entry T *]get (Symbol key) const
If key was associated to some Entry_T in the open scopes, return the most
recent insertion. Otherwise return the empty pointer.

[void]print (std::ostream & ostr) const
Send the content of this table on ostr in a readable manner, the top of the
stack being displayed last.

‘src/type/types.hh’
The Singletons type::String, type::Int, and type::Void are to be imple-
mented. Using templates would be particularly appreciated to factor the code
between the four singleton classes.
type::Named is almost entirely given.
type::Array is even simpler than the four Singletons.
type::Record is somewhat incomplete.
Pay extra attention to the implementation of type::operator==
(const Type& a, const Type& b), type::Type::assignable_to and
type::Type::comparable_to.

‘src/type/type-entry.hh’
This file is really a empty nutshell, so we give it complete so that you concen-
trate on things that matter. Nonetheless you will be asked questions on this
file, so study it.

‘src/type/type-env.hh’
The constructor of type::TypeEnv must be completed: it must fill the en-
vironment with the definition of builtin types and functions. See the Tiger
Reference Manual.
The handling of types is left as an example, you still have to implement the
variables and functions support.

type::TypeVisitor
Of course this is the most tricky part. I hope there are enough comments in
there so that you understand what is to be done. Please, post your questions
and help me improve it.

Tasks Each module Foo exports its tasks via the file ‘foo/foo-tasks.hh’. You must
clean up your code to use the latest sources for Tasks, and make sure that your
‘configure.ac’ no longer includes ‘foo/libfoo.hh’ in ‘src/modules.hh’.

4.6.5 T4 Options

These are features that you might want to implement in addition to the core features.

type::Error
One problem is that type error recovery can generate false errors. For instance
our compiler usually considers that the type for incorrect constructs is Int,
which can create cascades of errors:

Chapter 4: Compiler Stages 59

"666" = if 000 then 333 else "666"

File 4.23: ‘is_devil.tig’

$ tc is_devil.tig --types-check

error is_devil.tig:1.8-33: type mismatch
error then clause type: int
error else clause type: string
error is_devil.tig:1.0-33: type mismatch
error left operand type: string
error right operand type: int
⇒4
Example 39: tc is_devil.tig --types-check

One means to avoid this issue consists in introducing a new type,
type::Error, that the type checker would never complain about. This can
be a nice complement to ast::Error.

4.6.6 T4 FAQ
Stupid Types

One can legitimately wonder whether the following program is correct:

let type weirdo = array of weirdo
in

print ("I’m a creep.\n")
end

the answer is "yes", as nothing prevents this in the Tiger specifications. Note
that this type is not usable though.

kinds (kind_get, etc.)
Some of the ast components have features such as kind_, kind_get and so
forth. These are to be used only in T5, you don’t have to complete them now.

The TypeVisitor is not a ConstVisitor
One of the tasks of the type checking is to pass additional information to
the translation. For instance, since < is overloaded (for integers and strings),
the translation needs to know the types of the arguments. In a traditional
compiler, type checking and translation would be performed simultaneously,
but our Tiger Compiler, in order to simplify its architecture, has two different
passes for each. Hence, the TypeVisitor will have to leave notes on the AST
for the TranslateVisitor, therefore it cannot be a const visitor once T5
implemented. It can perfectly be const during T4.

4.6.7 T4 Improvements

Possible improvements include:

A Runtime class
The Tiger language specify a “standard library” comprising functions such
as print, getchar and so forth. This stage requires to know the signature
of these builtins to type check their uses, the stage T5 need the signature to
implement correctly the call protocol, and some other parts of the compiler
might need them.

60 The Tiger Compiler Project Assignment

It is a bad designed that the knowledge about these builtins is scattered in
various places, but to avoid departing too much from Appel’s modelisation17,
we kept it this way. You might want to make one anyway.

More flexibility on the runtime
Maybe the runtime should actually be declared as a form of “prelude”, as
Haskell people call it: a file that is always read, initializing the environment.
It would contains things such as:

function substring (string: string, first: int, count: int) : string
= __builtin "substring"

/* ... */

This would keep all things together, and would make it easier to implement
extensions in the language. For instance, one could add:

function abort () = __builtin "abort"

Walking that track goes beyond the simplicity and minimality that the Tiger
Projects aims at for (generalist) first year students.

4.7 T5, Translating to the High Level Intermediate
Representation

This section was last updated for EPITA-2005 on 2003-06-10.
2005-T56 delivery is Friday, June 20th, at noon.

At the end of this stage the compiler translates the AST into the high level intermediate
representation, HIR for short. And, of course, all the errors of previous stages have been
fixed.

Relevant lecture notes include ‘intermediate.pdf’18.

4.7.1 T5 Goals

Things to learn during this stage that you should remember:

“Functional” programming in C++
See for instance the use of std::binary_function to sort Temp*.

Traits Traits are a useful technique that allows to write (compile time) functions
ranging over types. See Section A.1 [Glossary], page 129.

Lazy/delayed computation
The ‘Ix’, ‘Cx’, ‘Nx’, and ‘Ex’ classes delay computation to address context-
depend issues in a context independent way.

Intermediate Representations
A different approach of hierarchies

In this project, the ast is composed of different classes related by inheritance
(as if the kinds of the nodes were class members). Here, the nodes are members
of a single class, but their nature is specified by the object itself (as if the kinds
of the nodes were object members).

4.7.2 T5 Samples

T5 can be started (and should be started if you don’t want to finish it in a hurry) by
first making sure your compiler can handle code that uses no variables. Then, you can
complete your compiler to support more and more Tiger features.

17 This statement is unfair to Andrew Appel: since in his modelisation type checking and translation are
performed in a single step, the information about the builtins remains in a single place.

18 http://www.lrde.epita.fr/~akim/compil/lecture-notes/intermediate.pdf.

Chapter 4: Compiler Stages 61

4.7.2.1 T5 Primitive Samples

This example is probably the simplest Tiger program.

0

File 4.24: ‘0.tig’

$ tc --hir-display 0.tig

/* == High Level Intermediate representation. == */
Routine: Main
label Main
Prologue
Body
sxp

const 0
Epilogue
label end
Example 41: tc --hir-display 0.tig

You should then probably try to make more difficult programs with literals only. Arith-
metics is one of the easiest tasks.

1 + 2 * 3

File 4.25: ‘arith.tig’

$ tc -H arith.tig

/* == High Level Intermediate representation. == */
Routine: Main
label Main
Prologue
Body
sxp

binop (+)
const 1
binop (*)

const 2
const 3

Epilogue
label end
Example 43: tc -H arith.tig

You should use havm to exercise your output.

$ tc -H arith.tig >arith.hir
Example 44: tc -H arith.tig >arith.hir

$ havm arith.hir

Example 45: havm arith.hir

Unfortunately, without actually printing something, you won’t see the final result,
which means you need to implement calls. Fortunately, you can ask havm for a verbose
execution:

$ havm --trace arith.hir

error plaining
error unparsing
error checking
error checkingLow

62 The Tiger Compiler Project Assignment

error evaling
error call (name Main) []
error 8.8-8.15: const 1
error 10.12-10.19: const 2
error 11.12-11.19: const 3
error 9.8-11.19: binop (*) 2 3
error 7.4-11.19: binop (+) 1 6
error 6.0-11.19: sxp 7
error end call (name Main) [] = 0

Example 46: havm --trace arith.hir

If you look carefully, you will find an ‘sxp 7’ in there...

Then you are encouraged to implement control structures.

if 101 then 102 else 103

File 4.26: ‘if-101.tig’

$ tc -H if-101.tig

/* == High Level Intermediate representation. == */
Routine: Main
label Main
Prologue
Body
seq

cjump ne
const 101
const 0
name l0
name l1

label l0
sxp

const 102
jump

name l2
label l1
sxp

const 103
label l2

seq end
Epilogue
label end
Example 48: tc -H if-101.tig

And even more difficult control structure uses:

while 101
do (if 102 then break)

File 4.27: ‘while-101.tig’

$ tc -H while-101.tig

/* == High Level Intermediate representation. == */
Routine: Main
label Main

Chapter 4: Compiler Stages 63

Prologue
Body
seq

label l1
cjump ne

const 101
const 0
name l2
name l0

label l2
seq

cjump ne
const 102
const 0
name l3
name l4

label l3
jump

name l0
jump

name l5
label l4
sxp

const 0
label l5

seq end
jump

name l1
label l0

seq end
Epilogue
label end
Example 50: tc -H while-101.tig

4.7.2.2 T5 Optimizing Cascading If

Our compiler optimizes the number of jumps needed to compute nested if, using
‘translate::Ix’ where a plain use of ‘translate::Cx’, ‘Nx’, and ‘Ex’ is possible, but
less efficient.

Consider the following sample:

if 11 | 22 then print ("OK\n")

File 4.28: ‘boolean.tig’

a naive implementation will probably produce too many successive cjump instructions:
$ tc --hir-naive -H boolean.tig

/* == High Level Intermediate representation. == */

label l3
"OK\n"

Routine: Main
label Main
Prologue

64 The Tiger Compiler Project Assignment

Body
seq

cjump ne
eseq
seq

cjump ne
const 11
const 0
name l0
name l1

label l0
move

temp t0
const 1

jump
name l2

label l1
move

temp t0
const 22

jump
name l2

label l2
seq end

temp t0
const 0
name l4
name l5

label l4
sxp

call
name print
name l3

call end
jump

name l6
label l5
sxp

const 0
jump

name l6
label l6

seq end
Epilogue
label end
Example 52: tc --hir-naive -H boolean.tig

$ tc --hir-naive -H boolean.tig >boolean-1.hir
Example 53: tc --hir-naive -H boolean.tig >boolean-1.hir

$ havm --profile boolean-1.hir

error /* Profiling. */
error fetches from temporary : 1

Chapter 4: Compiler Stages 65

error fetches from memory : 0
error binary operations : 0
error function calls : 1
error stores to temporary : 1
error stores to memory : 0
error jumps : 2
error conditional jumps : 2
error /* Execution time. */
error number of cycles : 16
OK
Example 54: havm --profile boolean-1.hir

If you carefully analyze the cause of this pessimization, it is related to the computation of
an intermediary expression (the value of ‘11 | 22’) which is later decoded as a condition.
A proper implementation will produce:

$ tc -H boolean.tig

/* == High Level Intermediate representation. == */

label l0
"OK\n"

Routine: Main
label Main
Prologue
Body
seq

seq
cjump ne

const 11
const 0
name l4
name l5

label l4
cjump ne

const 1
const 0
name l1
name l2

label l5
cjump ne

const 22
const 0
name l1
name l2

seq end
label l1
sxp

call
name print
name l0

call end
jump

name l3

66 The Tiger Compiler Project Assignment

label l2
sxp

const 0
label l3

seq end
Epilogue
label end
Example 55: tc -H boolean.tig

$ tc -H boolean.tig >boolean-2.hir
Example 56: tc -H boolean.tig >boolean-2.hir

$ havm --profile boolean-2.hir

error /* Profiling. */
error fetches from temporary : 0
error fetches from memory : 0
error binary operations : 0
error function calls : 1
error stores to temporary : 0
error stores to memory : 0
error jumps : 1
error conditional jumps : 2
error /* Execution time. */
error number of cycles : 13
OK
Example 57: havm --profile boolean-2.hir

4.7.2.3 T5 Builtin Calls Samples

But the game becomes more interesting when you implement function calls (which is easier
than compiling functions). print_int is probably the first builtin to implement:

(print_int (101); print ("\n"))

File 4.29: ‘print-101.tig’

$ tc -H print-101.tig >print-101.hir
Example 59: tc -H print-101.tig >print-101.hir

$ havm print-101.hir

101
Example 60: havm print-101.hir

Complex values, arrays and records, also need calls to the runtime system:

let type list = { h: int, t: list }
var list := list { h = 1, t = list { h = 2, t = nil } }

in
print_int (list.t.h); print ("\n")

end

File 4.30: ‘print-list.tig’

$ tc -H print-list.tig

/* == High Level Intermediate representation. == */

label l0
"\n"

Routine: Main

Chapter 4: Compiler Stages 67

label Main
Prologue
move

temp t2
temp fp

move
temp fp
temp sp

move
temp sp
binop (-)

temp sp
const 4

Body
seq

move
mem

temp $fp
eseq
seq

move
temp t1
call

name malloc
const 8

call end
move

mem
binop (+)

temp t1
const 0

const 1
move

mem
binop (+)

temp t1
const 4

eseq
seq

move
temp t0
call

name malloc
const 8

call end
move

mem
binop (+)

temp t0
const 0

const 2
move

68 The Tiger Compiler Project Assignment

mem
binop (+)

temp t0
const 4

const 0
seq end

temp t0
seq end

temp t1
seq

sxp
call

name print_int
mem

binop (+)
mem

binop (+)
mem

temp $fp
const 4

const 0
call end

sxp
call

name print
name l0

call end
seq end

seq end
Epilogue
move

temp sp
temp fp

move
temp fp
temp t2

label end
Example 62: tc -H print-list.tig

$ tc -H print-list.tig >print-list.hir
Example 63: tc -H print-list.tig >print-list.hir

$ havm print-list.hir

2
Example 64: havm print-list.hir

4.7.2.4 T5 Samples with Variables

Here is an example which demonstrates the usefulness of information about escapes: when
escaping variables are not computed, they are all stored on the stack:

Chapter 4: Compiler Stages 69

let var a := 1
var b := 2
var c := 3

in
a := 2;
c := a + b + c;
print_int (c);
print ("\n")

end

File 4.31: ‘vars.tig’

$ tc -H vars.tig

/* == High Level Intermediate representation. == */

label l0
"\n"

Routine: Main
label Main
Prologue
move

temp t0
temp fp

move
temp fp
temp sp

move
temp sp
binop (-)

temp sp
const 12

Body
seq

move
mem

temp $fp
const 1

seq
move

mem
binop (+)

temp $fp
const -4

const 2
seq

move
mem

binop (+)
temp $fp
const -8

const 3
seq

70 The Tiger Compiler Project Assignment

move
mem

temp $fp
const 2

move
mem

binop (+)
temp $fp
const -8

binop (+)
binop (+)

mem
temp $fp

mem
binop (+)

temp $fp
const -4

mem
binop (+)

temp $fp
const -8

sxp
call

name print_int
mem

binop (+)
temp $fp
const -8

call end
sxp

call
name print
name l0

call end
seq end

seq end
seq end

seq end
Epilogue
move

temp sp
temp fp

move
temp fp
temp t0

label end
Example 66: tc -H vars.tig

But once escaping variable computation implemented, we know none escape in this exam-
ple, hence they can be stored in temporaries:

$ tc -eH vars.tig

/* == High Level Intermediate representation. == */

Chapter 4: Compiler Stages 71

label l0
"\n"

Routine: Main
label Main
Prologue
Body
seq

move
temp t0
const 1

seq
move

temp t1
const 2

seq
move

temp t2
const 3

seq
move

temp t0
const 2

move
temp t2
binop (+)

binop (+)
temp t0
temp t1

temp t2
sxp

call
name print_int
temp t2

call end
sxp

call
name print
name l0

call end
seq end

seq end
seq end

seq end
Epilogue
label end
Example 67: tc -eH vars.tig

$ tc -eH vars.tig >vars.hir
Example 68: tc -eH vars.tig >vars.hir

$ havm vars.hir

7

72 The Tiger Compiler Project Assignment

Example 69: havm vars.hir

Then, you should implement the declaration of functions:

let function fact (i: int) : int =
if i = 0 then 1

else i * fact (i - 1)
in

print_int (fact (15));
print ("\n")

end

File 4.32: ‘fact15.tig’

$ tc -H fact15.tig

/* == High Level Intermediate representation. == */
Routine: fact
label l0
Prologue
move

temp t1
temp fp

move
temp fp
temp sp

move
temp sp
binop (-)

temp sp
const 8

move
mem

temp $fp
temp i0

move
mem

binop (+)
temp $fp
const -4

temp i1
Body
move

temp $v0
eseq
seq

cjump eq
mem

binop (+)
temp $fp
const -4

const 0
name l1
name l2

label l1

Chapter 4: Compiler Stages 73

move
temp t0
const 1

jump
name l3

label l2
move

temp t0
binop (*)

mem
binop (+)

temp $fp
const -4

call
name l0
mem

temp $fp
binop (-)

mem
binop (+)

temp $fp
const -4

const 1
call end

label l3
seq end

temp t0
Epilogue
move

temp sp
temp fp

move
temp fp
temp t1

label end

label l4
"\n"

Routine: Main
label Main
Prologue
Body
seq

sxp
call

name print_int
call

name l0
temp $fp
const 15

call end

74 The Tiger Compiler Project Assignment

call end
sxp

call
name print
name l4

call end
seq end
Epilogue
label end
Example 71: tc -H fact15.tig

$ tc -H fact15.tig >fact15.hir
Example 72: tc -H fact15.tig >fact15.hir

$ havm fact15.hir

2004310016
Example 73: havm fact15.hir

And finally, you should support escaping variables. See 〈undefined〉 [variable-
escapes.tig], page 〈undefined〉.

$ tc -eH variable-escapes.tig

/* == High Level Intermediate representation. == */

label l0
"I rule the world!\n"

label l1
"Peace on Earth for humans of good will.\n"

Routine: print_slogan
label l2
Prologue
move

temp t2
temp fp

move
temp fp
temp sp

move
temp sp
binop (-)

temp sp
const 4

move
mem

temp $fp
temp i0

move
temp t1
temp i1

Body
seq

sxp
call

name print

Chapter 4: Compiler Stages 75

temp t1
call end

sxp
call

name print
mem

mem
temp $fp

call end
seq end
Epilogue
move

temp sp
temp fp

move
temp fp
temp t2

label end

Routine: Main
label Main
Prologue
move

temp t3
temp fp

move
temp fp
temp sp

move
temp sp
binop (-)

temp sp
const 4

Body
seq

move
mem

temp $fp
name l0

seq
move

temp t0
name l1

sxp
call

name l2
temp $fp
temp t0

call end
seq end

seq end
Epilogue

76 The Tiger Compiler Project Assignment

move
temp sp
temp fp

move
temp fp
temp t3

label end
Example 74: tc -eH variable-escapes.tig

4.7.3 T5 Given Code

Some code is provided, see Section 4.8.3 [T6 Given Code], page 92. See Section 3.2.9
[src/temp], page 32, Section 3.2.10 [src/tree], page 32, Section 3.2.11 [src/frame], page 32,
Section 3.2.12 [src/translate], page 33.

4.7.4 T5 Code to Write

You are encouraged to try first very simple examples: ‘nil’, ‘1 + 2’, ‘"foo" < "bar"’ etc.
Then consider supporting variables, and finally handle the case of the functions.

Driver The driver must performs the translation when given ‘--hir-compute’, but
displays the result iff the option ‘-H’ was given. Obviously, an input that
has not been type-checked cannot be translated, so ‘--hir-compute’ implies
‘--types-check’.

TypeVisitor
The TranslateVisitor often needs additional type information to proceed,
especially expression versus instruction. Hence, you’ll have to update the
TypeVisitor to leave notes on the AST using kind_set and so forth.

‘src/translate/fragment.hh’
There remains to implement translate::ProcFrag::print which outputs
the routine themselves plus the glue code (allocating the frame etc.).

‘src/translate/level-env.hh’
Code is missing. In particular, bear in mind that the initial environment is
not empty...

‘src/translate/translation.hh’
There are many holes to fill.

‘src/translate/translate-visitor.hh’
There are holes to fill.

4.7.5 T5 Options

This section documents possible extensions you could implement in T5.

4.7.5.1 T5 Bounds Checking

Implementing bounds checking is quite simple: have the program die when the program
accesses an invalid subscript in an array. For instance, the following code “succeeds” with
a non-bounds-checking compiler.

Chapter 4: Compiler Stages 77

let type int_array = array of int
var size := 2
var arr1 := int_array [size] of 0
var arr2 := int_array [size] of 0
var two := 2
var m_one := -1

in
arr1[two] := 3;
arr2[m_one] := -1;

print_int (arr1[1]);
print ("\n");
print_int (arr2[0]);
print ("\n")

end

File 4.33: ‘bounds-violation.tig’

$ tc -H bounds-violation.tig >bounds-violation.hir
Example 76: tc -H bounds-violation.tig >bounds-violation.hir

$ havm bounds-violation.hir

-1
3
Example 77: havm bounds-violation.hir

When run with ‘--bounds-checking’, your compiler produces code that diagnoses such
cases, and exits with status 120. Something like:

error bounds-violation.tig:8.2-17: index out of arr1 bounds (0 .. 1): 2
⇒120

4.7.5.2 T5 Optimizing Static Links

Warning: this optimization is difficult to do it perfectly, and therefore, expect a big bonus.

In a first and conservative extension, the compiler considers that all the functions
(but the builtins!) need a static link. This is correct, but inefficient: for instance, the
traditional fact function will spend almost as much time handling the static link, than
its real argument.

Some functions need a static link, but don’t need to save it on the stack. For instance,
in the following example:

let var foo := 1
function foo () : int = foo

in
foo ()

end

the function foo does need a static link to access the variable foo, but does not need to
store its static link on the stack.

It is suggested to address these problems in the following order:

1. Implement the detection of functions that do not need a static link (see exercise 6.5
in “Modern Implementation of Compilers”), but still consider any static link escapes.

2. Adjust the output of ‘--escapes-display’ to display ‘/* escaping sl */’ before the
first formal argument of the functions (declarations) that need the static link:

78 The Tiger Compiler Project Assignment

$ tc -E fact.tig

/* == Escapes. == */
let

function fact (/* escaping sl *//* escaping */ n : int) : int =
if (n = 0)

then 1
else (n * fact ((n - 1)))

in
fact (10)

end

$ tc -eE fact.tig

/* == Escapes. == */
let

function fact (n : int) : int =
if (n = 0)

then 1
else (n * fact ((n - 1)))

in
fact (10)

end

3. Adjust your call and progFrag prologues.
4. Improve your computation so that non escaping static links are detected:

$ tc -eE escaping-sl.tig

/* == Escapes. == */
let

var toto := 1
function outer (/* escaping sl */) : int =
let function inner (/* sl */) : int = toto
in inner () end

in
outer ()

end

Watch out, it is not trivial to find the minimum. What do you think about the static
link of the function sister below?

let
var toto := 1
function outer () : int =
let function inner () : int = toto
in inner () end

function sister () : int = outer ()
in
sister ()

end

4.7.6 T5 Improvements

Possible improvements include:

Using boost::variant to implement Temp and Label
The two sibling classes Temp and Label clearly implement a union in the sense
of C. But C++ virtually forbids objects in classes: only pod is allowed, this is
why our design does not use it.

Chapter 4: Compiler Stages 79

Some people have worked hard to implement union la C++, i.e., with type
safety, polymorphism etc. These union are called “discriminated unions” or
“variants” to follow the vocabulary introduced by Caml. See the papers from
Andrei Alexandrescu: Discriminated Unions (i)19, Discriminated Unions (ii)20,
Discriminated Unions (iii)21 for an introduction to the techniques. We would
use boost::variant (see [Boost.org], page 115) if this material was not too
advanced for first year students.

I strongly encourage you to read these enlightening articles.

Implement maximal node sharing
The proposed implementation of Tree creates new nodes for equal expressions;
for instance two uses of the variable foo lead to two equal instantiations of
tree::Temp. The same applies to more complex constructs such as the same
translation if foo is actually a frame resident variable etc. Because memory
consumption may have a negative impact on performances, it is desirable
to implement maximal sharing: whenever a Tree is needed, we first check
whether it already exists and then reuse it. This must be done recursively:
the translation of ‘(x + x) * (x + x)’ should have a single instantiation of ‘x
+ x’ instead of two, but also a single instantiation of ‘x’ instead of four.

Node sharing makes some algorithms, such as rewriting, more complex, espe-
cially wrt memory management. Garbage collection is almost required, but
fortunately the node of Tree are reference counted! Therefore, almost every-
thing is ready to implement maximal node sharing. See [spot], page 120, for
an explanation on how this approach was successfully implemented. See the
ATermLibrary22 for a general implementation of maximally shared trees.

4.8 T6, Translating to the Low Level Intermediate
Representation

This section was last updated for EPITA-2005 on 2003-05-15.
2005-T56 delivery is Friday, June 20th, at noon.

There will be no additional code: there is no “holes” to fill, you have to write the whole
thing. Consequently, you may start T6 as soon as you want.

At the end of this stage, the compiler produces low level intermediate representation:
LIR. LIR is a subset of the HIR: some patterns are forbidden. This is why it is also named
canonicalization.

Relevant lecture notes include ‘intermediate.pdf’23.

4.8.1 T6 Goals

Things to learn during this stage that you should remember:

Term Rewriting System
Term rewriting system are a whole topic of research in itself. If you need to
be convinced, just look for “term rewriting system” on Google24.

19 http://www.cuj.com/documents/s=7984/cujcexp2004alexandr/.
20 http://www.cuj.com/documents/s=7982/cujcexp2006alexandr/.
21 http://www.cuj.com/documents/s=7980/cujcexp2008alexandr/.
22 http://www.cwi.nl/htbin/sen1/twiki/bin/view/SEN1/ATermLibrary.
23 http://www.lrde.epita.fr/~akim/compil/lecture-notes/intermediate.pdf.
24 http://www.google.com/search?q=term+rewriting+system.

80 The Tiger Compiler Project Assignment

More “Functional” Programming in C++
A lot of T6 is devoted to looking for specific nodes in lists of nodes, and
splitting, and splicing lists at these places. This could be done by hand, with
many hand-written iterations, or using functors and STL algorithms. You
are expected to do the latter, and to discover things such as std::splice,
std::find_if, std::unary_function, std::not1 etc.

4.8.2 T6 Samples

There are several stages in T6.

4.8.2.1 T6 Canonicalization Samples

The first task in T6 is getting rid of all the eseq. To do this, you have to move the
statement part of an eseq at the end of the current sequence point, and keeping the
expression part in place.

Compare for instance the HIR to the LIR in the following case:

let function print_ints (a: int, b: int) =
(print_int (a); print (", "); print_int (b); print ("\n"))
var a := 0

in
print_ints (1, (a := a + 1; a))

end

File 4.34: ‘preincr-1.tig’

One possible HIR translation is:
$ tc -eH preincr-1.tig

/* == High Level Intermediate representation. == */

label l1
", "

label l2
"\n"

Routine: print_ints
label l0
Prologue
move

temp t2
temp fp

move
temp fp
temp sp

move
temp sp
binop (-)

temp sp
const 4

move
mem

temp $fp
temp i0

move

Chapter 4: Compiler Stages 81

temp t0
temp i1

move
temp t1
temp i2

Body
seq

sxp
call

name print_int
temp t0

call end
sxp

call
name print
name l1

call end
sxp

call
name print_int
temp t1

call end
sxp

call
name print
name l2

call end
seq end
Epilogue
move

temp sp
temp fp

move
temp fp
temp t2

label end

Routine: Main
label Main
Prologue
Body
seq

move
temp t3
const 0

sxp
call

name l0
temp $fp
const 1
eseq

move

82 The Tiger Compiler Project Assignment

temp t3
binop (+)

temp t3
const 1

temp t3
call end

seq end
Epilogue
label end
Example 79: tc -eH preincr-1.tig

A possible canonicalization is then:

$ tc -eL preincr-1.tig

/* == Low Level Intermediate representation. == */

label l1
", "

label l2
"\n"

Routine: print_ints
label l0
Prologue
move

temp t2
temp fp

move
temp fp
temp sp

move
temp sp
binop (-)

temp sp
const 4

move
mem

temp $fp
temp i0

move
temp t0
temp i1

move
temp t1
temp i2

Body
seq

label l3
sxp

call
name print_int
temp t0

call end

Chapter 4: Compiler Stages 83

sxp
call

name print
name l1

call end
sxp

call
name print_int
temp t1

call end
sxp

call
name print
name l2

call end
label l4

seq end
Epilogue
move

temp sp
temp fp

move
temp fp
temp t2

label end

Routine: Main
label Main
Prologue
Body
seq

label l5
move

temp t3
const 0

move
temp t5
temp $fp

move
temp t3
binop (+)

temp t3
const 1

sxp
call

name l0
temp t5
const 1
temp t3

call end
label l6

seq end

84 The Tiger Compiler Project Assignment

Epilogue
label end
Example 80: tc -eL preincr-1.tig

But please note the example above is simple because ‘1’ commutes with ‘(a := a +
1; a)’: the order does not matter. But if you change the ‘1’ into ‘a’, then you cannot
exchange ‘a’ and ‘(a := a + 1; a)’, so the translation is different. Compare the previous
LIR with the following, and pay attention to

let function print_ints (a: int, b: int) =
(print_int (a); print (", "); print_int (b); print ("\n"))
var a := 0

in
print_ints (a, (a := a + 1; a))

end

File 4.35: ‘preincr-2.tig’

$ tc -eL preincr-2.tig

/* == Low Level Intermediate representation. == */

label l1
", "

label l2
"\n"

Routine: print_ints
label l0
Prologue
move

temp t2
temp fp

move
temp fp
temp sp

move
temp sp
binop (-)

temp sp
const 4

move
mem

temp $fp
temp i0

move
temp t0
temp i1

move
temp t1
temp i2

Body
seq

label l3
sxp

Chapter 4: Compiler Stages 85

call
name print_int
temp t0

call end
sxp

call
name print
name l1

call end
sxp

call
name print_int
temp t1

call end
sxp

call
name print
name l2

call end
label l4

seq end
Epilogue
move

temp sp
temp fp

move
temp fp
temp t2

label end

Routine: Main
label Main
Prologue
Body
seq

label l5
move

temp t3
const 0

move
temp t5
temp $fp

move
temp t6
temp t3

move
temp t3
binop (+)

temp t3
const 1

sxp
call

86 The Tiger Compiler Project Assignment

name l0
temp t5
temp t6
temp t3

call end
label l6

seq end
Epilogue
label end
Example 82: tc -eL preincr-2.tig

As you can see, the output is the same for the HIR and the LIR:

$ tc -eH preincr-2.tig >preincr-2.hir
Example 83: tc -eH preincr-2.tig >preincr-2.hir

$ havm preincr-2.hir

0, 1
Example 84: havm preincr-2.hir

$ tc -eL preincr-2.tig >preincr-2.lir
Example 85: tc -eL preincr-2.tig >preincr-2.lir

$ havm preincr-2.lir

0, 1
Example 86: havm preincr-2.lir

Be very careful when dealing with mem. For instance, rewriting something like:

call (foo, eseq (move (temp t, const 51), temp t))

into

move temp t1, temp t
move temp t, const 51
call (foo, temp t)

is dead wrong: ‘temp t’ is a subexpression: it is being defined here. You should produce:

move temp t, const 51
call (foo, temp t)

Another danger is the handling of ‘move (mem,)’. For instance:

move (mem foo, x)

must be rewritten into:

move (temp t, foo)
move (mem (temp t), x)

not as:

move (temp t, mem (foo))
move (temp t, x)

In other words, the first subexpression of ‘move (mem (foo),)’ is ‘foo’, not ‘mem
(foo)’. The following example is a good crash test against this problem:

Chapter 4: Compiler Stages 87

let type int_array = array of int
var tab := int_array [2] of 51

in
tab[0] := 100;
tab[1] := 200;
print_int (tab[0]); print ("\n");
print_int (tab[1]); print ("\n")

end

File 4.36: ‘move-mem.tig’
$ tc -eL move-mem.tig >move-mem.lir
Example 88: tc -eL move-mem.tig >move-mem.lir

$ havm move-mem.lir

100
200
Example 89: havm move-mem.lir

You also ought to get rid of nested calls:

print (chr (ord ("\n")))

File 4.37: ‘nested-calls.tig’
$ tc -L nested-calls.tig

/* == Low Level Intermediate representation. == */

label l0
"\n"

Routine: Main
label Main
Prologue
Body
seq

label l1
move

temp t1
call

name ord
name l0

call end
move

temp t2
call

name chr
temp t1

call end
sxp

call
name print
temp t2

call end
label l2

seq end

88 The Tiger Compiler Project Assignment

Epilogue
label end
Example 91: tc -L nested-calls.tig

In fact there are only two valid call forms: ‘sxp (call (...))’, and ‘move (temp
(...), call (...))’.

Note that, contrary to C, the HIR and LIR always denote the same value. For instance
the following Tiger code:

let
var a := 1
function a (t: int) : int =

(a := a + 1;
print_int (t); print (" -> "); print_int (a); print ("\n");
a)

var b := a (1) + a (2) * a (3)
in

print_int (b); print ("\n")
end

File 4.38: ‘seq-point.tig’

should always produce:
$ tc -L seq-point.tig >seq-point.lir
Example 93: tc -L seq-point.tig >seq-point.lir

$ havm seq-point.lir

1 -> 2
2 -> 3
3 -> 4
14
Example 94: havm seq-point.lir

independently of the what IR you ran. Note that it has nothing to do with the precedence
of the operators!

In C, you have no such guarantee: the following program can give different results with
different compilers and/or on different architectures.

#include <stdio.h>

int a_ = 1;
int
a (int t)
{

++a_;
printf ("%d -> %d\n", t, a_);
return a_;

}

int
main (void)
{

int b = a (1) + a (2) * a (3);
printf ("%d\n", b);
return 0;

Chapter 4: Compiler Stages 89

}

4.8.2.2 T6 Scheduling Samples

Once your eseq and call canonicalized, normalize cjumps: they must be followed by their
“false” label. This goes in two steps:

1. Split in basic blocks.
A basic block is a sequence of code starting with a label, ending with a jump (condi-
tional or not), and with no jumps, no labels inside.

2. Build the traces.
Now put all the basic blocks into a single sequence.

The following example highlights the need for new labels: at least one for the entry
point, and one for the exit point:

1 & 2

File 4.39: ‘1-and-2.tig’

$ tc -L 1-and-2.tig

/* == Low Level Intermediate representation. == */
Routine: Main
label Main
Prologue
Body
seq

label l3
cjump ne

const 1
const 0
name l0
name l1

label l1
label l2
jump

name l4
label l0
jump

name l2
label l4

seq end
Epilogue
label end
Example 96: tc -L 1-and-2.tig

The following example contains many jumps. Compare the hir to the lir:

while 10 | 20 do if 30 | 40 then break else break

File 4.40: ‘broken-while.tig’

$ tc -H broken-while.tig

/* == High Level Intermediate representation. == */
Routine: Main

90 The Tiger Compiler Project Assignment

label Main
Prologue
Body
seq

label l1
seq

cjump ne
const 10
const 0
name l8
name l9

label l8
cjump ne

const 1
const 0
name l2
name l0

label l9
cjump ne

const 20
const 0
name l2
name l0

seq end
label l2
seq

seq
cjump ne

const 30
const 0
name l6
name l7

label l6
cjump ne

const 1
const 0
name l3
name l4

label l7
cjump ne

const 40
const 0
name l3
name l4

seq end
label l3
jump

name l0
jump

name l5
label l4
jump

Chapter 4: Compiler Stages 91

name l0
label l5

seq end
jump

name l1
label l0

seq end
Epilogue
label end
Example 98: tc -H broken-while.tig

$ tc -L broken-while.tig

/* == Low Level Intermediate representation. == */
Routine: Main
label Main
Prologue
Body
seq

label l10
label l1
cjump ne

const 10
const 0
name l8
name l9

label l9
cjump ne

const 20
const 0
name l2
name l0

label l0
jump

name l11
label l2
cjump ne

const 30
const 0
name l6
name l7

label l7
cjump ne

const 40
const 0
name l3
name l4

label l4
jump

name l0
label l3
jump

name l0

92 The Tiger Compiler Project Assignment

label l6
cjump ne

const 1
const 0
name l3
name l13

label l13
jump

name l4
label l8
cjump ne

const 1
const 0
name l2
name l14

label l14
jump

name l0
label l11

seq end
Epilogue
label end
Example 99: tc -L broken-while.tig

4.8.3 T6 Given Code

Some code is provided: ‘2005-tc-6.1.tar.bz2’25. The transition from the previ-
ous versions can be done thanks to the following diffs: ‘2005-tc-4.3-6.0.diff’26,
‘2005-tc-6.0-6.1.diff’27.

It includes most of the canonicalization.

4.8.4 T6 Code to Write

Everything you need.

4.8.5 T6 Improvements

Possible improvements include:

4.9 T7, Instruction Selection
2005-T7 delivery is Friday, July 4th 2003 at noon.

This section was last updated for EPITA-2004 and EPITA-2005 on 2003-07-02.

Please note that the 2005-T7 delivery is an option: there will be no grade, and a single
upload will be accepted. The tests from T0 to T7 tests will be run on the tarball. The
goal is to help you see your mistakes, and how your T7 is running to be able to proceed
in peace onto T8. There will be no penalty if you don’t take advantage of this possibility.

At the end of this stage, the compiler produces the very low level intermediate repre-
sentation: ASSEM. This output is target dependent, and we aim at MIPS, as we use Mipsy
to run it.

25 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-6.1.tar.bz2.
26 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-4.3-6.0.diff.
27 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-6.0-6.1.diff.

Chapter 4: Compiler Stages 93

Relevant lecture notes include ‘instr-selection.pdf’28.

4.9.1 T7 Goals

Things to learn during this stage that you should remember:

risc vs. cisc etc.
First introduction to assembly
Memory hierarchy/management at runtime
auto_ptr The Target module uses an auto_ptr pointer to manipulate without efforts a

pointer to the current target, and to guarantee it is released (delete) at the
end of the run.

4.9.2 T7 Samples

The goal of T7 is straightforward: starting from LIR, generate the MIPS instructions,
except that you don’t have actual registers: we still heavily use Temps. Register allocation
will be done in a later stage, Section 4.11 [T9], page 105.

1 + 2 * 3

File 4.41: ‘seven.tig’

$ tc --inst-display seven.tig

== Final assembler ouput. ==
Routine: Main
t_main:

move t5, $s0
move t6, $s1
move t7, $s2
move t8, $s3
move t9, $s4
move t10, $s5
move t11, $s6
move t12, $s7

l0:
li t3, 2
mul t2, t3, 3
li t4, 1
add t1, t4, t2

l1:
move $s0, t5
move $s1, t6
move $s2, t7
move $s3, t8
move $s4, t9
move $s5, t10
move $s6, t11
move $s7, t12

Example 101: tc --inst-display seven.tig

Please, note that at this stage, the control flow analysis and the liveness analysis are not
performed yet, therefore the compiler cannot know what registers are really to be saved.
That’s why in the previous output it saves "uselessly" all the callee-save registers on main

28 http://www.lrde.epita.fr/~akim/compil/lecture-notes/instr-selection.pdf.

94 The Tiger Compiler Project Assignment

entry. The next stage, which combines control flow analysis, liveness analysis, and register
allocation, will make it useless. For your information, it results in:

$ tc -sI seven.tig

== Final assembler ouput. ==
Routine: Main
t_main:

sw $fp, ($sp)
move $fp, $sp
sub $sp, $sp, 8
sw $ra, -4 ($fp)

l0:
li $t0, 2
mul $t1, $t0, 3
li $t0, 1
add $t0, $t0, $t1

l1:

lw $ra, -4 ($fp)
move $sp, $fp
lw $fp, ($fp)
jr $ra

Example 102: tc -sI seven.tig

A delicate part of this exercise is handling the function calls:

let function add (x: int, y: int) : int = x + y
in

print_int (add (1, (add (2, 3)))); print ("\n")
end

File 4.42: ‘add.tig’

$ tc -e --mipsy-display add.tig

== Final assembler ouput. ==
Routine: add
l0:

sw $fp, -4 ($sp)
move $fp, $sp
sub $sp, $sp, 12
sw $ra, -8 ($fp)
sw $a0, ($fp)
move t0, $a1
move t1, $a2
move t7, $s0
move t8, $s1
move t9, $s2
move t10, $s3
move t11, $s4
move t12, $s5
move t13, $s6
move t14, $s7

l2:
add t6, t0, t1

Chapter 4: Compiler Stages 95

move $v0, t6
l3:

move $s0, t7
move $s1, t8
move $s2, t9
move $s3, t10
move $s4, t11
move $s5, t12
move $s6, t13
move $s7, t14

lw $ra, -8 ($fp)
move $sp, $fp
lw $fp, -4 ($fp)
jr $ra

.data
l1:

.word 1

.asciiz "\n"
.text

Routine: Main
t_main:

sw $fp, ($sp)
move $fp, $sp
sub $sp, $sp, 8
sw $ra, -4 ($fp)
move t19, $s0
move t20, $s1
move t21, $s2
move t22, $s3
move t23, $s4
move t24, $s5
move t25, $s6
move t26, $s7

l4:
move $a0, $fp
li t15, 2
move $a1, t15
li t16, 3
move $a2, t16
jal l0
move t4, $v0
move $a0, $fp
li t17, 1
move $a1, t17
move $a2, t4
jal l0
move t5, $v0
move $a0, t5
jal print_int

96 The Tiger Compiler Project Assignment

la t18, l1
move $a0, t18
jal print

l5:
move $s0, t19
move $s1, t20
move $s2, t21
move $s3, t22
move $s4, t23
move $s5, t24
move $s6, t25
move $s7, t26

lw $ra, -4 ($fp)
move $sp, $fp
lw $fp, ($fp)
jr $ra

Example 104: tc -e --mipsy-display add.tig

Once your function calls work properly, you can start using mipsy to check the behavior
of your compiler.

$ tc -eH add.tig >add.hir
Example 105: tc -eH add.tig >add.hir

$ havm add.hir

6
Example 106: havm add.hir

Unfortunately, you need to adjust the output of ‘tc’, using t123, to mipsy conventions:
‘$x123’.

$ tc -eR --mipsy-display add.tig >add.instr
Example 107: tc -eR --mipsy-display add.tig >add.instr

$ sed -e’s/\([^$a-z]\)t\([0-9][0-9]*\)/\1$x\2/g’ add.instr >add.mipsy
Example 108: sed -e’s/\([^$a-z]\)t\([0-9][0-9]*\)/\1$x\2/g’ add.instr >add.mipsy

$ mipsy --unlimited-regs --execute add.mipsy

6
Example 109: mipsy --unlimited-regs --execute add.mipsy

You must also complete the runtime. No difference must be observable between a run
with havm and another with mipsy:

substring ("", 1, 1)

File 4.43: ‘substring-0-1-1.tig’

$ tc -eH substring-0-1-1.tig >substring-0-1-1.hir
Example 111: tc -eH substring-0-1-1.tig >substring-0-1-1.hir

$ havm substring-0-1-1.hir

substring: arguments out of bounds
⇒120
Example 112: havm substring-0-1-1.hir

$ tc -e --mipsy-display substring-0-1-1.tig

== Final assembler ouput. ==

Chapter 4: Compiler Stages 97

.data
l0:

.word 0

.asciiz ""
.text

Routine: Main
t_main:

sw $fp, ($sp)
move $fp, $sp
sub $sp, $sp, 8
sw $ra, -4 ($fp)
move t4, $s0
move t5, $s1
move t6, $s2
move t7, $s3
move t8, $s4
move t9, $s5
move t10, $s6
move t11, $s7

l1:
la t1, l0
move $a0, t1
li t2, 1
move $a1, t2
li t3, 1
move $a2, t3
jal substring

l2:
move $s0, t4
move $s1, t5
move $s2, t6
move $s3, t7
move $s4, t8
move $s5, t9
move $s6, t10
move $s7, t11

lw $ra, -4 ($fp)
move $sp, $fp
lw $fp, ($fp)
jr $ra

Example 113: tc -e --mipsy-display substring-0-1-1.tig

$ tc -eR --mipsy-display substring-0-1-1.tig >substring-0-1-1.instr
Example 114: tc -eR --mipsy-display substring-0-1-1.tig >substring-0-
1-1.instr

$ sed -e’s/\([^$a-z]\)t\([0-9][0-9]*\)/\1$x\2/g’ substring-0-1-1.instr >substring-
0-1-1.mipsy

Example 115: sed -e’s/\([^$a-z]\)t\([0-9][0-9]*\)/\1$x\2/g’ substring-

0-1-1.instr >substring-0-1-1.mipsy

$ mipsy --unlimited-regs --execute substring-0-1-1.mipsy

98 The Tiger Compiler Project Assignment

substring: arguments out of bounds
⇒120
Example 116: mipsy --unlimited-regs --execute substring-0-1-1.mipsy

4.9.3 T7 Given Code

Below is listed where to find the tarball depending on your class. For more informa-
tion about the T7 code delivered see Section 3.2.15 [src/target], page 34, Section 3.2.14
[src/assem], page 34, Section 3.2.16 [src/codegen], page 35.

2004-T7 A lot of code is provided. Actually, that’s a real problem: since last year,
the Tiger compiler has evolved a lot, and the integration of the new features
will probably be painful. The most striking difference with last year being the
Task handling.
The additional code is provided as:
− ‘2004-tc-7.6.tar.bz2’29, the whole tarball.
− ‘2004-tc-5.3-7.0.diff’30, ‘2004-tc-5.3-7.3.diff’31,

‘2004-tc-5.3-7.4.diff’32, ‘2004-tc-5.3-7.5.diff’33, the
differences with the latest tarball that was delivered.

− ‘2004-tc-7.0-7.1.diff’34, ‘2004-tc-7.1-7.2.diff’35,
‘2004-tc-7.2-7.3.diff’36, ‘2004-tc-7.3-7.4.diff’37,
‘2004-tc-7.4-7.5.diff’38, ‘2004-tc-7.5-7.6.diff’39, the
differences with previous versions of the ‘2004-tc-7’ tarball.

There are two ways to continue the projects:

minor upgrade
If you do not want to upgrade your 2004 compiler into the
2005 form, just copy the relevant files from the tarball. See
below. Adjust your driver so that ‘--inst-compute’ and
‘--inst-display’ be recognized. Of course, ‘--inst-compute’
implies ‘--lir-compute’.

major upgrade
You want to upgrade to the 2005 system. Expect massive
surgery... Contrary to the previous case, I would recommend
starting from the tarball we delivered, and copy your files into
there. For a start, copy all the files that are not in the new tar-
ball: it’s probably not wrong.

Be in the new tarball before running this.
for i in $(find .)
do

if test ! -f ../my-old-working-directory/$i; then

29 http://www.lrde.epita.fr/~akim/compil/download/2004-tc-7.6.tar.bz2.
30 http://www.lrde.epita.fr/~akim/compil/download/2004-tc-5.3-7.0.diff.
31 http://www.lrde.epita.fr/~akim/compil/download/2004-tc-5.3-7.3.diff.
32 http://www.lrde.epita.fr/~akim/compil/download/2004-tc-5.3-7.4.diff.
33 http://www.lrde.epita.fr/~akim/compil/download/2004-tc-5.3-7.5.diff.
34 http://www.lrde.epita.fr/~akim/compil/download/2004-tc-7.0-7.1.diff.
35 http://www.lrde.epita.fr/~akim/compil/download/2004-tc-7.1-7.2.diff.
36 http://www.lrde.epita.fr/~akim/compil/download/2004-tc-7.2-7.3.diff.
37 http://www.lrde.epita.fr/~akim/compil/download/2004-tc-7.3-7.4.diff.
38 http://www.lrde.epita.fr/~akim/compil/download/2004-tc-7.4-7.5.diff.
39 http://www.lrde.epita.fr/~akim/compil/download/2004-tc-7.5-7.6.diff.

Chapter 4: Compiler Stages 99

cp $i ../my-old-working-directory/$i
fi

done

And then, build it step by step.

2005-t7 The additional code is provided as:
− ‘2005-tc-7.3.tar.bz2’40, the whole tarball.
− ‘2005-tc-6.1-7.0.diff’41, ‘2005-tc-6.1-7.1.diff’42, the differences

with the latest tarball that was delivered.
− ‘2005-tc-7.0-7.1.diff’43, ‘2005-tc-7.1-7.2.diff’44,

‘2005-tc-7.2-7.3.diff’45, the differences with previous ver-
sions of the ‘2004-tc-7’ tarball.

4.9.4 T7 Code to Write

There is not much code to write:
− Codegen::munchMove (‘src/codegen/mips/codegen.cc’)
− SpimAssembly::move_build (‘src/codegen/mips/spim-assembly.cc’): build a

move instruction using MIPS 2000 standard instruction set.
− SpimAssembly::binop_build (‘src/codegen/mips/spim-assembly.cc’): build

arithmetic binary operations (addition, multiplication, etc.) using MIPS 2000
standard instruction set.

− SpimAssembly::load_build, SpimAssembly::store_build
(‘src/codegen/mips/spim-assembly.cc’): build a load (respectively a
store) instruction using MIPS 2000 standard instruction set. Here, the indirect
addressing mode is used.

− SpimAssembly::cjump_build (‘src/codegen/mips/spim-assembly.cc’): translate
conditional branch instructions (branch if equal, if lower than, etc.) into MIPS 2000
assembly.

− You have to complete the implementation of the runtime in
‘src/codegen/mips/runtime.s’:

strcmp

print_int
This is the easiest, as it’s just a call to the appropriate “syscall”.

substring
concat These ones are quite delicate.

Information on MIPS 2000 assembly instructions may be found in SPIM manual.

Completing the following routines will be needed during register allocation only (see
Section 4.11 [T9], page 105):
− Codegen::allocate_frame (‘src/codegen/mips/codegen.cc’)
− Codegen::rewrite_program (‘src/codegen/mips/codegen.cc’)

40 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-7.3.tar.bz2.
41 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-6.1-7.0.diff.
42 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-6.1-7.1.diff.
43 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-7.0-7.1.diff.
44 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-7.1-7.2.diff.
45 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-7.2-7.3.diff.

100 The Tiger Compiler Project Assignment

4.9.5 T7 Improvements

Possible improvements include:

4.10 T8, Liveness Analysis
2005-T8 delivery is Friday, July 18th 2003 at noon.

This section was last updated for EPITA-2004 and EPITA-2005 on 2003-07-02.
Relevant lecture notes include ‘liveness.pdf’46.

4.10.1 T8 Goals

Things to learn during this stage that you should remember:
− Graph handling

4.10.2 T8 Samples

Branching is of course a most interesting feature to exercise:

1 | 2 | 3

File 4.44: ‘ors.tig’

$ tc -I ors.tig

== Final assembler ouput. ==
Routine: Main
t_main:

move t4, $s0
move t5, $s1
move t6, $s2
move t7, $s3
move t8, $s4
move t9, $s5
move t10, $s6
move t11, $s7

l5:
li t1, 1
bne t1, 0, l3

l4:
li t2, 2
bne t2, 0, l0

l1:
l2:

j l6
l0:

j l2
l3:

li t3, 1
bne t3, 0, l0

l7:
j l1

l6:
move $s0, t4
move $s1, t5

46 http://www.lrde.epita.fr/~akim/compil/lecture-notes/liveness.pdf.

Chapter 4: Compiler Stages 101

move $s2, t6
move $s3, t7
move $s4, t8
move $s5, t9
move $s6, t10
move $s7, t11

Example 118: tc -I ors.tig

$ tc -F ors.tig

Example 119: tc -F ors.tig

102 The Tiger Compiler Project Assignment

	move	t4, $s0

	move	t5, $s1

	move	t6, $s2

	move	t7, $s3

	move	t8, $s4

	move	t9, $s5

	move	t10, $s6

	move	t11, $s7

l5:

	li	t1, 1

	bne	t1, 0, l3

l4: l3:

	li	t2, 2

	bne	t2, 0, l0

l1:

l0:

l2:

	j	l6

l6:

	j	l2

	li	t3, 1

	bne	t3, 0, l0

l7:

	j	l1

	move	$s0, t4

	move	$s1, t5

	move	$s2, t6

	move	$s3, t7

	move	$s4, t8

	move	$s5, t9

	move	$s6, t10

	move	$s7, t11

	

File 120: ‘Main-Main-flow.dot’

$ tc -V ors.tig

Example 121: tc -V ors.tig

Chapter 4: Compiler Stages 103

	move	t4, $s0

	move	t5, $s1

$fp $ra $s1 $s2 $s3 $s4 $s5 $s6 $s7 $sp $v0 $zero t4

	move	t6, $s2

$fp $ra $s2 $s3 $s4 $s5 $s6 $s7 $sp $v0 $zero t4 t5

	move	t7, $s3

$fp $ra $s3 $s4 $s5 $s6 $s7 $sp $v0 $zero t4 t5 t6

	move	t8, $s4

$fp $ra $s4 $s5 $s6 $s7 $sp $v0 $zero t4 t5 t6 t7

	move	t9, $s5

$fp $ra $s5 $s6 $s7 $sp $v0 $zero t4 t5 t6 t7 t8

	move	t10, $s6

$fp $ra $s6 $s7 $sp $v0 $zero t4 t5 t6 t7 t8 t9

	move	t11, $s7

$fp $ra $s7 $sp $v0 $zero t4 t5 t6 t7 t8 t9 t10

l5:

$fp $ra $sp $v0 $zero t4 t5 t6 t7 t8 t9 t10 t11

	li	t1, 1

$fp $ra $sp $v0 $zero t4 t5 t6 t7 t8 t9 t10 t11

	bne	t1, 0, l3

$fp $ra $sp $v0 $zero t1 t4 t5 t6 t7 t8 t9 t10 t11

l4:

$fp $ra $sp $v0 $zero t4 t5 t6 t7 t8 t9 t10 t11

l3:

$fp $ra $sp $v0 $zero t4 t5 t6 t7 t8 t9 t10 t11

	li	t2, 2

$fp $ra $sp $v0 $zero t4 t5 t6 t7 t8 t9 t10 t11

	bne	t2, 0, l0

$fp $ra $sp $v0 $zero t2 t4 t5 t6 t7 t8 t9 t10 t11

l1:

$fp $ra $sp $v0 $zero t4 t5 t6 t7 t8 t9 t10 t11

l0:

$fp $ra $sp $v0 $zero t4 t5 t6 t7 t8 t9 t10 t11

l2:

$fp $ra $sp $v0 $zero t4 t5 t6 t7 t8 t9 t10 t11

	j	l6

$fp $ra $sp $v0 $zero t4 t5 t6 t7 t8 t9 t10 t11

l6:

$fp $ra $sp $v0 $zero t4 t5 t6 t7 t8 t9 t10 t11

	j	l2

$fp $ra $sp $v0 $zero t4 t5 t6 t7 t8 t9 t10 t11

$fp $ra $sp $v0 $zero t4 t5 t6 t7 t8 t9 t10 t11

	li	t3, 1

$fp $ra $sp $v0 $zero t4 t5 t6 t7 t8 t9 t10 t11

	bne	t3, 0, l0

$fp $ra $sp $v0 $zero t3 t4 t5 t6 t7 t8 t9 t10 t11

$fp $ra $sp $v0 $zero t4 t5 t6 t7 t8 t9 t10 t11

l7:

$fp $ra $sp $v0 $zero t4 t5 t6 t7 t8 t9 t10 t11

	j	l1

$fp $ra $sp $v0 $zero t4 t5 t6 t7 t8 t9 t10 t11

$fp $ra $sp $v0 $zero t4 t5 t6 t7 t8 t9 t10 t11

	move	$s0, t4

$fp $ra $sp $v0 $zero t4 t5 t6 t7 t8 t9 t10 t11

	move	$s1, t5

$fp $ra $sp $v0 $zero t5 t6 t7 t8 t9 t10 t11

	move	$s2, t6

$fp $ra $sp $v0 $zero t6 t7 t8 t9 t10 t11

	move	$s3, t7

$fp $ra $sp $v0 $zero t7 t8 t9 t10 t11

	move	$s4, t8

$fp $ra $sp $v0 $zero t8 t9 t10 t11

	move	$s5, t9

$fp $ra $sp $v0 $zero t9 t10 t11

	move	$s6, t10

$fp $ra $sp $v0 $zero t10 t11

	move	$s7, t11

$fp $ra $sp $v0 $zero t11

	

$fp $ra $sp $v0 $zero

File 122: ‘Main-Main-liveness.dot’

$ tc -N ors.tig

Example 123: tc -N ors.tig

104 The Tiger Compiler Project Assignment
$s0

$fp $ra

spv0 $zero

t5

t6

t7

t8

t9

t10

t11

t4

$s1 $s2 $s3$s4 $s5$s6$s7

t1t2t3

File 124: ‘Main-Main-interference.dot’

4.10.3 T8 Given Code

You are provided with the following code:

Chapter 4: Compiler Stages 105

− ‘2005-tc-8.0.tar.bz2’47, the whole tarball.
− ‘2005-tc-7.2-8.0.diff’48, ‘2005-tc-7.3-8.0.diff’49, the differences with the lat-

est tarball that was delivered.

To read the description of the new modules, see Section 3.2.19 [src/graph], page 37,
Section 3.2.20 [src/liveness], page 37.

4.10.4 T8 Code to Write

‘src/graph/graph.hh’
‘src/graph/graph.hxx’

Implement the topological sort.

‘src/liveness/flowgraph.hh’
Write the constructor, which is where the FlowGraph is actually constructed
from the assembly fragments.

‘src/liveness/liveness.cc’
Write the constructor, which is where the Liveness (a decorated FlowGraph)
is built from assembly instructions.

‘src/liveness/interference-graph.cc’
In InterferenceGraph::compute_liveness, build the graph.

4.10.5 T8 Improvements

Possible improvements include:

4.11 T9, Register Allocation
2005-T9 delivery is on Monday, September 8th 2003 at noon.

This section was last updated for EPITA-2004 and EPITA-2005 on 2003-08-19.

At the end of this stage, the compiler produces code that is runnable using Mipsy.

Relevant lecture notes include ‘regalloc.pdf’50.

4.11.1 T8 Goals

Things to learn during this stage that you should remember:

− Use of work lists for efficiency
− Attacking NP complete problems
− Register allocation as graph coloring

4.11.2 T9 Samples

This section will not demonstrate the output of the option ‘-S’, ‘--asm-display’, since it
includes the Tiger runtime, which is quite long. We simply use ‘-I’, ‘--instr-display’
which has the same effect once the registers allocated, i.e., once ‘-s’, ‘--asm-compute’
executed. In short: we use ‘-sI’ instead of ‘-S’ to save place.

Allocating registers in the main function, when there is no register pressure is easy, as,
in particular, there are no spills. A direct consequence is that many move are now useless,
and have disappeared. See 〈undefined〉 [seven.tig], page 〈undefined〉, for instance:

47 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-8.0.tar.bz2.
48 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-7.2-8.0.diff.
49 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-7.3-8.0.diff.
50 http://www.lrde.epita.fr/~akim/compil/lecture-notes/regalloc.pdf.

106 The Tiger Compiler Project Assignment

$ tc -sI seven.tig

== Final assembler ouput. ==
Routine: Main
t_main:

sw $fp, ($sp)
move $fp, $sp
sub $sp, $sp, 8
sw $ra, -4 ($fp)

l0:
li $t0, 2
mul $t1, $t0, 3
li $t0, 1
add $t0, $t0, $t1

l1:

lw $ra, -4 ($fp)
move $sp, $fp
lw $fp, ($fp)
jr $ra

Example 125: tc -sI seven.tig

$ tc -S seven.tig >seven.s
Example 126: tc -S seven.tig >seven.s

$ mipsy --execute seven.s

Example 127: mipsy --execute seven.s

Another means to display the result of register allocation consists in reporting the mapping
from temps to actual registers:

$ tc -s --tempmap-display seven.tig

/* Temporary map. */
t1 -> $t0
t2 -> $t1
t3 -> $t0
t4 -> $t0
t5 -> $s0
t6 -> $s1
t7 -> $s2
t8 -> $s3
t9 -> $s4
t10 -> $s5
t11 -> $s6
t12 -> $s7

Example 128: tc -s --tempmap-display seven.tig

Of course it is much better to see what is going on:

(print_int (1 + 2 * 3); print ("\n"))

File 4.45: ‘print-seven.tig’

$ tc -sI print-seven.tig

== Final assembler ouput. ==
.data
l0:

Chapter 4: Compiler Stages 107

.word 1

.asciiz "\n"
.text

Routine: Main
t_main:

sw $fp, ($sp)
move $fp, $sp
sub $sp, $sp, 8
sw $ra, -4 ($fp)

l1:
li $t0, 2
mul $t1, $t0, 3
li $t0, 1
add $a0, $t0, $t1
jal print_int
la $a0, l0
jal print

l2:

lw $ra, -4 ($fp)
move $sp, $fp
lw $fp, ($fp)
jr $ra

Example 130: tc -sI print-seven.tig

$ tc -S print-seven.tig >print-seven.s
Example 131: tc -S print-seven.tig >print-seven.s

$ mipsy --execute print-seven.s

7
Example 132: mipsy --execute print-seven.s

To torture your compiler, you ought to use many temporaries. To be honest, ours is
quite slow, it spends way too much time in register allocation.

let
var a00 := 00 var a55 := 55
var a11 := 11 var a66 := 66
var a22 := 22 var a77 := 77
var a33 := 33 var a88 := 88
var a44 := 44 var a99 := 99

in
print_int (0

+ a00 + a00 + a55 + a55
+ a11 + a11 + a66 + a66
+ a22 + a22 + a77 + a77
+ a33 + a33 + a88 + a88
+ a44 + a44 + a99 + a99);

print ("\n")
end

File 4.46: ‘print-many.tig’

$ tc -eIs --tempmap-display -I --time-report print-many.tig

108 The Tiger Compiler Project Assignment

error Execution times (seconds)
error 1: parse : 0.01 (25%) 0 (0%) 0.01 (20%)
error 8: liveness analysis : 0.01 (25%) 0 (0%) 0.01 (20%)
error 8: liveness edges : 0 (0%) 0.01 (100%) 0.01 (20%)
error 9: coalesce : 0.01 (25%) 0 (0%) 0.01 (20%)
error 9: register allocation : 0.01 (25%) 0 (0%) 0.01 (20%)
error Cumulated times (seconds)
error 1: parse : 0.01 (25%) 0 (0%) 0.01 (20%)
error 7: inst-display : 0.03 (75%) 0.01 (100%) 0.04 (80%)
error 8: liveness analysis : 0.01 (25%) 0 (0%) 0.01 (20%)
error 8: liveness edges : 0 (0%) 0.01 (100%) 0.01 (20%)
error 9: asm-compute : 0.03 (75%) 0.01 (100%) 0.04 (80%)
error 9: coalesce : 0.01 (25%) 0 (0%) 0.01 (20%)
error 9: register allocation : 0.03 (75%) 0.01 (100%) 0.04 (80%)
error rest : 0.04 (100%) 0.01 (100%) 0.05 (100%)
error TOTAL (seconds) : 0.04 user, 0.01 system, 0.05 wall
== Final assembler ouput. ==
.data
l0:

.word 1

.asciiz "\n"
.text

Routine: Main
t_main:

move t33, $s0
move t34, $s1
move t35, $s2
move t36, $s3
move t37, $s4
move t38, $s5
move t39, $s6
move t40, $s7

l1:
li t0, 0
li t1, 55
li t2, 11
li t3, 66
li t4, 22
li t5, 77
li t6, 33
li t7, 88
li t8, 44
li t9, 99
li t31, 0
add t30, t31, t0
add t29, t30, t0
add t28, t29, t1
add t27, t28, t1
add t26, t27, t2
add t25, t26, t2
add t24, t25, t3

Chapter 4: Compiler Stages 109

add t23, t24, t3
add t22, t23, t4
add t21, t22, t4
add t20, t21, t5
add t19, t20, t5
add t18, t19, t6
add t17, t18, t6
add t16, t17, t7
add t15, t16, t7
add t14, t15, t8
add t13, t14, t8
add t12, t13, t9
add t11, t12, t9
move $a0, t11
jal print_int
la t32, l0
move $a0, t32
jal print

l2:
move $s0, t33
move $s1, t34
move $s2, t35
move $s3, t36
move $s4, t37
move $s5, t38
move $s6, t39
move $s7, t40

/* Temporary map. */
t0 -> $a0
t1 -> $t9
t2 -> $t8
t3 -> $t7
t4 -> $t6
t5 -> $t5
t6 -> $t4
t7 -> $t3
t8 -> $t2
t9 -> $t1
t11 -> $a0
t12 -> $t0
t13 -> $t0
t14 -> $t0
t15 -> $t0
t16 -> $t0
t17 -> $t0
t18 -> $t0
t19 -> $t0
t20 -> $t0
t21 -> $t0
t22 -> $t0
t23 -> $t0

110 The Tiger Compiler Project Assignment

t24 -> $t0
t25 -> $t0
t26 -> $t0
t27 -> $t0
t28 -> $t0
t29 -> $t0
t30 -> $t0
t31 -> $t0
t32 -> $a0
t33 -> $s0
t34 -> $s1
t35 -> $s2
t36 -> $s3
t37 -> $s4
t38 -> $s5
t39 -> $s6
t40 -> $s7

== Final assembler ouput. ==
.data
l0:

.word 1

.asciiz "\n"
.text

Routine: Main
t_main:

sw $fp, ($sp)
move $fp, $sp
sub $sp, $sp, 8
sw $ra, -4 ($fp)

l1:
li $a0, 0
li $t9, 55
li $t8, 11
li $t7, 66
li $t6, 22
li $t5, 77
li $t4, 33
li $t3, 88
li $t2, 44
li $t1, 99
li $t0, 0
add $t0, $t0, $a0
add $t0, $t0, $a0
add $t0, $t0, $t9
add $t0, $t0, $t9
add $t0, $t0, $t8
add $t0, $t0, $t8
add $t0, $t0, $t7
add $t0, $t0, $t7
add $t0, $t0, $t6

Chapter 4: Compiler Stages 111

add $t0, $t0, $t6
add $t0, $t0, $t5
add $t0, $t0, $t5
add $t0, $t0, $t4
add $t0, $t0, $t4
add $t0, $t0, $t3
add $t0, $t0, $t3
add $t0, $t0, $t2
add $t0, $t0, $t2
add $t0, $t0, $t1
add $a0, $t0, $t1
jal print_int
la $a0, l0
jal print

l2:

lw $ra, -4 ($fp)
move $sp, $fp
lw $fp, ($fp)
jr $ra

Example 134: tc -eIs --tempmap-display -I --time-report print-many.tig

4.11.3 T9 Given Code

The code is provided under the following forms:

− ‘2005-tc-9.0.tar.bz2’51, ‘2005-tc-9.1.tar.bz2’52, ‘2005-tc-9.2.tar.bz2’53,
‘2005-tc-9.3.tar.bz2’54, the whole tarball.

− ‘2005-tc-8.0-9.0.diff’55, ‘2005-tc-8.0-9.1.diff’56, ‘2005-tc-8.0-9.2.diff’57,
‘2005-tc-8.0-9.3.diff’58, the differences with the latest tarball that was delivered.

− ‘2005-tc-9.0-9.1.diff’59, ‘2005-tc-9.1-9.2.diff’60, ‘2005-tc-9.1-9.3.diff’61,
‘2005-tc-9.2-9.3.diff’62, the differences with previous versions of the ‘tc-9’ tar-
ball. The most significant differences are that we no longer use the color_register
attribute for Cpu, that the runtime properly sets the exit status, and that its error
messages are standardized.

To read the description of the new module, see Section 3.2.21 [src/regalloc], page 37.

51 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-9.0.tar.bz2.
52 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-9.1.tar.bz2.
53 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-9.2.tar.bz2.
54 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-9.3.tar.bz2.
55 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-8.0-9.0.diff.
56 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-8.0-9.1.diff.
57 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-8.0-9.2.diff.
58 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-8.0-9.3.diff.
59 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-9.0-9.1.diff.
60 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-9.1-9.2.diff.
61 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-9.1-9.3.diff.
62 http://www.lrde.epita.fr/~akim/compil/download/2005-tc-9.2-9.3.diff.

112 The Tiger Compiler Project Assignment

4.11.4 T9 Code to Write

‘src/liveness/interference-graph.hh’
‘src/liveness/interference-graph.cc’

Unfortunately, the way the moves were encoded in the tarball we delivered
for T8 is not right for T9. We could have used glue code to provide backward
compatibility, but it was a poor solution yielding low quality code. Therefore
the interface of the InterferenceGraph was upgraded, which will require
some modifications in your existing code.
Rest assured that little work will actually be needed: the main modification is
related to the fact that moves are now encoded as a list of pairs, while before
we had a map mapping a node to the set of nodes in its move-related to.

‘src/regalloc/color.hh’
Implement the graph coloring. The skeleton we provided is an exact copy of
the implementation of the code suggest by Andrew Appel in the section 11.4
“Graph Coloring Implementation” of his book. A lot of comments that are
verbatim copies of his comments are left in the code. Note that there are
some error in this book, reported on his web page (see Section 5.1 [Modern
Compiler Implementation], page 113).
Pay attention to misc::set: there is a lot of syntactic sugar provided to im-
plement set operations. The code of Color can range from ugly and obfuscated
to readable and very close to its specification.

‘src/regalloc/libregalloc.cc’
Run the register allocation on each code fragment. Remove the useless moves.

‘src/codegen/mips/codegen.cc’
If your compiler supports spills, implement Codegen::rewrite_program.

4.11.5 T9 FAQ

rv vs. $v0 Our graph coloring implementation cannot support aliases for hard registers:
it thinks that if it has a different name, it is different. Since this is a reason-
able claim, rather than torturing the algorithm until it accepts rv and $v0
designate a single guy, we decided to change the implementation of rv and fp
in the frame module to use those of the current target: $v0 and $fp for MIPS.
This has a strong influence on havm, of course. It was modified to support
these changes, so make sure to use 0.18 or higher.

4.11.6 T9 Improvements

Possible improvements include:

Chapter 5: Tools 113

5 Tools

This chapter aims at providing some helpful information about the various tools that
you are likely to use to implement tc. It does not replace the reading of the genuine
documentation, nevertheless, helpful tips are given. Feel free to contribute additional
information.

5.1 Modern Compiler Implementation

The single most important tool for implementing the Tiger Project is the original book,
Modern Compiler Implementation in C/Java/ML1, by Andrew W. Appel2, published by
Cambridge University Press (New York, Cambridge). ISBN 0-521-58388-8/.

It is not possible to finish this project without having at least one copy per group.
We provide a convenient mini Tiger Compiler Reference Manual3 that contains some
information about the language but it does not cover all the details, and sometimes digging
into the original book is required. This is on purpose, by virtue of due respect to the author
of this valuable book.

Several copies are available at the EPITA library.

There are three flavors of this book:

C The code samples are written in C. Avoid this edition, as C is not appropriate
to describe the elaborate algorithms involved: most of the time, the simple
ideas are destroyed with longuish unpleasant lines of code.

Java The samples are written in Java. This book is the closest to the EPITA Tiger
Project, since it is written in an object oriented language. Nevertheless, the
modelisation is very poor, and therefore, don’t be surprised if the EPITA
project is significantly different. For a start, there is no Visitors at all. Of
course the main purpose of the book is compilers, but it is not a reason for
such a poor modelisation.

ML This book, which is the “original”, provides code samples in ML, which is a
very adequate language to write compilers. Therefore it is very readable, even
if you are not fluent in ML. I recommend this edition, unless you have severe
problems with functional programming.

1 http://www.cs.princeton.edu/~appel/modern/.
2 http://www.cs.princeton.edu/~appel/.
3 http://www.lrde.epita.fr/~akim/compil/tiger.html.

114 The Tiger Compiler Project Assignment

This book addresses many more issues than the sole Tiger Project as we implement
it. In other words, it is an extremely interesting book which provides insights on garbage
collection, object oriented and functional languages etc.

There is a dozen copies at the EPITA library, but buying it is a good idea.
Pay extra attention: there are several errors in the books, some of which are reported

on Andrew Appel’s pages (C4 Java5, and ML6), some which are not.

5.2 Bibliography

Below is presented a selection of books, papers and web sites that are pertinent to the Tiger
project. Of course, you are not requested to read them all, except Section 5.1 [Modern
Compiler Implementation], page 113. A suggested ordered small selection of books is:
1. Section 5.1 [Modern Compiler Implementation], page 113
2. [C++ Primer], page 115
3. [Design Patterns: Elements of Reusable Object-Oriented Software], page 117
4. [Effective C++], page 117
5. [Effective STL], page 118

The books are available at the EPITA Library: you are encouraged to borrow them
there. If some of these books are missing, please suggest them to Francis Gabon7. To buy
these books, we recommend Le Monde en Tique8, a bookshop which has demonstrated
several times its dedication to its job, and its kindness to EPITA students/members.

[Web Site]Bjarne Stroustrup
Bjarne Stroustrup9 is the author of C++, which he describes as (The C++ Programming
Language10):

C++ is a general purpose programming language with a bias towards sys-
tems programming that
− is a better C
− supports data abstraction
− supports object-oriented programming
− supports generic programming.

His web page contains interesting material on C++, including many interviews. The
interview by Aleksey V. Dolya for the Linux Journal11 contains thoughts about C and
C++. For instance:

I think that the current mess of C/C++ incompatibilities is a most unfortu-
nate accident of history, without a fundamental technical or philosophical
basis. Ideally the languages should be merged, and I think that a merger
is barely technically possible by making convergent changes to both lan-
guages. It seems, however, that because there is an unwillingness to make
changes it is likely that the languages will continue to drift apart–to the
detriment of almost every C and C++ programmer. [...] However, there

4 http://www.cs.princeton.edu/~appel/modern/c/errata.html.
5 http://www.cs.princeton.edu/~appel/modern/java/errata.html.
6 http://www.cs.princeton.edu/~appel/modern/ml/errata.html.
7 mailto:Francis.Gabon@epita.fr.
8 http://www.lmet.fr.
9 http://www.research.att.com/~bs/homepage.html.

10 http://www.research.att.com/~bs/C++.html.
11 http://www.linuxjournal.com/article.php?sid=7099.

Chapter 5: Tools 115

are entrenched interests keeping convergence from happening, and I’m not
seeing much interest in actually doing anything from the majority that, in
my opinion, would benefit most from compatibility.

His list of C++ Applications12 is worth the browsing.

[Web Site]Boost.org
The Boost.org web site13 reads:

The Boost web site provides free peer-reviewed portable C++ source li-
braries. The emphasis is on libraries which work well with the C++ Stan-
dard Library. One goal is to establish "existing practice" and provide
reference implementations so that the Boost libraries are suitable for even-
tual standardization. Some of the libraries have already been proposed
for inclusion in the C++ Standards Committee’s upcoming C++ Standard
Library Technical Report.

In addition to actual code, a lot of good documentation is available. Amongst libraries,
you ought to have a look at the Spirit object-oriented recursive-descent parser generator
framework14, the Boost Smart Pointer Library15, the Boost Variant Library16 etc.

[Book]C++ Primer – Stanley B. Lippman, Josée Lajoie

Published by Addison-Wesley; ISBN 0-201-82470-1.
This book teaches C++ for programmers. It is quite extensive and easy to read. Unfor-
tunately one should note that it is not 100% standard compliant, in particular many
std:: are missing. Weirdly enough, the authors seems to promote using declarations
instead of explicit qualifiers; the page 441 reads:

In this book, to keep the code examples Short, and because many of the
examples were compiled with implementations not supporting namespace,
we have not explicitly listed the using declarations needed to properly
compile the examples. It is assumed that using declarations are provided
for the members of namespace std used in the code examples.

It should not be too much of a problem though. This is the book we recommend to
learn C++. See the Addison-Wesley C++ Primer Page17.
Warning: The French translation is L’Essentiel du C++, which is extremely stupid since
Essential C++ is another book from Stanley B. Lippman (but not with Josée Lajoie).

12 http://www.research.att.com/~bs/applications.html.
13 http://www.boost.org.
14 http://www.boost.org/libs/spirit/index.html.
15 http://www.boost.org/libs/smart_ptr/index.htm.
16 http://www.boost.org/regression-logs/cs-win32_metacomm/doc/html/variant.html.
17 http://www.awl.com/cseng/titles/0-201-82470-1.

116 The Tiger Compiler Project Assignment

[Book]Compilers: Principles, Techniques and Tools – Alfred V. Aho,
Ravi Sethi, and Jeffrey D. Ullman

[Book]The Dragon Book

Published by Addison-Wesley 1986; ISBN 0-201-10088-6.

This book is the bible in compiler design. It has extensive insight on the whole archi-
tecture of compilers, provides a rigorous treatment for theoretical material etc. Never-
theless I would not recommend this book to EPITA students, because

it is getting old
It doesn’t mention RISC, object orientation, functional, modern optimiza-
tion techniques such as ssa, register allocation by graph coloring18 etc.

it is fairly technical
The book can be hard to read for the beginner, contrary to Section 5.1
[Modern Compiler Implementation], page 113.

Nevertheless, curious readers will find valuable information about historically important
compilers, people, papers etc. Reading the last section of each chapter (Bibliographical
Notes) is a real pleasure for whom is interested.

It should be noted that the French edition, “Compilateurs: Principes, techniques et
outils”, was brilliantly translated by Pierre Boullier, Philippe Deschamp, Martin Jour-
dan, Bernard Lorho and Monique Lazaud: the pleasure is as good in French as it is in
English.

[Web Site]Cool: The Classroom Object-Oriented Compiler
The Classroom Object-Oriented Compiler19, from the University of California, Berke-
ley, is very similar in its goals to the Tiger project as described here. Unfortunately
it seems dead: there are no updates since 1996. Nevertheless, if you enjoy the Tiger
project, you might want to see its older siblings.

[Paper]CStupidClassName – Dejan Jelović
This short paper, CStupidClassName20, explains why naming classes CLikeThis is
stupid, but why lexical conventions are nevertheless very useful. It turns out we follow
the same scheme that is emphasized there.

18 To be fair, the Dragon Book leaves a single page (not sheet) to graph coloring.
19 http://www.cs.berkeley.edu/~aiken/cool/.
20 http://www.jelovic.com/articles/stupid_naming.htm.

Chapter 5: Tools 117

[Book]Design Patterns: Elements of Reusable Object-Oriented
Software – Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides

Published by Addison-Wesley; ISBN: 0-201-63361-2.

A book you must have read, or at least, you must know it. In a few words, let’s
say it details nice programming idioms, some of them you should know: the Visitor,
the FlyWeight, the Singleton etc. See the Design Patterns Addison-Wesley Page21. A
pre-version of this book is available on the Internet as a paper: Design Patterns: Ab-
straction and Reuse of Object-Oriented Design22.

You may find additional information about Design Patterns on the Portland Pattern
Repository23.

[Book]Effective C++ – Scott Meyers

288 pages; Publisher: Addison-Wesley Pub Co; 2nd edition (September 1997); ISBN:
0-201-92488-9

An excellent book that might serve as a C++ lecture for programmers. Every C++
programmer should have read it at least once, as it treasures C++ recommended prac-
tices as a list of simple commandments. Be sure to buy the second edition, as the first
predates the C++ standard. See the Effective STL Addison-Wesley Page24.

In this document, ECn refers to item n in Effective C++.

21 http://www.awl.com/cseng/titles/0-201-63361-2.
22 http://citeseer.nj.nec.com/gamma93design.html.
23 http://c2.com/cgi/wiki?PortlandPatternRepository.
24 http://www.awl.com/cseng/titles/0-201-74962-9.

118 The Tiger Compiler Project Assignment

[Book]Effective STL – Scott Meyers

Published by Addison-Wesley; ISBN: 0-201-74962-9
A remarkable book that provides deep insight on the best practice with STL. Not only
does it teach what’s to be done, but it clearly shows why. A book that any C++
programmer should have read. See the Effective STL Addison-Wesley Page25.
In this document, ESn refers to item n in Effective STL.

[Technical Report]Generic Visitors in C++ – Nicolas Tisserand
This report is available on line from Visitors Page26: Generic Visitors in C++27. Its
abstract reads:

The Visitor design pattern is a well-known software engineering technique
that solves the double dispatch problem and allows decoupling of two inter-
dependent hierarchies. Unfortunately, when used on hierarchies of Com-
posites, such as abstract syntax trees, it presents two major drawbacks:
target hierarchy dependence and mixing of traversal and behavioral code.
CWI’s visitor combinators are a seducing solution to these problems. How-
ever, their use is limited to specific “combinators aware” hierarchies.
We present here Visitors, our attempt to build a generic, efficient C++
visitor combinators library that can be used on any standard “visitable”
target hierarchies, without being intrusive on their codes.

This report is in the spirit of [Modern C++ Design], page 119, and should probably be
read afterward.

[News]Guru of the Week
Written by various authors, compiled by Herb Sutter

Guru of the Week (GotW) is a regular series of C++ programming problems created
and written by Herb Sutter. Since 1997, it has been a regular feature of the Internet
newsgroup comp.lang.c++.moderated, where you can find each issue’s questions and
answers (and a lot of interesting discussion).
The Guru of the Week Archive28 (the famous GotW) is freely available. In this docu-
ment, GotWn29 refers to the item number n.

25 http://www.awl.com/cseng/titles/0-201-74962-9.
26 http://www.lrde.epita.fr/cgi-bin/twiki/view/Projects/Visitors.
27 http://www.lrde.epita.fr/cgi-bin/twiki/view/Publications/20030528-Seminar-Tisserand-

Report.
28 http://www.gotw.ca/gotw/.
29 http://www.gotw.ca/gotw/n.htm.

Chapter 5: Tools 119

[Book]Lex & Yacc – John R. Levine, Tony Mason, Doug Brown
Published by O’Reilly & Associates; 2nd edition (October 1992); ISBN: 1-565-92000-7.

Because the books aims at a complete treatment of Lex and Yacc on a wide range of
platforms, it provides too many details on material with little interest for us (e.g., we
don’t care about portability to other Lexes and Yacces), and too few details on material
with big interest for us (more about exclusive start condition (Flex only), more about
Bison only stuff, interaction with C++ etc.).

[Article]Making Compiler Design Relevant for Students who will
(Most Likely) Never Design a Compiler – Saumya K. Debray

This paper about teaching compilers30 justifies this lecture. It should be noted that
the paper is addressing compilation lectures, not compilation projects, and therefore
it misses quite a few motivations we have for the Tiger project.

[Book]Modern C++ Design -- Generic Programming and Design
Patterns Applied – Andrei Alexandrescu

Published by Addison-Wesley in 2001; ISBN: 0-52201-70431-5

A wonderful book on very advanced C++ programming with a heavy use of templates
to achieve beautiful and useful designs (including the classical design patterns, see
[Design Patterns: Elements of Reusable Object-Oriented Software], page 117). The
code is available in the form of the Loki Library31. The Modern C++ Design Web Site32

includes pointers to excerpts such as the Smart Pointers33 chapter.

Read this book only once you have gained good understanding of the C++ core language,
and after having read the “Effective C++/STL” books.

[Book]Modern Compiler Implementation in C, Java, ML – Andrew W.
Appel

Published by Cambridge University Press; ISBN: 0-521-58390-X

See Section 5.1 [Modern Compiler Implementation], page 113. In my humble opinion,
most books give way too much emphasis to scanning and parsing, leaving little material
to the rest of the compiler, or even nothing for advanced material. This book does not
suffer this flaw.

30 http://www.cs.arizona.edu/people/debray/papers/teaching_compilers.ps.
31 http://sourceforge.net/projects/loki-lib/.
32 http://www.moderncppdesign.com/book/main.html.
33 http://www.aw.com/samplechapter/0201704315.pdf.

120 The Tiger Compiler Project Assignment

[Book]Parsing Techniques -- A Practical Guide – Dick Grune and Ceriel
J. Jacob

Published by the authors; ISBN: 0-13-651431-6

A remarkable review of all the parsing techniques. Because the book is out of print, its
authors made it freely available: Parsing Techniques – A Practical Guide34.

[Report]spot : une bibliothèque de vérification de propriétés de
logique temporelle à temps linéaire – Alexandre Duret-Lutz &
Rachid Rebiha

This report presents spot, a model checking library written in C++ and Python. Parts
were inspired by the Tiger project, and reciprocally, parts inspired modifications in the
Tiger project. For instance, you are encouraged to read the sections about the visitor
hierarchy and its implementation. Another useful source of inspiration is the use of
Python and Swig to write the command line interface.

[Book]The Design and Evolution of C++ – Bjarne Stroustrup

Published by Addison-Wesley, ISBN 0-201-54330-3.

No comment, since I still have not read it. It is quite famous though.

[Book]The Elements of Style – William Strunk Jr., E.B. White

34 http://www.cs.vu.nl/~dick/PTAPG.html.

Chapter 5: Tools 121

Published by Pearson Allyn & Bacon; 4th edition (January 15, 2000); ISBN:
020530902X.

This little book (105 pages) is perfect for people who want to improve their English
prose. It is quite famous, and, in addition to providing useful writing thumb rules, it
features rules that are interesting as pieces of writing themselves! For instance “The
writer must, however, be certain that the emphasis is warranted, lest a clipped sentence
seem merely a blunder in syntax or in punctuation”.

You may find the much shorter (43 pages) First Edition of The Elements of Style35 on
line.

[Book]Thinking in C++ Volume 1 – Bruce Eckel
Published by Prentice Hall; ISBN: 0-13-979809-9

Available on the Internet: Thinking in C++ Volume 136

[Book]Thinking in C++ Volume 2 – Bruce Eckel and Chuck Allison
Available on the Internet: Thinking in C++ Volume 237.

[Article]Traits: a new and useful template technique – Nathan C.
Myers

The first presentation of the traits technique is from this paper, Traits: a new and
useful template technique38. It is now a common C++ programming idiom, which is
even used in the C++ standard.

[Book]Writing Compilers and Interpreters -- An Applied Approach
Using C++ – Ronald Mak

Published by Wiley; Second Edition, ISBN: 0-471-11353-0

This book is not very interesting for us: the compiler material is not very advanced (no
real ast, not a single line on optimization, register allocation is naive as the translation is
stack based etc.), and the C++ material is not convincing (for a start, it is not standard
C++ as it still uses ‘#include <iostream.h>’ and the like, there is no use of STL etc.).

[Web site]STL Home
SGI’s STL Home Page39, which includes the complete documentation on line.

5.3 The GNU Build System

Automake is used to facilitate the writing of power ‘Makefile’. Autoconf is required by
Automake: we don’t not address portability issues for this project.

You may read the Autoconf documentation40, and the Automake documentation41.
Using info is pleasant: ‘info autoconf’ on any properly set up system. The Goat Book42

covers the whole GNU Build System: Autoconf, Automake and Libtool.

35 http://coba.shsu.edu/help/strunk/.
36 http://www.cs.virginia.edu/~th8k/ticpp/vol1/html/Frames.html.
37 http://www.cs.virginia.edu/~th8k/ticpp/vol2/html/Index.htm.
38 http://www.cantrip.org/traits.html.
39 http://www.sgi.com/tech/stl/index.html.
40 http://www.gnu.org/manual/autoconf/index.html.
41 http://www.gnu.org/manual/automake/index.html.
42 http://sources.redhat.com/autobook/.

122 The Tiger Compiler Project Assignment

5.3.1 Package Name and Version

To set the name and version of your package, change the AC_INIT invocation. For instance,
T4 for the bardec_f group gives:

AC_INIT([Bardeche Group Tiger Compiler], 4, [bardec_f@epita.fr],
[bardec_f-tc])

5.3.2 Bootstrapping the Package

If something goes wrong, or if it is simply the first time you create ‘configure.ac’ or a
‘Makefile.am’, you need to set up the GNU Build System. That’s the goal of the simple
script ‘bootstrap’, which most important action is invoking:

$ autoreconf -fvi

The various files (‘configure’, ‘Makefile.in’, etc.) are created. There is no need to run
‘make distclean’, or aclocal or whatever, before running autoreconf: it knows what
to do.

Then invoke configure and make (see Section 5.4 [GCC], page 123):
$./configure CC=gcc-3.2 CXX=g++-3.2
$ make

Alternatively you may set CC and CXX in your environment:
$ export CC=gcc-3.2

$ export CXX=g++-3.2
$./configure && make

This solution is preferred as in that case the value of CC etc. will be used by the
./configure invocation from ‘make distcheck’ (see Section 5.3.3 [Making a Tarball],
page 122).

5.3.3 Making a Tarball

Once the package autotool’ed (see Section 5.3.2 [Bootstrapping the Package], page 122),
once you can run a simple ‘make’, then you should be able to run ‘make distcheck’ to set
up the package.

The mission of ‘make distcheck’ is to make sure everything will work properly. In
particular it:
1. creates the tarball (via ‘make dist’)
2. untars the tarball
3. configures the tarball in a separate directory (to avoid cluttering the source files with

the built files).
Arguments passed to the top level ‘configure’ (e.g., ./configure CC=gcc-3.2
CXX=g++-3.2) will not be taken into account here.
Running ‘export CC=gcc-3.2; export CXX=g++-3.2 ’ is a better way to make sure
that these compilers will be used. Alternatively use DISTCHECK_CONFIGURE_FLAGS to
specify the arguments of the embedded ./configure:

$ make distcheck DISTCHECK_CONFIGURE_FLAGS=’--without-swig CXX=g++-
4.0’

4. runs ‘make’ (and following targets) in paranoid mode. This mode consists in forbidding
any change in the source tree, because if, when you run ‘make’ something must be
changed in the sources, then it means something is broken in the tarball. If, for
instance, for some reason it wants to run autoconf to recreate ‘configure’, or if
it complains that ‘autom4te.cache’ cannot be created, then it means the tarball is
broken! So track down the reason of the failure.

Chapter 5: Tools 123

5. runs ‘make check’

6. runs ‘make dist’ again.

If you just run ‘make dist’ instead of ‘make distcheck’, then you might not notice
some files are missing in the distribution. If you don’t even run ‘make dist’, the tarball
might not compile elsewhere (not to mention that we don’t care about object files etc.).

Running ‘make distcheck’ is the only means for you to check that the project will
properly compile on our side. Not running distcheck is like turning off the type checking
of your compiler: you hide the errors, you avoid them, instead of actually getting rid of
them.

At this stage, if running ‘make distcheck’ does not create ‘bardec_f-tc-4.tar.bz2’,
then something is wrong in your package. Do not rename it, do not create the tarball by
hand: something is rotten and be sure it will break on the examiner’s machine.

5.4 GCC, The GNU Compiler Collection

We use GCC 3.2, which includes both gcc-3.2 and g++-3.2: the C and C++ compilers.
Do not use older versions as they have poor compliance with the C++ standard. You are
welcome to use more recent versions of GCC if you can use one, but the tests will be done
with 3.2. Using a more recent version is often a good means to get better error messages
if you can’t understand what 3.2 is trying to say.

There are good patches floating around to improve GCC. In particular, you might want
to use the bounds checking extension available on Herman ten Brugge Home Page43.

5.5 Valgrind, The Ultimate Memory Debugger

Valgrind is an open-source memory debugger for x86-GNU/Linux written by Julian Se-
ward, already known for having committed Bzip2. It is the best news for programmers
for years. Unfortunately, due to EPITA’s choice of NetBSD using Valgrind will not be
convenient for you... Nevertheless, Valgrind is so powerful, so beautifully designed that
you definitely should wander on the Valgrind Home Page44 to learn what you are missing.

In the case of the Tiger Compiler Project correct memory management is a primary
goal. To this end, Valgrind is a precious tool, as is dmalloc45, but because STL imple-
mentations are often keeping some memory for efficiency, you might see “leaks” from your
C++ library. See its documentation on how to reclaim this memory. For instance, read-
ing the GCC’s C++ Library FAQ46, especially the item “memory leaks” in containers47 is
enlightening.

I personally use the following shell script to track memory leaks:

43 http://web.inter.nl.net/hcc/Haj.Ten.Brugge.
44 http://developer.kde.org/~sewardj/.
45 http://dmalloc.com.
46 http://gcc.gnu.org/onlinedocs/libstdc++/faq/.
47 http://gcc.gnu.org/onlinedocs/libstdc++/faq/#4_4_leak.

124 The Tiger Compiler Project Assignment

#! /bin/sh

exec 3>&1
export GLIBCPP_FORCE_NEW=1
export GLIBCXX_FORCE_NEW=1
exec valgrind --num-callers=20 \

--leak-check=yes \
--leak-resolution=high \
--show-reachable=yes \
"$@" 2>&1 1>&3 3>&- |

sed ’s/^==[0-9]*==/==/’ >&2 1>&2 3>&-

File 5.1: ‘v’

For instance on 〈undefined〉 [0.tig], page 〈undefined〉,

$ v tc -A 0.tig

error == Memcheck, a memory error detector for x86-linux.
error == Copyright (C) 2002-2003, and GNU GPL’d, by Julian Seward.
error == Using valgrind-2.1.0, a program supervision framework for x86-
linux.
error == Copyright (C) 2000-2003, and GNU GPL’d, by Julian Seward.
error == Estimated CPU clock rate is 1667 MHz
error == For more details, rerun with: -v
error ==
error ==
error == ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
error == malloc/free: in use at exit: 50 bytes in 2 blocks.
error == malloc/free: 656 allocs, 654 frees, 37979 bytes allocated.
error == For counts of detected errors, rerun with: -v
error == searching for pointers to 2 not-freed blocks.
error == checked 5674152 bytes.
error ==
error == 18 bytes in 1 blocks are possibly lost in loss record 1 of 2
error == at 0x4002F202: operator new(unsigned) (vg_replace_malloc.c:162)
error == by 0x402C6C78: std::__default_alloc_template<true, 0>::al-
locate(unsigned) (in /usr/lib/libstdc++.so.5.0.5)
error == by 0x402CC567: std::string::_Rep::_S_create(unsigned, std::allocator<char> const&) (in /usr/lib/libstdc++.so.5.0.5)
error == by 0x402CD2BF: (within /usr/lib/libstdc++.so.5.0.5)
error == by 0x402C9AB8: std::string::string(char const*, std::allocator<char> const&) (in /usr/lib/libstdc++.so.5.0.5)
error == by 0x805FD59: parse::tasks::parse() (tasks.cc:30)
error == by 0x80F8BAF: FunctionTask::execute() const (function-task.cc:18)
error == by 0x80FA370: TaskRegister::execute() (task-register.cc:274)
error == by 0x804B307: main (tc.cc:26)
error ==
error ==
error == 32 bytes in 1 blocks are still reachable in loss record 2 of 2
error == at 0x4002F202: operator new(unsigned) (vg_replace_malloc.c:162)
error == by 0x806508E: yy::Parser::parse() (parsetiger.yy:212)
error == by 0x805FF47: parse::parse(std::string const&, bool, bool) (libparse.cc:18)
error == by 0x805FD65: parse::tasks::parse() (tasks.cc:30)
error == by 0x80F8BAF: FunctionTask::execute() const (function-task.cc:18)
error == by 0x80FA370: TaskRegister::execute() (task-register.cc:274)

Chapter 5: Tools 125

error == by 0x804B307: main (tc.cc:26)
error ==
error == LEAK SUMMARY:
error == definitely lost: 0 bytes in 0 blocks.
error == possibly lost: 18 bytes in 1 blocks.
error == still reachable: 32 bytes in 1 blocks.
error == suppressed: 0 bytes in 0 blocks.
/* == Abstract Syntax Tree. == */
0
Example 136: v tc -A 0.tig

$ v tc -AD 0.tig

error == Memcheck, a memory error detector for x86-linux.
error == Copyright (C) 2002-2003, and GNU GPL’d, by Julian Seward.
error == Using valgrind-2.1.0, a program supervision framework for x86-
linux.
error == Copyright (C) 2000-2003, and GNU GPL’d, by Julian Seward.
error == Estimated CPU clock rate is 1669 MHz
error == For more details, rerun with: -v
error ==
error ==
error == ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
error == malloc/free: in use at exit: 0 bytes in 0 blocks.
error == malloc/free: 665 allocs, 665 frees, 38209 bytes allocated.
error == For counts of detected errors, rerun with: -v
error == No malloc’d blocks -- no leaks are possible.
/* == Abstract Syntax Tree. == */
0
Example 137: v tc -AD 0.tig

Starting with GCC 3.4, GLIBCPP_FORCE_NEW is spelled GLIBCXX_FORCE_NEW.

5.6 Flex & Bison

We use Bison 1.875c which is able to produce a C++ parser. This Bison is unpublished, as
the maintainers still have issues to fix. Nevertheless, it is usable, and perfectly functional
for Tiger. It is installed in ‘~akim/bin’, under the name bison. Be aware that Bison
1.875 produces buggy C++ parsers.

If you don’t use this Bison, you will be in trouble. If you are willing to work at home,
use ‘bison-1.875a.tar.bz2’48.

The original papers on Lex and Yacc are:

Johnson, Stephen C. [1975].
Yacc: Yet Another Compiler Compiler49. Computing Science Technical Re-
port No. 32, Bell Laboratories, Murray hill, New Jersey.

Lesk, M. E. and E. Schmidt [1975].
Lex: A Lexical Analyzer Generator50. Computing Science Technical Report
No. 39, Bell Laboratories, Murray Hill, New Jersey.

These introductory guides can help beginners:

48 http://www.lrde.epita.fr/~akim/compil/download/bison-1.875a.tar.bz2.
49 http://epaperpress.com/lexandyacc/download/yacc.pdf.
50 http://epaperpress.com/lexandyacc/download/lex.pdf.

126 The Tiger Compiler Project Assignment

Thomas Niemann.
A Compact Guide to Lex & Yacc51.
An introduction to Lex and Yacc.

Collective Work
Programming with GNU Software52.
Contains information about Autoconf, Automake, Gperf, Flex, Bison, and
GCC.

The Bison documentation53, and the Flex documentation54 are available for browsing.

5.7 HAVM

HAVM is a Tree (hir or lir) programs interpreter. It was written by Robert Anisko so that
EPITA students could exercise their compiler projects before the final jump to assembly
code. It is implemented in Haskell, a pure non strict functional language very well suited
for this kind of symbolic processing. HAVM was coined on both Haskell, and VM standing
for Virtual Machine.

Information about HAVM can be found on HAVM Home Page55, and feedback can be
sent to LRDE’s Projects Address56.

5.8 Mipsy

MIPSY is a MIPS simulator designed to execute simple register based MIPS assembly code.
It is a minimalist MIPS virtual machine that, contrary to other simulators (see Section 5.9
[SPIM], page 126), supports unlimited registers. The lack of a simulator featuring this
prompted the development of MIPSY.

Its features are:

− sufficient support of MIPS instruction set
− infinitely many registers

It was written by Benôıt Perrot as an LRDE member, so that EPITA students could
exercise their compiler projects after the instruction selection but before the register allo-
cation. It is implemented in C++ and Python.

Information about MIPSY can be found on MIPSY Home Page57, and feedback can be
sent to lrde’s Projects Address58.

5.9 SPIM

The SPIM documentation reads:

SPIM S20 is a simulator that runs programs for the MIPS R2R3000 RISC
computers. SPIM can read and immediately execute files containing assembly
language. SPIM is a self-contained system for running these programs and
contains a debugger and interface to a few operating system services.

51 http://www.epaperpress.com/lexandyacc/index.html.
52 http://www.lrde.epita.fr/~akim/compil/gnuprog2/.
53 http://www.lrde.epita.fr/~akim/doc/bison.html.
54 http://www.lrde.epita.fr/~akim/doc/flex.html.
55 http://www.lrde.epita.fr/cgi-bin/twiki/view/Projects/Havm.
56 projects@lrde.epita.fr.
57 http://www.lrde.epita.fr/cgi-bin/twiki/view/Projects/Mipsy.
58 projects@lrde.epita.fr.

Chapter 5: Tools 127

The architecture of the MIPS computers is simple and regular, which makes
it easy to learn and understand. The processor contains 32 general-purpose
32-bit registers and a well-designed instruction set that make it a propitious
target for generating code in a compiler.

However, the obvious question is: why use a simulator when many people
have workstations that contain a hardware, and hence significantly faster, im-
plementation of this computer? One reason is that these workstations are
not generally available. Another reason is that these machine will not persist
for many years because of the rapid progress leading to new and faster com-
puters. Unfortunately, the trend is to make computers faster by executing
several instructions concurrently, which makes their architecture more diffi-
cult to understand and program. The MIPS architecture may be the epitome
of a simple, clean RISC machine.

In addition, simulators can provide a better environment for low-level pro-
gramming than an actual machine because they can detect more errors and
provide more features than an actual computer. For example, SPIM has a X-
window interface that is better than most debuggers for the actual machines.

Finally, simulators are an useful tool for studying computers and the programs
that run on them. Because they are implemented in software, not silicon, they
can be easily modified to add new instructions, build new systems such as
multiprocessors, or simply to collect data.

SPIM is written and maintained by James R. Larus.

5.10 SWIG

Our compiler provides two different user interfaces: one is a command line interface fully
written in C++, using the “Task” system, and the other is a binding of the primary
functions into the Python script language (see Section 5.11 [Python], page 127. This
binding is automatically extracted from our modules using SWIG.

The SWIG home page59 reads:

SWIG is a software development tool that connects programs written in C and
C++ with a variety of high-level programming languages. SWIG is primarily
used with common scripting languages such as Perl, Python, Tcl/Tk, and
Ruby, however the list of supported languages also includes non-scripting lan-
guages such as Java, OCaml and C#. Also several interpreted and compiled
Scheme implementations (Guile, MzScheme, Chicken) are supported. SWIG
is most commonly used to create high-level interpreted or compiled program-
ming environments, user interfaces, and as a tool for testing and prototyping
C/C++ software. SWIG can also export its parse tree in the form of XML and
Lisp s-expressions. SWIG may be freely used, distributed, and modified for
commercial and non-commercial use.

5.11 Python

We promote, but do not require, Python as a scripting language over Perl because in our
opinion it is a cleaner language. A nice alternative to Python is Ruby60.

The Python Home Page61 reads:

59 http://www.swig.org/.
60 http://www.ruby-lang.org/en/.
61 http://www.python.org.

mailto:larus@cs.wisc.edu

128 The Tiger Compiler Project Assignment

Python is an interpreted, interactive, object-oriented programming language.
It is often compared to Tcl, Perl, Scheme or Java.
Python combines remarkable power with very clear syntax. It has modules,
classes, exceptions, very high level dynamic data types, and dynamic typing.
There are interfaces to many system calls and libraries, as well as to various
windowing systems (X11, Motif, Tk, Mac, MFC). New built-in modules are
easily written in C or C++. Python is also usable as an extension language for
applications that need a programmable interface.
The Python implementation is portable: it runs on many brands of UNIX,
on Windows, OS/2, Mac, Amiga, and many other platforms. If your favorite
system isn’t listed here, it may still be supported, if there’s a C compiler for
it. Ask around on news:comp.lang.python – or just try compiling Python
yourself.
The Python implementation is copyrighted but freely usable and distributable,
even for commercial use.

5.12 Doxygen

We use Doxygen62 as the standard tool for producing the developer’s documentation of the
project. Its features must be used to produce good documentation, with an explanation
of the role of the arguments etc. The quality of the documentation will be part of the
notation. Details on how to use proper comments are given in the Doxygen Manual63.

The documentation produced by Doxygen must not be included, but the target html
must produce the html documentation in the ‘doc/html’ directory.

62 http://www.doxygen.org/index.html.
63 http://www.stack.nl/~dimitri/doxygen/manual.html.

Appendix A: Appendices 129

Appendix A Appendices

A.1 Glossary

Contributions to this section (as for the rest of this documentation) will be greatly appre-
ciated.

activation block
Portion of dynamically allocated memory holding all the information a (recur-
sive) function needs at runtime. It typically contains arguments, automatic
local variables etc. Implemented by the class frame::Frame (see Section 4.7
[T5], page 60).

build The machine/architecture on which the program is being built. For instance,
EPITA students typically build their compiler on NetBSD. Contrast with “tar-
get” and “host”.

curriculum
From WordNet: n : a course of academic studies; “he was admitted to a new
program at the university” (syn: “course of study”, “program”, “syllabus”).

HAVM HAVM is a Tree (hir or lir) programs interpreter. See Section 5.7 [HAVM],
page 126.

Guru of the Week
GotW See Section 5.2 [Bibliography], page 114.

host The machine/architecture on which the program is run. For instance, EPITA
students typically run their Tiger Compiler on NetBSD. Contrast with “build
and “target”.

IA32 The official new name for the i386 architecture.

scholarship
It is related to “scholar”, not “school”! It does not mean “scolarité”.
From WordNet:

n 1: financial aid provided to a student on the basis of academic merit.
2: profound knowledge (syn: “eruditeness”, “erudition”, “learnedness”,
“learning”).

See “schooling” and “curriculum”.

schooling From WordNet:
n 1: the act of teaching at school.
2: the process of being formally educated at a school; “what will you do
when you finish school?” (syn: “school”).
3: the training of an animal (especially the training of a horse for dres-
sage).

snippet A piece of something, e.g., “code snippet”.

stack frame
Synonym for “activation block”.

static hierarchy
A hierarchy of classes without virtual methods. In that case there is no (in-
clusion) polymorphism. For instance:

130 The Tiger Compiler Project Assignment

struct A { };
struct B: A { };

SPIM SPIM S20 is a simulator that runs programs for the MIPS R2R3000 RISC
computers. See Section 5.9 [SPIM], page 126.

target The machine (or language) aimed at by a compiling tool. For instance, our
target is principally MIPS. Compare with “build” and “host”.

traits Traits are a useful technique that allows to write (compile time) functions
ranging over types. See [Traits], page 121, for the original presentation of
traits. See [Modern C++ Design], page 119, for an extensive use of traits.

vtable For a given class, its table of pointers to virtual methods.

A.2 GNU Free Documentation License
Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
free in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the docu-
ment must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited
to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public
is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Docu-
ment that deals exclusively with the relationship of the publishers or authors of the
Document to the Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (For example, if the Doc-
ument is in part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical connection with

Appendix A: Appendices 131

the subject or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released
under this License.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents
can be viewed and edited directly and straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup has been designed
to thwart or discourage subsequent modification by readers is not Transparent. A copy
that is not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modifica-
tion. Opaque formats include PostScript, PDF, proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML
produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

132 The Tiger Compiler Project Assignment

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added
material, which the general network-using public has access to download anonymously
at no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide
you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses
a copy of it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it
has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on
its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given

Appendix A: Appendices 133

in the Document for previous versions it was based on. These may be placed
in the “History” section. You may omit a network location for a work that
was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may
at your option designate some or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.
You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in
the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by you
or by arrangement made by the same entity you are acting on behalf of, you may
not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such
section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice
of the combined work.
In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any

134 The Tiger Compiler Project Assignment

sections entitled “Acknowledgments”, and any sections entitled “Dedications”. You
must delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Doc-
ument, then if the Document is less than one quarter of the entire aggregate, the
Document’s Cover Texts may be placed on covers that surround only the Document
within the aggregate. Otherwise they must appear on covers around the whole ag-
gregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with trans-
lations requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of
these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that

http://www.gnu.org/copyleft/

Appendix A: Appendices 135

specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

136 The Tiger Compiler Project Assignment

A.2.1 ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the

Front-Cover Texts being list, and with the Back-Cover Texts being list.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releas-
ing these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

A.3 Colophon

This is version 0.241 of ‘assignments.texi’, last edited on February 24, 2004, and com-
piled 24 February 2004, using:

$ tc --version

tc (LRDE Tiger Compiler 0.66a)
Revision 0.1228 Tue, 17 Feb 2004 18:58:49 +0100

This package was written by and with the assistance of

* Akim Demaille akim@freefriends.org
- Maintenance.

* Alexandre Duret-Lutz duret_g@epita.fr

* Cedric Bail bail_c@epita.fr
- Initial escaping static link computation framework.

* Alexis Brouard brouar_a@epita.fr
- Portability of tc-check to NetBSD.

* Benoît Perrot benoit@lrde.epita.fr
- Extensive documentation.
- Redesign of the Task system.
- Design and implementation of target handling.
- Deep clean up of every single module.
- Third redesign of the AST, and actually, automatic generation of the AST.

* Daniel Gazard gazard_d@epita.fr
- Initial framework from LIR to MIPS.

* Francis Maes francis@lrde.epita.fr
- Generation of static C++ Tree As Types.

Appendix A: Appendices 137

* Julien Roussel spip@lrde.epita.fr
- "let" desugaring.

* Nicolas Burrus
- Generation of a Swig bindings of the tc libraries to Python.
- Implementation of a tc shell.

* Pierre-Yves Strub strub_p@epita.fr
- Second redesign of the AST.
- Second redesign of Symbol.

* Quôc Peyrot chojin@lrde.epita.fr
- Initial Task framework.

* Raphaël Poss r.poss@online.fr
- Conversion of AST to using pointers instead of references.
- Breakup between interfaces and implementations (.hh only -> .hxx, .cc)
- Miscellaneous former TODO items.
- Implementation of reference counting for Tree.

* Robert Anisko anisko_r@epita.fr

* Sébastien Broussaud brouss_s@epita.fr
- Escapes torture tests.

* Stéphane Molina molina_s@epita.fr
- Configuration files in tc-check.

* Thierry Géraud theo@epita.fr
- Initial idea for visitors.
- Initial idea for tasks.
- Initial implementation of AST.
- Initial implementation of Tree.

* Valentin David david_v@epita.fr
- Some additional tests.

* Yann Popo popo_y@epita.fr
- Implementation of the Timer class.

* Yann Régis-Gianas yann@lrde.epita.fr
- Reimplementation of graphs.

Copyright (C) 2004 LRDE.

Example 138: tc --version

$ havm --version

HAVM 0.21
Written by Robert Anisko.

Copyright (C) 2003 Laboratoire de Recherche et Développement de l’EPITA.

138 The Tiger Compiler Project Assignment

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Example 139: havm --version

$ mipsy --version

mipsy (Mipsy) 0.5
Written by Benoit Perrot.

Copyright (C) 2003 Benoit Perrot.
mipsy comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute and modify it
under certain conditions; see source for details.

Example 140: mipsy --version

A.4 List of Files
File 4.1: ‘simple.tig’ . 40
File 4.2: ‘back-zee.tig’ . 41
File 4.3: ‘postinc.tig’ . 41
File 4.4: ‘test01.tig’ . 43
File 4.5: ‘unterminated-comment.tig’ . 43
File 4.6: ‘type-nil.tig’ . 43
File 4.7: ‘a+a.tig’ . 44
File 4.8: ‘simple-fact.tig’ . 47
File 4.9: ‘string-escapes.tig’ . 48
File 4.10: ‘1s-and-2s.tig’ . 48
File 4.11: ‘for-loop.tig’ . 49
File 4.12: ‘parens.tig’ . 49
File 4.13: ‘foo-bar.tig’ . 49
File 4.14: ‘foo-stop-bar.tig’ . 50
File 4.15: ‘fbfsb.tig’. 50
File 4.16: ‘fff.tig’ . 51
File 4.17: ‘multiple-parse-errors.tig’ . 51
File 4.18: ‘variable-escapes.tig’ . 54
File 4.19: ‘int-plus-string.tig’ . 56
File 4.20: ‘unknowns.tig’ . 56
File 4.21: ‘bad-if.tig’ . 56
File 4.22: ‘mutuals.tig’ . 57
File 4.23: ‘is_devil.tig’ . 59
File 4.24: ‘0.tig’ . 61
File 4.25: ‘arith.tig’. 61
File 4.26: ‘if-101.tig’ . 62
File 4.27: ‘while-101.tig’ . 62
File 4.28: ‘boolean.tig’ . 63
File 4.29: ‘print-101.tig’ . 66
File 4.30: ‘print-list.tig’ . 66
File 4.31: ‘vars.tig’ . 69
File 4.32: ‘fact15.tig’ . 72
File 4.33: ‘bounds-violation.tig’ . 77
File 4.34: ‘preincr-1.tig’ . 80
File 4.35: ‘preincr-2.tig’ . 84
File 4.36: ‘move-mem.tig’ . 87

Appendix A: Appendices 139

File 4.37: ‘nested-calls.tig’ . 87
File 4.38: ‘seq-point.tig’ . 88
File 4.39: ‘1-and-2.tig’ . 89
File 4.40: ‘broken-while.tig’ . 89
File 4.41: ‘seven.tig’. 93
File 4.42: ‘add.tig’ . 94
File 4.43: ‘substring-0-1-1.tig’ . 96
File 4.44: ‘ors.tig’ . 100
File 4.45: ‘print-seven.tig’ . 106
File 4.46: ‘print-many.tig’ . 107
File 5.1: ‘v’ . 124

A.5 Index

*
‘*-tasks.hh’ and ‘*-tasks.cc’ are impure . . 22

-
‘--escapes-compute’ . 53
‘--escapes-display’ . 53
‘--types-check’ . 56
‘-T’ . 56

=
⇒ . 40

A
access.cc . 32, 33
access.hh . 32, 33
Accessors . 24
activation block . 129
aliasing . 18
ASM . 105
Assem . 34
assembly.hh . 35
‘AUTHORS’ . 29
Autoconf . 121
Automake . 121

B
basic block . 89
Bison . 125
Bjarne Stroustrup . 114
Bookshop . 114
Boost.org . 115
build . 129

C
C++ Primer . 115
canonicalization . 79
chunk . 52
Code duplication . 16
codegen-tasks.cc . 35
codegen-tasks.hh . 35
codegen.cc . 36

codegen.hh . 35, 36

color.hh . 37

common.hh . 30

commute . 84

Compilers: Principles, Techniques and Tools

. 116

contract.hh . 30

Cool: The Classroom Object-Oriented Compiler

. 116

cpu.hh . 34

CStupidClassName . 116

curriculum . 129

D
Declarations in ‘*.hh’ . 21

default-visitor.hh . 31

Definitions of functions and variables in

‘*.cc’ . 21

depth_get . 55

Design Patterns: Elements of Reusable

Object-Oriented Software 117

distcheck . 122

dmalloc . 123

Dragon Book . 116

driver . 30

dynamic_cast . 16

E
ECn . 117

Effective C++ . 117

Effective STL . 118

EPITA Library . 114

error . 40

escape . 30

escape.hh . 30

escape_set . 55

escapes::EscapesVisitor 55

EscapesVisitor . 55

ESn . 118

exp.hh . 33

140 The Tiger Compiler Project Assignment

F
FDL, GNU Free Documentation License 130

Flex . 125

flow graph . 100

flowgraph.hh . 37

foo_get . 24

foo_set . 24

fragment.cc . 34

fragment.hh . 33, 34

frame.cc . 32

frame.hh . 32

‘fwd.hh’ exports forward declarations 22

G
gas-assembly.cc . 36

gas-assembly.hh . 36

gas-layout.cc . 36

gas-layout.hh . 36

GCC . 123

Generic Visitors in C++ 118

get . 58

GLIBCPP_FORCE_NEW . 123

GLIBCXX_FORCE_NEW . 123

GNU Build System . 121

GotW . 118

GotWn . 118

graph.hh . 37

graph.hxx . 37

Guru of the Week . 118

H
handler.hh . 37

handler.hxx . 37

havm . 61

HAVM . 126, 129

HIR . 60

host . 129

Hunt code duplication. 16

Hunt Leaks . 16

I
ia32 . 35

IA32 . 129

ia32-cpu.hh . 34

ia32-target.hh . 34

Inlined definitions in ‘*.hxx’ 21

INSTR . 92

instr.hh . 34

instruction selection . 92

interference-graph.cc . 37

interference-graph.hh . 37

iterator.hh . 37

iterator.hxx . 37

L
label.hh . 32, 34

layout.hh . 34

Le Monde en Tique . 114

level-entry.hh . 33

level-env.hh . 33

level.cc . 33

level.hh . 33

Lex . 125

Lex & Yacc . 119

‘lib*.hh’ and ‘lib*.cc’ are pure 22

libassem.cc . 34

libassem.hh . 34

libcodegen.cc . 35

libcodegen.hh . 35

libparse.hh . 31

libregalloc.cc . 37

libregalloc.hh . 37

libtranslate.cc . 33

libtranslate.hh . 33

libtype.hh . 31

LIR . 79

liveness analysis . 100

liveness.cc . 37

liveness.hh . 37

location.hh . 31

M
Make functor classes adaptable (ES40) 20

Making Compiler Design Relevant for Students

who will (Most Likely) Never Design a

Compiler. 119

malloc . 66

mips . 35

mips-cpu.hh . 34

mips-target.hh . 34

Mipsy . 126

Modern C++ Design -- Generic Programming and

Design Patterns Applied 119

Modern Compiler Implementation in C, Java, ML

. 119

move.hh . 34

N
Name private/protected members like_this_

. 19

Name public members like_this 19

Name the parent class super_type 20

Name your classes LikeThis 19

Name your typedef foo_type 19

O
oper.hh . 34

Order class members by visibility first . . . 22

Appendix A: Appendices 141

P
parsetiger.yy . 31

Parsing Techniques -- A Practical Guide . . 120

patch . 29

Patches, applying . 29

Portland Pattern Repository 117

position.hh . 31

Prefer algorithm call to hand-written loops

(ES43) . 20

Prefer C Comments for Long Comments. 24

Prefer C++ Comments for One Line Comments

. 24

Prefer Doxygen Documentation to plain

comments . 23

Prefer dynamic_cast of references 16

Prefer member functions to algorithms with

the same names (ES44) 21

print . 25, 58

print-visitor.hh . 31

put . 58

Python . 127

R
rebox . 25

regalloc-tasks.cc . 37

regalloc-tasks.hh . 37

regallocator.hh . 37

register allocation . 105

runtime, Tiger . 35

runtime.cc . 36

runtime.s . 36

S
scantiger.ll . 31

scholarship . 129

schooling . 129

scope_begin . 58

scope_end . 58

sequence point . 80

set.hh . 30

snippet . 129

Specify comparison types for associative

containers of pointers (ES20) 20

SPIM . 126

spim-assembly.cc . 36

spim-assembly.hh . 36

spim-layout.cc . 36

spim-layout.hh . 36

spot : une bibliothèque de vérification de

propriétés de logique temporelle à temps

linéaire. 120

stack frame . 129

static hierarchy . 129

STL Home . 121

SWIG . 127

symbol . 30

Symbol . 30

symbol.hh . 30

symbol::Table< class Entry_T > 57

T
table.hh . 31
tarball name . 122
target . 130
target-tasks.cc . 34
target-tasks.hh . 34
target.hh . 34
tc . 30
tc.cc . 30
temp.hh . 32
test-flowgraph.cc . 37
test-graph.cc . 37
test-regalloc.cc . 37
The Design and Evolution of C++ 120
The Dragon Book . 116
The Elements of Style . 120
Thinking in C++ Volume 1 121
Thinking in C++ Volume 2 121
tiger-runtime.c . 35
timer.cc . 30
timer.hh . 30
traces . 89
traits . 121, 130
Traits: a new and useful template technique

. 121
translate-visitor.hh . 33
translation.hh . 33
type checking . 56
type-entry.hh . 32
type-env.hh . 32
type::Error . 58
typeid . 17
types.hh . 32

U
Use ‘\directive’. 24
Use const references in arguments to save

copies (EC22) . 18
Use dynamic_cast for type cases 17
Use foo_get, not get_foo 24
Use pointers when passing an object together

with its management 19
Use print as a member function returning a

stream . 25
Use ‘rebox.el’ to markup paragraphs 25
Use references for aliasing 18
Use the Imperative . 23
Use virtual methods, not type cases. 16

V
Valgrind . 123
visitor.hh . 31, 34
vtable . 130

W
Write Documentation in Doxygen 24
Writing Compilers and Interpreters -- An

Applied Approach Using C++ 121

Y
Yacc . 125
yaka@epita.fr . 26

142 The Tiger Compiler Project Assignment

	Introduction
	How to Read this Document
	Why the Tiger Project
	What the Tiger Project is not
	History
	Fair Criticism
	Tiger 2002
	Tiger 2003
	Tiger 2004
	Tiger 2005
	Tiger 2006

	Instructions
	Interactions
	Groups
	Coding Style
	No Draft Allowed
	Use of Foreign Features
	Use of C++ Features
	Use of STL
	File Conventions
	Matters of Style

	Delivery
	Evaluation
	Automated Evaluation
	During the Examination
	Human Evaluation
	Marks Computation

	Tarballs
	Given Tarballs
	Project Layout
	The Top Level
	The src Directory
	The src/misc Directory
	The src/task Directory
	The src/symbol Directory
	The src/ast Directory
	The src/parse Directory
	The src/type Directory
	The src/temp Directory
	The src/tree Directory
	The src/frame Directory
	The src/translate Directory
	The src/canon Directory
	The src/assem Directory
	The src/target Directory
	The src/codegen Directory
	The src/codegen/mips Directory
	The src/codegen/ia32 Directory
	The src/graph Directory
	The src/liveness Directory
	The src/regalloc Directory

	Given Test Cases

	Compiler Stages
	Stage Presentation
	T0, Naive Scanner and Parser
	T0 Goals
	T0 Samples
	T0 Code to Write
	T0 Improvements

	T1, Scanner and Parser
	T1 Goals
	T1 Samples
	T1 Given Code
	T1 Code to Write
	T1 FAQ
	T1 Improvements

	T2, Building the Abstract Syntax Tree
	T2 Goals
	T2 Samples
	T2 Pretty-Printing Samples
	T2 Chunks
	T2 Error Recovery

	T2 Given Code
	T2 Code to Write
	T2 FAQ
	T2 Improvements

	T3, Computing the Escaping Variables
	T3 Goals
	T3 Samples
	T3 Code To Write
	T3 FAQ
	T3 Improvements

	T4, Type Checking
	T4 Goals
	T4 Samples
	T4 Given Code
	T4 Code to Write
	T4 Options
	T4 FAQ
	T4 Improvements

	T5, Translating to the High Level Intermediate Representation
	T5 Goals
	T5 Samples
	T5 Primitive Samples
	T5 Optimizing Cascading If
	T5 Builtin Calls Samples
	T5 Samples with Variables

	T5 Given Code
	T5 Code to Write
	T5 Options
	T5 Bounds Checking
	T5 Optimizing Static Links

	T5 Improvements

	T6, Translating to the Low Level Intermediate Representation
	T6 Goals
	T6 Samples
	T6 Canonicalization Samples
	T6 Scheduling Samples

	T6 Given Code
	T6 Code to Write
	T6 Improvements

	T7, Instruction Selection
	T7 Goals
	T7 Samples
	T7 Given Code
	T7 Code to Write
	T7 Improvements

	T8, Liveness Analysis
	T8 Goals
	T8 Samples
	T8 Given Code
	T8 Code to Write
	T8 Improvements

	T9, Register Allocation
	T8 Goals
	T9 Samples
	T9 Given Code
	T9 Code to Write
	T9 FAQ
	T9 Improvements

	Tools
	Modern Compiler Implementation
	Bibliography
	The GNU Build System
	Package Name and Version
	Bootstrapping the Package
	Making a Tarball

	GCC, The GNU Compiler Collection
	Valgrind, The Ultimate Memory Debugger
	Flex & Bison
	HAVM
	Mipsy
	SPIM
	SWIG
	Python
	Doxygen

	Appendices
	Glossary
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Colophon
	List of Files
	Index

