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Introduction

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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1.2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Context

Software and hardware systems have become ubiquitous in our everyday life. These systems
replace humans for critical tasks that involve high costs and sometimes human lives. This is the
case in many areas such as medical devices, telesurgery, nuclear power plants, aircrafts industry,
transportation, . . .

The serious consequences caused by the failure of such systems make crucial the use of rigor-
ous methods for system validation.

Methods based on testing and simulation have long been used for the validation of systems.
However, these techniques allow to explore only a part of the possible system behaviors. The
formal verification techniques are exhaustive, they guarantee that a property is satisfied by all
possible system executions.

1.1.1 Model Checking and Automata-theoretic Approach

Formal verification [24] provides mathematical-based methods to ensure the correctness of a sys-
tem with respect to specified behavioral properties (for example, a typical property to check in con-
current systems is the absence of deadlocks). One of the widely-used formal verification methods
is model checking [25, 54, 8].

Taking as input a high level model describing all possible executions of the system and the
property to be checked expressed as a temporal logic formula, a model checker answers if the
model satisfies or not the formula. When the property is not satisfied, the model checker returns
a counterexample, i.e., an execution of the model invalidating the property. This counterexample
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Model Checker

High-level
Model M

On-the-fly Generation of
State-space KM

LTL Property
ϕ

LTL
Translation

Negated Property
Automaton A¬ϕ

Synchronous Product
constructed on-the-fly

L (KM ⊗A¬ϕ) =

L (KM)∩L (A¬ϕ)

Emptiness Check
L (KM⊗A¬ϕ)

?
= /0

M |= ϕ or
Counterexample

Figure 1.1: Automata-theoretic approach to model checking.

is useful to find errors in complex systems. This is an advantage of model checking compared to
the other formal methods, such as theorem proving, which can disapprove a property but without
providing such a counterexample. Another advantage is the fact that the model checking procedure
is completely automatic and easy to use. This automatic procedure is based on the exploration of
the system’s state-space, i.e., a structure that describes all reachable states of the system and
all transitions that the system can make between those states. The main disadvantage of model
checking is discussed in Section 1.1.2.

The automata-theoretic approach [89, 90] to model checking represents this state-space and
the property to check using variants of ω-automata [42], i.e., an extension of the classical finite
automata to recognize words having infinite length (called ω-words).

The automata-theoretic approach splits the verification process into four operations as shown
in figure 1.1:

1. Computation of the state-space for the model M. This state-space can be seen as an ω-
automaton AM whose language, L (AM), represents all possible infinite executions of M.

2. Translation of the temporal property ϕ into an ω-automaton A¬ϕ whose language, L (A¬ϕ),
is the set of all infinite executions that would invalidate ϕ.

3. Synchronization of these automata. This constructs a product automaton AM⊗A¬ϕ whose
language, L (AM)∩L (A¬ϕ), is the set of executions of M invalidating ϕ.

4. Emptiness check of this product. This operation tells whether AM⊗A¬ϕ accepts an infinite
word, and can return such a word (a counterexample) if it does. The model M verifies ϕ iff
L (AM⊗A¬ϕ) = /0.

1.1.2 The State-space Explosion Problem

The main difficulty of model checking is the state-space explosion problem [87] caused by the
large size of the state-space of the model. For instance, modeling a system of concurrent pro-
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cesses can generate a state-space which grows exponentially in the number of processes. Thus,
the obtained state-space contains a very important number of states even if each process of the
system has only few states. Consequently, in the automata-theoretic approach, the synchronous
product of the model’s state-space with the property automaton is often too large to be emptiness
checked in a reasonable run time and memory. In the literature, different approaches have been
proposed to improve the performance of model checking in order to push away the barrier of the
State-space Explosion Problem.

The objective of this thesis is to join the fight against this problem, in the context of the
verification of stutter-invariant LTL properties. In this work, we consider only finite-state systems
(i.e. having a finite number of different configurations). The state-space of these systems have a
finite number of states, but possibly infinite number of infinite executions.

1.1.3 Explicit versus Symbolic model checking

There are two main variants of the automata-theoretic approach: explicit and symbolic.
• In the explicit approach [e.g., 26, 48], the state-space of the model and the product are

explicitly constructed by enumerating their states. "On-the-fly" emptiness check algorithms
avoid the construction of the entire product and state-space by building them lazily during
exploration. These on-the-fly algorithms are more efficient because they stop as soon as
they find a counterexample and therefore possibly before building the entire product, thereby
reducing the amount of memory and time used by the emptiness check in the case of violated
properties.

• The symbolic approach [17] tries to overcome the state-space explosion obstacle by rep-
resenting the state-space implicitly by means of Binary Decision Diagrams (BDDs). The
intersection and union of sets of states are translated into conjunction (∧) and disjunction (∨)
of Boolean functions efficiently performed using BDDs (or any other variants of Decision
Diagrams).

1.1.4 LTL and Stutter-invariance

In order to describe behavioral properties of complex systems, in addition to propositional logic,
we need to introduce temporal operators. In this work, we focus on the model checking of stutter-
invariant [39] LTL properties.

Linear Temporal Logic (LTL), introduced by Pnueli in 1977, is a propositional temporal logic
widely used to express temporal properties.

The LTL syntax combines standard logical operators (∧, ∨, ¬,→,↔) and temporal operators
to specify that some property p happens next time “X p”, eventually “F p”, always “G p”,. . . (see
Section 2.3.1 for a full definition of LTL syntax and semantics).

Typical examples of LTL properties have the form “G¬p” (p never happens), ”GF p” (p hap-
pens infinitely often), and ”FG p” (at some point, p will hold forever).

LTL properties are constructed over the set AP of atomic propositions, which represent the
properties of individual states. Each state of the system is labeled by a valuation ` that assigns a
truth value to each atomic proposition of AP (formally, a valuation is a function ` : AP 7→ {⊥,>}).
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A valuation can also be viewed as a set ` ∈ 2AP interpreted as the set of atomic propositions that
are true.

An LTL property ϕ is interpreted over each execution of a system, where an execution maps
each time instant to a set of atomic propositions that hold at that instant. Formally, an execution is
an infinite sequence of valuations `0`1 . . . `i . . . ∈ (2AP)ω.

The language of ϕ, denoted L (ϕ)⊆ (2AP)ω, is the set of all sequences of (2AP)ω satisfying ϕ.
Among LTL properties, we want to distinguish those that are stutter-invariant.
An LTL property ϕ is stutter-invariant iff any sequence `0`1`3 . . . ∈L (ϕ) remains in L (ϕ)

after repeating any valuation `i or omitting duplicate valuations. Formally, ϕ is stutter-invariant iff

`0`1`2 . . . ∈L (ϕ) ⇐⇒ `n0
0 `n1

1 `n2
2 . . . ∈L (ϕ) for any n0 > 0,n1 > 0 . . .

where `ni
i is the concatenation of ni copies of `i

Intuitively, stuttering-transitions correspond to transitions that do not change the valuation of
atomic propositions between two successive states. Adding or removing stuttering in the system
does not change the truth value of stutter-invariant properties. Thus, sequences that differ only in
the amount of stuttering can be considered equivalent when checking stutter-invariant properties.

It is well known that any LTL\X formula (i.e., an LTL formula that does not use the X operator)
describes a stutter-invariant property. Conversely any stutter-invariant property can be expressed
as an LTL\X formula [70].

According to many research [60, 39], the restriction to stutter-invariant properties is not a
serious disadvantage. In addition, there are many tools that enable specific optimizations for the
verification of stutter-invariant properties, such as the partial order reduction [86, 69, 50] in Spin
tool [55].

1.2 Scope of the Thesis

The general objective of this work is to tackle the state-space explosion problem by improving the
performance of the model checking of stutter-invariant LTL properties.

To achieve this goal, we propose some contributions to essentially reduce the size of the prod-
uct automaton and the computation time/memory used in the emptiness check of this product.
Firstly, we start by looking for a form of automata that is suitable for the representation of stutter-
invariant properties. As solutions, we propose new types of ω-automata that represent all the
stuttering-transitions using only self-loops. Then, using these new automata, we propose some
contributions to improve the performance of model checking in three contexts: explicit, symbolic
and hybrid approaches (where hybrid means combining explicit and symbolic approaches).

1.2.1 Existing Work

Different kinds of ω-automata have been used in the automata-theoretic approach to explicit model
checking. In the most common case, the property to be checked expressed as an LTL formula is
converted into a Büchi automaton (BA) [16] with state-based accepting.

In Spot [64], our model checking library, we prefer to represent properties using general-
ized (i.e., multiple) Büchi acceptance conditions on transitions rather than on states, the obtained
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automata being called Transition-based Generalized Büchi Automata (TGBA). We use TGBA be-
cause they allow to have a smaller [49, 36] property automaton than BA.

Unfortunately, having a smaller property automaton A¬ϕ does not always imply a smaller
product with the model (AM⊗A¬ϕ). Thus, instead of targeting smaller property automata, some
people have attempted to build automata that are more deterministic [78].

Hansen et al. [52, 46] introduced an alternative type of ω-automata called Testing Automata
(TA). TA are like BA, but instead of running them synchronously to the given transition system
model, TA only observe changes on the atomic propositions. These automata are less expressive
than Büchi automata since they are tailored to represent stutter-invariant properties. They are
often larger than their equivalent BA, but according to Geldenhuys and Hansen [46], thanks to
their high degree of determinism [52], the TA allow to obtain a smaller product and thus improve
the performance of model checking. As a back-side, TA have two different modes of accep-
tance (Büchi-accepting or livelock-accepting), and consequently their emptiness check requires
two passes [46], mitigating the benefits of a having a smaller product.

1.2.2 Contributions

BA

TGBA

Stutter-invariant
LTL Property ϕ

/0-TA
TA

(Two passes)

STA
(One pass)

Chapter 4

/0-TGTA
TGTA

(One pass)

Explicit
Chapter 5

Symbolic
(Saturation)

Chapter 6

Hybrid
Chapter 7

Labeling transitions

with “changesets”
Elimination of useless

stuttering transitions ( /0)

Labeling transitions

with “changesets”

Adding artificial

livelock state

Elimination of useless stuttering transitions ( /0)

without introducing a second pass

degeneralization

Automaton A¬ϕ

Figure 1.2: Yellow colored boxes are original contributions: the new types of ω-automata con-
structed in this work, with the references to the chapters that describe how to use these new
automata to improve the model checking of stutter-invariant LTL properties, in three contexts:
explicit, symbolic and hybrid approaches.

An overview of the existing automata and the new automata proposed in this work is shown in
Figure 1.2.

On the left of this figure, the white boxes show existing ω-automata used to represent the prop-
erty automaton A¬ϕ: the traditional Büchi Automata (BA) and its generalized variant Transition-
based Generalized Büchi Automata (TGBA), and (at the center of the figure) the Testing Automata
(TA), the alternative kind of automata that represent only stutter-invariant properties. TA is repre-
sented by a box with a double line edge because it requires a two-pass emptiness check algorithm
(see Section 3.5.2).

The arrows between the different boxes are labeled by the successive steps used to build the
different automata.
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In the right part of the figure, the yellow boxes show the new kinds of ω-automata constructed
in this thesis. Firstly, we propose an improvement of TA called Single-pass Testing Automata
(STA) (Chapter 4). Secondly, we propose a more efficient new automata (Chapter 5), called
Transition-based Generalized Testing Automata (TGTA) that combine the advantages of both STA
and TGBA, and without the disadvantages of STA.

Then, using these TGTA, several improvements are proposed in three different contexts: ex-
plicit model checking (Chapter 5), symbolic model checking based on the saturation algorithm
(Chapter 6) and three hybrid techniques (Chapter 7).

These contributions (yellow boxes) are briefly presented in the following:

Evaluation and improvement of the Testing Automata Approach. In Chapter 3, We experi-
mentally evaluate the TA approach in order to extend the study of Geldenhuys and Hansen [46].
We show that while TA are statistically more efficient than BA and TGBA when the property to
be verified is violated (i.e., a counterexample is found). This is not the case when the property
is satisfied since the entire product has to be visited twice to check for each accepting mode of a
TA (Büchi-accepting or livelock-accepting). Then, in Chapter 4 we improve the TA approach in
two ways. First, we introduce some optimizations on the emptiness check algorithm in order to
detect the cases where the second pass is not required. Second, we propose Single-pass Testing
Automata (STA), a transformation of TA into a normal form requiring only a single pass during
the emptiness check of the product. Although STA are more constrained than TA, we can automat-
ically translate the latter into the former, by adding an artificial livelock-accepting state in STA.
We have implemented these improvements in Spot library. We are thus able to compare them with
the “traditional” algorithms we used on Testing Automata (TA) and Transition-based Generalized
Büchi Automata (TGBA). These experiments show that STA compete well on our examples.

Transition-based Generalized Testing Automata: A Single-pass and Generalized New Au-
tomata. In Chapter 5, we propose (our main) new type of ω-automata for stutter-invariant LTL
properties, called Transition-based Generalized Testing Automata (TGTA).

TGTA mixes features from both TA and TGBA, without the disadvantage of TA, which is the
second pass of the emptiness check, and without adding an artificial state as in STA.
• From TA, TGTA reuses the labeling of transitions with changesets, and the elimination of

the useless stuttering-transitions, but without introducing a second mode of acceptance (i.e,
livelock-acceptance).

• From TGBA, TGTA inherit the use of transition-based generalized acceptance conditions
and reuse the same single-pass emptiness check algorithm.

In addition to improving the performance, the removal of the second pass in TGTA approach
also eases the implementation of the emptiness check algorithm, not only for the explicit approach,
but especially for more complex implementations (such as symbolic or hybrid approaches). More
generally, this simplification eases the combination of TGTA with other classical optimizations
used in model checking (such as the partial order reduction, or the saturation technique used in
the symbolic approach).

Another advantage of TGTA compared to TA is that a TA is built from a BA while a TGTA
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is built from a TGBA. Therefore, TGTA can take advantage from the fact that TGBA are more
concise [49, 36] than BA.

Compared to TGBA, TGTA represents all stuttering-transitions with only self-loops on all
states (thanks to the elimination of the useless stuttering-transitions during the TGTA construc-
tion).

Implementation and experimentation of TGTA approach show that in most cases, it reduces
the size of the synchronous product and is statistically more efficient than TA and TGBA (BA)
approaches, for the explicit model checking of stutter-invariant properties,

Using TGTA to improve a Saturation-based Symbolic Model Checking. In symbolic model
checking, the product is symbolically encoded by means of decision diagrams [17] and computed
as a least fixpoint on its symbolic transition relation. The performance of this fixpoint computation
can be improved using the saturation technique [20, 85]. In order to improve the symbolic model
checking of stutter-invariant LTL properties, we investigate in Chapter 6 the use of the combination
of TGTA with saturation technique. We first show how a TGTA can be symbolically encoded,
Then, we show that the saturation algorithm greatly benefits from the presence of stuttering self-
loops on all states of TGTA, and we propose a symbolic encoding of stuttering transitions in the
product that improve the saturation-based symbolic approach using TGTA.

Implementation and experimentation of this approach confirm that it outperforms the
saturation-based symbolic approach using Büchi Automata TGBA, the performance of the sat-
uration algorithm are significantly more enhanced by TGTA than by TGBA.

This improvement was possible only because TGTA represents the stuttering-transitions
specifically in a way that helps the saturation technique.

Three hybrid approaches using TGTA The hybrid approaches [79, 38] combine ideas from
both explicit and symbolic approaches in order to benefit from the advantages of the both worlds,
i.e., encoding the set of states in a concise way using decision diagrams as in the symbolic ap-
proach, and the emptiness check performed on-the-fly as in the explicit approach.

In this work, we focus on three hybrid techniques proposed in [37]: the Symbolic Observation
Graph (SOG), the Symbolic Observation Product (SOP) and the Self-Loop Aggregation Product
(SLAP).

As for symbolic model checking, Testing Automata have never been used before for hybrid
model checking.

The three hybrid approaches SOG, SOP and SLAP are based on TGBA. In Chapter 7, we de-
fine and implement variations of these three approaches using TGTA instead of TGBA. Then, each
original approach (SOG, SOP and SLAP) is experimentally compared against its TGTA variant
(respectively SOG-TGTA, SOP-TGTA and SLAP-TGTA). The results show that the performance
of these new variants depend on the type of the formula to be checked: verified or violated.
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2.1 Introduction

The Model checking of a behavioral property on a finite-state system is an automatic procedure
that requires many phases. The first step is to formally represent the system and the property
to be checked. The formalization of the system produces a model M that formally describes all
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Model checker

High-level
Model M
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State-space KM
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ϕ
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L (KM ⊗A¬ϕ) =

L (KM)∩L (A¬ϕ)
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L (KM⊗A¬ϕ)

?
= /0

M |= ϕ or
counterexample

Figure 2.1: Automata-theoretic Approach to model checking.

the possible behaviors of the system. The property to be checked is formally described using a
specification language such as branching-time (CTL) or Linear-time Temporal Logic (LTL). In
this work we concentrate on LTL. The next step is to run a model checking algorithm that takes as
inputs the model M and the LTL formula ϕ. This algorithm exhaustively checks that all the model
M behaviors satisfy ϕ.

There are two major approaches for LTL model checking: explicit and symbolic. The ex-
plicit [e.g., 26, 48] approach converts M and ϕ into explicit graphs before running the model
checking algorithm. The symbolic approach [17] encodes M and ϕ implicitly by means of Binary
Decision Diagrams (BDDs). This symbolic approach will be presented in Chapter 6, we only
consider the explicit approach in this chapter.

The automata-theoretic approach to explicit model checking relies on ω-automata, i.e., an
extension of finite automata to infinite words.

Figure 2.1 summarizes the successive steps of the automata-theoretic approach. It starts by
converting the negation of ϕ into an ω-automaton A¬ϕ, then composing that automaton with the
state-space of a model M given as a Kripke structure KM (a variant of ω-automaton), and finally
checking the language emptiness of the resulting product automaton A¬ϕ⊗KM [89].

As for any model checking process, the automata-theoretic approach suffers from the well
known state explosion problem [87]. In practice, it is the product automaton that can be very
large, its size can reach (|A¬ϕ|× |KM|) states, which can make it impossible to be handled using
the resources of modern computers.

The ω-automaton representing A¬ϕ is usually a Büchi automaton (BA) or a generalization
using multiple acceptance sets, such as Generalized Büchi Automata (GBA) or Transition-based
Generalized Büchi Automata (TGBA).

This chapter details the successive phases of the model checking procedure, including the
formalization and the different algorithms used in these phases. We also present the different
variants of Büchi automata and their use in the automata-theoretic approach to model checking.
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2.2 Modeling the System

A model checker tool performs verification on a model of the system rather than the system itself.
A model is a high-level representation that reproduces the relevant part of the behaviors of the
original system, while eliminating irrelevant details that are difficult to reproduce. The advantages
are that the model includes only the relevant elements of the entire larger system, and the model is
easier to build and to redesign once possible errors are reported by the model checker.

2.2.1 High Level Model

The model of a system can be described using several high-level formalisms such as Petri nets [31],
Promela programs [55], communicating finite-state machines [15], or finite transition systems [1].
All these formalisms can be used to generate the state-space of the model, but the difficulty for
some formalisms is to prove that the state-space is finite. For example, a state-space generated
from a Petri net can be infinite, because it corresponds to the graph of reachable markings [31]. To
ensure that this state-space is finite, it is necessary to check that the Petri net places are bounded.

Whatever the used formalism, a finite state-space can be viewed as a form of finite transition
system, called Kripke Structure (its formal definition is given later).

2.2.2 Example: Robot Modeling

Let us consider a robot specification [9] as an illustrative example of System modeling.

Ready to
look (l)

start
Ready to

compute (c)
Ready to
move (m)

look compute

compute

move

Figure 2.2: A model for robot behavior

In the finite transition system of Figure 2.2, the robot can execute only three actions: look,
compute, and move. It begins by taking a snapshot of its environment, this action is represented
by the transition look executed from the initial state labeled by “Ready to look”. Then, from
the state “Ready to compute” the robot executes the transition compute to determine its future
location and finally it moves to this computed location by executing the transition move from the
state “Ready to move”. However, if the robot does not find a new location in the current snapshot
of its environment, it returns to the initial state to take a new snapshot, hoping that its environment
has changed.
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2.2.3 Atomic Propositions and System Executions

The atomic propositions allow to describe the different states of the system. The set of atomic
propositions is the set of smallest properties defined for individual states of the system (where
smallest means that the truth value of each atomic proposition does not depend on the truth value
of the other atomic propositions).

For instance, in order to describe the different states of the robot of Figure 2.2, let us define
the three following atomic propositions:
• l = The robot is ready to look

• c = The robot is ready to compute

• m = The robot is ready to move

{l}
(l∧ c̄∧m̄)

start
{c}

(l̄ ∧ c∧ m̄)

{m}
(l̄∧ c̄∧m)

Figure 2.3: A Kripke structure for the robot model presented in Figure 2.2.

Each system state is labeled by a valuation, i.e., an assignment of truth value to each atomic
proposition of AP.

Definition 1 (Valuation). Let AP a finite set of atomic propositions, a valuation ` over AP is
represented by a function ` : AP 7→ {⊥,>}.

We denote by Σ = 2AP the set of all valuations over AP, where a valuation ` ∈ Σ is interpreted
either as the set of atomic propositions that are true, or as a Boolean conjunction where:

` is identified to
(∧

p∈`
p
)
∧
( ∧

p∈(AP\`)
p̄
)

.

For instance if AP = {a,b}, then Σ = 2AP = {{a,b},{a},{b}, /0} or equivalently Σ =

{ab,ab̄, āb, āb̄} such that:

{a,b} ↔ a∧b (ab)
{a} ↔ a∧ b̄ (ab̄)
{b} ↔ ā∧b (āb)

/0 ↔ ā∧ b̄ (āb̄)

For the robot model, the set of valuations is Σ = 2{l,c,m}. The initial state is labeled by the valu-
ation {l} also noted (l∧ c̄∧ m̄) or (lc̄m̄), the valuations of the other states are shown in Figure 2.3.

Definition 2 (Sequence of Valuations). Let n ∈ N∪{ω} where ω is the lowest transfinite ordinal
number defined by Cantor. A sequence σ of n valuations of Σ is a function σ : [[0,n[[7→ Σ mapping
each index from [[0,n[[ to a valuation of Σ.
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In the following, a sequence σ is often represented by the concatenation of its valuations:
σ = σ(0) ·σ(1) ·σ(2) · · · .
Σn = the set of sequences of length n and Σ∗ =

⋃
n∈N Σn the set of finite sequences of valuations

from Σ.
Σω denotes the set of infinite sequences of valuations from Σ.

Definition 3 (Execution). An execution of a system maps to each time instant, a set of atomic
propositions that hold at that instant. This execution is represented by an infinite sequence of
valuations σ = σ(0) ·σ(1) ·σ(2) · · · ∈ Σω.

The set of all executions of a system is a subset of Σω and can be viewed as a language of
infinite words over the alphabet Σ.

An example of an execution of the robot system is the sequence of valuations {l} · {c} · {l} ·
{c} · {l} · {c}· · · (i.e., the robot execution alternating the valuations {l} and {c}), we can notice
that there is a risk that the robot never reaches the state labeled by the valuation {m} and therefore
never moves.

In the next section, we present a variant of transition system usually used in model checking
process to describe the system executions.

2.2.4 Kripke Structure

The state-space of a system can be represented by a directed graph, called Kripke structure, where
vertices represent the states of the system and edges are the transitions between these states. In
addition, each vertex is labeled by a valuation that represents the set of atomic propositions that
are true in the corresponding state.

Definition 4 (Kripke Structure). A Kripke structure over the set of atomic propositions AP is a
tuple K = 〈S ,S0,R , l〉, where:
• S is a finite set of states,

• S0 ⊆ S is the set of initial states,

• R ⊆ S ×S is the transition relation,

• l : S → Σ is a labeling function that maps each state s to a valuation that represents the set
of atomic propositions that are true in s.

An infinite path or a run of a Kripke structure K = 〈S ,S0,R , l〉 is an infinite sequence of states
r = s0 · s1 · s2 · · · such that s0 ∈ S0 and ∀i ∈ N, (si,si+1) ∈ R .

We denote Run(K ) the set of infinite paths of K .

Given an infinite path r = s0 · s1 · s2 · · · in Run(K ), the infinite sequence of valuations σ =

l(s0) · l(s1) · l(s2) · · · ∈ Σω corresponds to an execution of the system represented by K . Thus, σ is
also called execution of K .

Definition 5. The language of a Kripke structure K is the set L (K )⊆ Σω of all executions of K .

L (K ) = {σ = l(s0) · l(s1) · l(s2) · · · ∈ Σ
ω | s0 · s1 · s2 · · · ∈ Run(K )}

Note that L (K )⊆Σω can be viewed as a language of infinite words over the alphabet Σ= 2AP.
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Figure 2.3.2 shows the Kripke structure representing the state-space of the robot system (de-
scribed in section 2.2.2).

2.3 Specification of the Property to check

In Model checking, it is necessary to have a precise formal expression of properties to check. Logic
can express these properties in a mathematical, unambiguous , and concise way. This enables the
automation of the verification.

2.3.1 Linear-Time Temporal Logic (LTL)

In order to express temporal properties, Linear Temporal Logic (LTL) [62] adds the notion of
causality to the traditional propositional logic. LTL introduces new operators, called temporal
operators, interpreted over linear executions. In a linear execution, every time instant has only one
immediate successor, unlike the other widely-used temporal logic, called CTL (Computational
Tree Logic) [23], for which a time instant can have many immediate successors. This two logics
are not really comparable [55]. Each logic allows to express properties that the other can not
express. For instance, CTL allows to express the reset [55] properties and LTL cannot. However,
CTL does not allow to express the invariance LTL properties (of the form FG p). In this work, we
only focus on LTL model checking.

2.3.1.1 LTL Formula

An LTL formula is composed of:
• A finite set of atomic propositions AP = {p1, p2, . . .},

• the Boolean operators ∧, ∨, ¬,→,↔,

• the unary temporal operators X (next), G (Globally) and F (Future),

• the binary temporal operator U (Until).

Definition 6. Given a set of atomic propositions AP. The set of LTL formulas over AP is induc-
tively defined as follows:
• For every atomic proposition p ∈ AP, p is an LTL formula,

• if ϕ is an LTL formula, then ¬ϕ, Xϕ, Gϕ and Fϕ are also LTL formulas,

• if ϕ1 and ϕ2 are two LTL formulas, then (ϕ1 ∧ϕ2), (ϕ1 ∨ϕ2), (ϕ1 → ϕ2), (ϕ1 ↔ ϕ2) and
(ϕ1 Uϕ2) are also LTL formulas.

2.3.1.2 LTL Formula Semantics

An LTL formula over AP is interpreted over an execution σ ∈ Σω (Σ = 2AP).
In the following, σ(n) denotes the (n+1)th valuation of the execution σ = σ(0)σ(1)σ(2) . . ., and
the sequence σi = σ(i)σ(i+1) . . . denotes the suffix of σ starting at position i (i.e., ∀n∈N, σi(n) =
σ(i+n)).
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Definition 7. The satisfaction of an LTL formula ϕ by an execution σ ∈ Σω, denoted σ |= ϕ, is
defined inductively as follows:

σ |= p iff p ∈ σ(0)

σ |= ¬ϕ iff ¬(σ |= ϕ)

σ |= ϕ1∧ϕ2 iff σ |= ϕ1 and σ |= ϕ2

σ |= ϕ1∨ϕ2 iff σ |= ϕ1 or σ |= ϕ2

σ |= Xϕ iff σ
1 |= ϕ (ϕ is true in the next time step)

σ |= Gϕ iff ∀i≥ 0, σ
i |= ϕ (ϕ is true in every time step)

σ |= Fϕ iff ∃i≥ 0 such that σ
i |= ϕ (ϕ is true now or at some future time step)

σ |= ϕ1 Uϕ2 iff ∃i≥ 0 such that σ
i |= ϕ2 and ∀ j ∈ [[0, i−1]], σ

j |= ϕ1 (ϕ2 is true now or

ϕ1 is true now and ϕ1 remains true until ϕ2 holds)

Definition 8. Given an LTL formula ϕ over AP. The language of ϕ, denoted L (ϕ), is the set of
all executions σ ∈ Σω satisfying ϕ.

L (ϕ) = {σ ∈ Σ
ω | σ |= ϕ}

2.3.1.3 LTL Operators Equivalences

In Definition 6, some operators are redundant (i.e., can be expressed using other operators). The
following equivalences allow to ignore these operators in the LTL translation algorithm presented
in Section 2.4.6.

>= True = p∨ p̄

⊥= False = p∧ p̄

Fϕ =>Uϕ

Gϕ = ¬F¬ϕ = ¬(>U¬ϕ) =⊥Rϕ

2.3.1.4 Size of an LTL formula

Definition 9. Given an LTL formula ϕ over AP, the size (or the length) of ϕ, denoted |ϕ|, is the
total number of symbols of ϕ, i.e., the number of atomic propositions, constants, and operators
(logical and temporal) occurring in ϕ.
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Formally, the size of an LTL formula is defined inductively as follows:

|⊥|= 1

|>|= 1

|p|= 1, ∀p ∈ AP

|¬ϕ|= 1+ |ϕ|
|ϕ1∧ϕ2|= |ϕ1∨ϕ2|= 1+ |ϕ1|+ |ϕ2|
|Xϕ|= |Gϕ|= |Fϕ|= 1+ |ϕ|

|ϕ1 Uϕ2|= 1+ |ϕ1|+ |ϕ2|

2.3.2 LTL and Kripke structure

The link between an LTL formula and a Kripke structure is obvious, since we can interpret the
LTL formula over the executions of the Kripke structure .

Definition 10. We say that a Kripke structure K over Σ= 2AP, satisfies an LTL formula ϕ, denoted
K |= ϕ, if all executions in L (K ) satisfy ϕ.

K |= ϕ ⇐⇒ L (K )⊆L (ϕ)

In the example of the robot model, the Kripke structure of Figure does not satisfy the LTL
formula ϕ = Fm: a counterexample (i.e., an execution of the Kripke structure that does not satisfy
ϕ) is {l} · {c} · {l} · {c} · {l} · {c}· · · (the robot alternating {l} and {c} and never reaches the state
labeled by the valuation {m}; therefore it never moves).

2.3.3 Stutter-Invariant LTL Formulas

Definition 11. An LTL formula ϕ is stutter-invariant [39] iff any sequence σ(0)σ(1) . . . ∈L (ϕ)

remains in L (ϕ) after repeating any valuation σ(i) or omitting duplicate valuations. Formally, ϕ

is stutter-invariant iff

σ(0)σ(1) . . . ∈L (ϕ) ⇐⇒ σ(0) . . .σ(0)︸ ︷︷ ︸
n0×σ(0)

σ(1) . . .σ(1)︸ ︷︷ ︸
n1×σ(1)

. . . ∈L (ϕ), for any n0 > 0,n1 > 0 . . .

Intuitively, a property is stutter-invariant if it is insensitive to stuttering transitions i.e., the
transitions that do not change the values of atomic propositions between two states of the system.

For example, the LTL formula ϕ = aUb is stutter-invariant because valuations can be re-
peated or omitted in any sequence that satisfies ϕ (e.g., ab̄; āb; āb; āb; āb̄ . . .), and the obtained
sequences remain satisfying ϕ (e.g., ab̄;ab̄; āb; āb̄ . . .). Conversely, the LTL formula ϕ = a∧Xb
is not stutter-invariant because it is satisfied by the sequence (ab̄; āb; . . .) but unsatisfied by the
sequence (ab̄;ab̄; āb; . . .).

Theorem 1. Any LTL\X formula (i.e., an LTL formula that does not use the X (next-time) op-
erator) describes a stutter-invariant property. Conversely, any stutter-invariant property can be
expressed as an LTL\X formula [70].
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2.4 From LTL to Büchi Automata

The automata-theoretic approach is based on the transformation of the LTL formula to check into
an automaton that accepts the same executions (called infinite words in the context of automata
theory).

The following sections present three variants of Büchi automata [16] that can be used to ex-
press properties in the automata-theoretic approach to model checking: the standard Büchi Au-
tomata (BA), Generalized Büchi Automata (GBA) and Transitions-based Generalized Büchi Au-
tomata (TGBA). The main difference between these automata is the way they accept an infinite
word of (2AP)ω.

2.4.1 The “Traditional Büchi” Automata (BA)

The Büchi Automata were introduced by J.R Büchi [16] in 1962. They are ω-automata [42]
with labels on transitions and acceptance conditions on states. While classical finite automata
recognize words having finite length, ω-automata (and in particular Büchi Automata) recognize
words of infinite length, called ω-words. Although they accept infinite words, Büchi Automata
have a finite number of states.

In the following, we will use the abbreviation BA for the standard variant of Büchi Automata.

Definition 12 (BA). A Büchi Automaton (BA) over the alphabet Σ = 2AP is a tuple B =

〈Q ,I ,δ,F 〉 where:
• Q is a finite set of states,

• I ⊆ Q is a a finite set of initial states,

• F ⊆ Q is a finite set of accepting states (F is called the accepting set),

• δ⊆ Q ×Σ×Q is the transition relation where each transition is labeled by a letter ` of Σ,
i.e., each element (q, `,q′) ∈ δ represents a transition from state q to state q′ labeled by a
valuation ` ∈ 2AP.

Definition 13 (A BA run). A run of B over an infinite word σ = `0`1`2 . . . ∈ Σω is an infinite se-
quence of transitions r = (q0, `0,q1)(q1, `1,q2)(q2, `2,q3) . . .∈ δω such that q0 ∈ I (i.e., the infinite
word is recognized by the run). Such a run is said to be accepting if ∀i ∈ N, ∃ j ≥ i, q j ∈ F (i.e.,
at least one accepting state is visited infinitely often).

The infinite word σ is accepted by B if there exists an accepting run of B over σ. The language
accepted by B is the set L (B)⊆ Σω of the infinite words it accepts.

Figure 2.4 shows two examples of BA:
(a) Figure 2.4a is a BA recognizing the runs where a is true infinitely often and b is true infinitely

often, i.e., recognizing the LTL formula (GFa∧GFb),

(b) Figure 2.4b is a BA recognizing the LTL formula (aUGb).
In these BA, the initial states are indicated by an arrow without source state “ ”. The Boolean
conjunctions labeling each transition are valuations over AP = {a,b}. The accepting states are
indicated by a double circle. The LTL formulas labeling each state represent the property accepted
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ϕ

ϕ

ϕ

ab

ab̄, āb̄
āb

ab̄, āb̄
ab

āb

āb, āb̄

ab,ab̄
(a) A BA for the LTL property ϕ = GFa∧GFb

aUGb Gb

ab,ab̄

āb,ab

āb,ab

(b) A BA for the LTL property aUGb

Figure 2.4: Two examples of BA, with accepting states shown as double circles.

starting from this state of the automaton: they are shown for the reader’s convenience but not used
for model checking.
As an illustration of the BA definition, the infinite word ab;ab̄; āb;ab; āb;ab; . . . is accepted by the
BA of Figure 2.4b that recognizes aUGb. A run over such infinite word must start in the initial
state labeled by the formula (aUGb) and remains in this state for the first two valuations ab;ab̄,
then it changes the value of a, so it has to take the transition labeled by the valuation āb to move to
the second state labeled by the formula (Gb). Finally, to be accepted, it must stay on this accepting
state by executing infinitely the transitions labeled by {āb,ab}. The obtained accepting run is:

(aUGb) ab−→ (aUGb) ab̄−→ (aUGb) āb−→ (Gb) ab−→ (Gb) āb−→ (Gb) ab−→ (Gb) · · ·(Gb) · · ·

2.4.2 Generalized Büchi Automata (GBA)

In the generalized variant of Büchi Automata (GBA) [48], there are multiple acceptance condi-
tions, in other words, F is a set of accepting sets of states and a run is accepted iff it visits infinitely
often each accepting set in F .

Definition 14 (GBA). A Generalized Büchi Automata (GBA) over the alphabet Σ = 2AP is a tuple
G = 〈Q ,I ,δ,F 〉 where:

• Q is a finite set of states,

• I ⊆ Q is a set of initial states,

• F ⊆ 2Q is a set of sets of accepting states (we call accepting set each set Fi of F =

{F1,F2, . . . ,Fk . . .}),

• δ ⊆ Q ×Σ×Q is the transition relation where each transition is labeled by a letter ` ∈ Σ

(i.e., each element (q, `,q′) ∈ δ represents a transition from state q to state q′ labeled by a
valuation ` ∈ 2AP).

Definition 15. A run of G over an infinite word σ = `0`1`2 . . . ∈ Σω is an infinite sequence of
transitions r = (q0, `0,q1)(q1, `1,q2)(q2, `2,q3) . . . ∈ δω such that q0 ∈ I (i.e., the infinite word is
recognized by the run).
Such a run is said to be accepting if ∀F ∈ F , ∀i ≥ 0, ∃ j ≥ i, q j ∈ F (i.e., at least one accepting
state of each accepting set F ∈ F is visited infinitely often).

The infinite word σ is accepted by G iff there exists an accepting run of G over σ. The language
accepted by G is the set L (G)⊆ Σω of infinite words it accepts.
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ϕ ϕ

ab̄, āb̄
āb,ab

ab,ab̄

āb, āb̄

(a) A GBA for ϕ = GFa∧GFb

aUGb Gb

ab,ab̄

āb,ab

āb,ab

(b) A GBA for aUGb

Figure 2.5: Two examples of GBA: (a) A GBA for ϕ = GFa∧GFb with two accepting sets of
states indicated by and . (b) A GBA for aUGb with a single accepting set indicated by .

GBA are as expressive as BA: any GBA can be converted into an equivalent BA that recognizes
the same language (section 2.4.2.1), and vice-versa, a BA 〈Q ,I ,δ,F 〉 can be viewed as a GBA
〈Q ,I ,δ,{F }〉 having a single set of accepting states {F }.

Figure 2.5 shows two examples of GBA that are equivalent to the two BA of Figure 2.4 such
that:

(a) The GBA of Figure 2.5a recognizes (GFa∧GFb). An accepting run in this GBA has to
visit the two accepting states indicated by and infinitely often. Therefore, it must explore
infinitely often, the transition labeled by {ab,ab̄} (a is true) and the transition {āb,ab} (b is
true).

(b) The GBA of Figure 2.5b is the same as the BA of Figure 2.4b, with the accepting state is
indicated by the single acceptance condition { }. More generally, a BA 〈Q ,I ,δ,F 〉 can be
viewed as a GBA with a single set of accepting states 〈Q ,I ,δ,{F }〉.

2.4.2.1 From GBA to BA (degeneralization)

The conversion of a GBA into a BA is called degeneralization [4, section 4.3.4]. A GBA having s
states and k accepting sets of states can be degeneralized into an equivalent BA with (k× s) states.

Given a GBA G = 〈Q ,I ,δ,{F1,F2, . . . ,Fk}〉, the BA B = 〈Q ′,Q ′0,δ′,F ′〉 constructed as
follows accepts the same language as G .

• Q ′ = Q ×{1, . . . ,k} (Q ′ is the states of Q marked by an integer in {1, . . . ,k})

• Q ′0 = Q ×{1}

• F ′ = F1×{1}

• ∀(q, i)∈Q′,
(
(q, i), `,(q′, i′)

)
∈ δ′ if (q, `,q′)∈ δ and

{
i′ = i if q 6∈ Fi

i′ = (i mod k)+1 if q ∈ Fi
(In the

ith copy, the states of Fi are connected to its successors in the (i+ 1)th copy (the (k+ 1)th

copy is the first copy)

Figure 2.6 illustrates the successive steps to degeneralize the GBA G of GFa∧GFb:

• The GBA G is presented in Figure 2.6a with F = {F1,F2} = {{q0},{q1}} respectively
indicated by and .
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q0 q1

ab̄, āb̄

āb,ab

ab,ab̄
āb, āb̄

(a) GBA G for ϕ = (GFa∧GFb),
with F = {{q0},{q1}} such that
F1 = {q0} and F2 = {q1} respec-
tively indicated by and .

(q0,1) (q1,1)

(q0,2) (q1,2)

ab̄, āb̄

āb,ab

ab,ab̄
āb, āb̄

ab̄, āb̄

āb,ab

ab,ab̄
āb, āb̄

(b) Duplicate the GBA (two copies)

(q0,1) (q1,1)

(q0,2) (q1,2)

ab̄, āb̄ āb,ab

ab,ab̄
āb, āb̄

(c) Computing the transitions of the first
copy: i.e., states (q0,1) and (q1,1)

(q0,1) (q1,1)

(q0,2) (q1,2)

ab̄, āb̄
āb,ab

ab,ab̄
āb, āb̄

ab̄, āb̄
āb,ab

ab,ab̄
āb, āb̄

(d) Computing the transitions of the second copy:
i.e., states (q0,2) and (q1,2)

q′0 q′1

q′2 q′3

ab̄, āb̄
āb,ab

ab,ab̄
āb, āb̄

ab̄, āb̄
āb,ab

ab,ab̄ āb, āb̄

(e) The obtained BA B for ϕ = (GFa∧GFb),
with the accepting state is a double circle

Figure 2.6: The successive steps to degeneralize a GBA into BA.
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• The degeneralization begin by duplicate k times the GBA, with k = |F |= 2. The obtained
BA of Figure 2.6b is composed of two copies of the GBA , the initial states are only in the
first copy.

• In Figure 2.6c, we add the transitions of the first copy of states, the state (q0,1) is connected
to its successors in the second copy because q0 ∈ F1.

• Similarly, in Figure 2.6d, because q1 ∈ F2, the state (q1,2) of the second copy is connected
to its successors in the first copy. In the two copies, we keep unchanged the transitions of
the two other states (q1,1) and (q0,2).

• Finally, the obtained BA B is shown in Figure 2.6e, it could be reduced by merging the two
bisimilar states q′1 and q′3. This optimization is called bisimulation reduction and will be
presented in section 2.4.5.

• Each accepting run of CB is also accepted by G :

An accepting run r1 of the obtained BA B has to visit infinitely often at least one accepting
state that is in the first copy. To achieve this, r1 must visit all the intermediate copies that
are only connected through accepting set of the GBA (each Fi connects the ith copy to the
(i+ 1)th copy). Therefore, r1 has to visit each accepting set Fi infinitely often, thus r1 is
also an accepting run for the original GBA G .

• Conversely, each accepting run of CG is also accepted by B:

We can consider, without loss of generality, that an accepting run r2 of the GBA G visits
infinitely often all the accepting set in the order F1,F2, . . .. Therefore, r2 visits infinitely
often at least one state of F ′ = F1×{1}= {(q0,1)}= {q′0} with q′0 is an accepting state of
B , thus r2 is also an accepting run for the BA B .

2.4.3 Transition-based Generalized Büchi Automata (TGBA)

A Transition-based Generalized Büchi Automaton (TGBA) [49] is a variant of a Büchi automaton
that has multiple acceptance conditions on transitions.

Definition 16 (TGBA). A TGBA over the alphabet Σ = 2AP is a tuple G ′ = 〈Q ,I ,δ,F 〉 where:

• Q is a finite set of states,

• I ⊆ Q is a set of initial states,

• F is a finite set of acceptance conditions,

• δ⊆Q ×Σ×2F ×Q is the transition relation, where each element (q, `,F,q′)∈ δ represents
a transition from state q to state q′ labeled by a valuation ` ∈ 2AP, and a set of acceptance
conditions F ∈ 2F .

Definition 17. A run of G ′ over an infinite word σ = `0`1`2 . . . ∈ Σω is an infinite sequence of
transitions r = (q0, `0,F0,q1)(q1, `1,F1,q2)(q2, `2,F2,q3) . . . ∈ δω such that q0 ∈ I (i.e., the infinite
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ϕ

āb̄

āb

ab

ab̄

(a) TGBA of ϕ = (GFa ∧
GFb)

aUGb Gb

ab,ab̄
ab, āb

ab, āb

(b) TGBA for (aUGb)

Figure 2.7: (a) A TGBA with acceptance conditions F = { , } recognizing the LTL property
ϕ = GFa∧GFb. (b) A TGBA with F = { } recognizing the LTL property aUGb.

word is recognized by the run). Such a run is said to be accepting if ∀ f ∈F , ∀i∈N, ∃ j≥ i, f ∈ Fj

(i.e., each acceptance condition is visited infinitely often).

The infinite word σ is accepted by G ′ iff there exists an accepting run of G ′ over σ. The
language of G ′ is the set L (G ′)⊆ Σω of infinite words it accepts.

TGBA and BA have the same expressive power: any TGBA can be converted into a language-
equivalent BA and vice-versa [27, 49]. The process of converting a TGBA into a BA is also
called degeneralization and is similar to the “GBA to BA transformation” presented in sec-
tion 2.4.2.1.

Figure 2.7 shows the same properties as Figure 2.4 and Figure 2.5, but expressed as TGBA. A
run in these examples is accepted if it visits infinitely often all acceptance conditions (represented
by colored dots and on transitions).

(a) The TGBA of Figure 2.7a recognizes the runs that contain infinitely often a and infinitely
often b. An accepting run in this TGBA has to visit infinitely often the two acceptance
conditions indicated by and . Therefore, it must explore infinitely often the transitions
where a is true (i.e., transitions labeled by ab or ab̄) and infinitely often the transitions where
b is true (i.e., transitions labeled by ab or āb). As an illustration of the degeneralization
process, the BA from Figure 2.4a was built by degeneralizing the TGBA from Figure 2.7a.
In the worst case, a TGBA with s states and n acceptance conditions will be degeneralized
into a BA with s×(n+1) states. The worst case of the degeneralization occurred here, since
the TGBA with 1 state and n acceptance conditions was degeneralized into a BA with n+1
states. It is known that no BA with less than n+1 states can accept the property

∧n
i=1 GF pi

so this BA is optimal [22] in terms of number of states.

(b) The property aUGb is easier to express: the TGBA of Figure 2.7b is the same as the BA of
Figure. 2.4b, with the acceptance condition moved on transitions. More generally, a BA
can be seen as a TGBA, by simply marking as accepting the transitions leaving the accepting
states, without adding states nor transitions. Algorithms that input TGBA can therefore be
easily adapted to process BA or GBA.
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2.4.4 Determinization of Büchi Automata

Definition 18. A Büchi automaton is deterministic iff each accepted infinite word of Σω is recog-
nized by an unique accepting run of δω.

Formally, a Büchi automaton 〈Q ,I ,δ,F 〉 is deterministic iff |I | = 1 and ∀(q, `) ∈ Q ×
Σ,
∣∣{q′ ∈ Q | (q, `,q′) ∈ δ}

∣∣≤ 1 (i.e., the outgoing transitions of each state are labeled with differ-
ent valuations).

As an illustration, the Büchi automaton of Figure 2.4a is a deterministic BA. However, the
Büchi automaton of Figure 2.4b is a non-deterministic BA.

The definition 18 of deterministic Büchi Automata is valid for the three variants of Büchi
Automata: BA, GBA and TGBA.

The determinization operation consists in the transformation of a non-deterministic Büchi au-
tomaton into a deterministic one. However, there are non-deterministic Büchi automata that cannot
be determinized. For instance, the non-deterministic Büchi automata of Figure 2.8 that recognize
the LTL property ϕ = FGa, cannot be transformed into an equivalent deterministic Büchi automa-
ton.

The classical powerset construction [72] used to determinize finite automata does not work for
any Büchi automata (it works only for a restricted class of Büchi automata [30]).

The powerset construction uses subsets of states of the non-deterministic automaton, as states
of the deterministic automaton. The example of Figure 2.9 shows that this construction does not
work for the Büchi automata of ϕ = FGa. The constructed automaton of Figure 2.9b accepts the
infinite word a; ā;a; ā; . . . (alternating a and ā infinitely) and therefore does not recognize the same
language as the original automaton of Figure 2.9a.

Thus, the determinization of Büchi automata requires the use of other types of ω-automata,
such as Muller or Rabin automata [76].

The history of determinizing Büchi automata began in 1963 with the first attempt of deter-
minization due to Muller [65] that appears to be faulty. In 1966, McNaughton [63] proved that
any non-deterministic Büchi automaton can be converted into a deterministic Muller automaton.
This conversion involves a doubly exponential blow-up in the size of the original Büchi automaton
(22O(n)

).
Proposed in 1988, the Safra’s construction [76] transforms a non-deterministic Büchi automa-

ton with n states into an equivalent deterministic Muller or Rabin automaton with 2O(n log(n)) states
(optimal for Rabin automata).

To conclude this section, it is important to note that although there are LTL formulas that are
not convertible into Büchi automaton and the cost to obtain a deterministic automaton remains
very high, we will see in the following that even the use of automata that are not “completely”
deterministic but having a high degree of determinism can improve the performance of model
checking.

2.4.5 Bisimulation Reduction of Büchi Automata

We say that two states are bisimilar if the automaton can accept the same runs starting from either
of these states (this implies that two bisimilar states recognize the same language). Büchi Au-
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(a) BA/GBA for ϕ = FGa

FGa Ga

a

ā

a

a

(b) TGBA for ϕ = FGa

Figure 2.8: Examples of non-deterministic Büchi Automata: BA/GBA and TGBA for the LTL
property ϕ = FGa. Acceptance states/transitions are indicated by .

q0 q1

a

ā

a

a

(a) A BA B for ϕ= FGa before
determinization

{q0} {q0,q1}

ā

a
a

ā

(b) After faulty determinization of B by
powerset construction

Figure 2.9: Büchi automata determinization: The classical powerset construction does not work
for ϕ = FGa (A deterministic Büchi automaton for FGa does not exist).

tomata can be simplified by merging bisimilar states. This bisimulation reduction can be achieved
using a partition refinement algorithm [e.g., 14, 40, 13, 91, 88].

The main idea of this algorithm is to split the set of states of the automaton into equivalence
classes according to the equivalence relation of bisimilarity, then the states of each equivalence
class are merged into a single state.

One way to compute the equivalence classes is to use the notion of signature [13]. A signature
sig(q) can be viewed as a “fingerprint” of each state q that encodes the outgoing transitions of q.
Two states q and q′ having different signatures are not bisimilar and therefore belong to different
classes C and C′.

• For BA 〈Q ,I ,δ,F 〉, the signature of a state q with respect to a partition Π, is the set of
pairs (valuation, destination class C ∈Π ) of each outgoing transition from q: i.e., sigΠ(q) =
{(`,C) | ∃q′ ∈C ∈Π, (q, `,q′) ∈ δ}.

• For TGBA, the signature also includes the acceptance conditions of transitions: sigΠ(q) =
{(`,F,C) | ∃q′ ∈C ∈Π, (q, `,F,q′) ∈ δ}.

• In the case of a GBA with F = {F1,F2, . . . ,Fn}, the signature must includes the acceptance
conditions on states: sigΠ(q) = {(`,F,C) | ∃q′ ∈C ∈Π, (q, `,F,q′) ∈ δ}, where F = {i | q ∈
Fi}.
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The sets representing the signatures can be encoded symbolically [91, 14], BDDs (Binary
Decision Diagrams) are used to implement the signatures of the bisimulation reduction of the
different automata used in this work.

The basic idea of the bisimulation algorithm is to build a partition of the equivalence classes
by refining an initial partition Π0. This can be implemented by the following iterative procedure :

• Initialization:

– For a standard Büchi Automaton BA, we set up with two equivalence classes F and
Q \F : Π0 = {F ,Q \F }.

– For a TGBA or a GBA, Π0 = {Q }.

• Iterate until a fixpoint is reached (i.e., Πk = Πk+1):

– For each pair of states q and q′ belonging to the same class C of the partition Πk, if
sigΠk

(q) 6= sigΠk
(q′) then q and q′ are put into two different classes C′ and C′′ of the

new partition Πk+1

When this procedure stops, the states of each class have the same signature in the obtained
partition. The termination of this algorithm is guaranteed because the number of states is finite and
therefore the number of partition too. This naive implementation has a quadratic complexity (due
to the comparison of all the pairs of states signatures, for each iteration). The optimization [88]
reduces this complexity to O(m log(n)), where n is the number of states and m is the number of
transitions.

q0 q1 q2

q3 q4 q5

ab̄

āb

ab̄

āb

ab̄

āb

ab̄

āb

ab̄

āb

ab̄, āb

(a) A BA B before bisimulation reduction

q0 q1,q3 q2,q4 q5
ab̄, āb

ab̄

āb

ab̄

āb

ab̄, āb

(b) B after bisimulation reduction

Figure 2.10: An example of Bisimulation Reduction of BA

As an illustration, Figure 2.10a and Figure 2.10b show an example of BA respectively before
and after applying the bisimulation procedure:

The successive iterations to compute the equivalence classes from the automaton of Fig-
ure 2.10a are:
• Π0 = {{q0,q1,q2,q3,q4},{q5}}, because q5 is the unique accepting state.

• Π1 = {{q0,q1,q3},{q2,q4},{q5}}, because in Π0, we have
(
āb,{q5}

)
∈ sigΠ0(q2) =

sigΠ0(q4) and
(
āb,{q5}

)
6∈ sigΠ0(q0) = sigΠ0(q1) = sigΠ0(q2).
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• Π2 = {{q0},{q1,q3},{q2,q4},{q5}}, because in Π1, we have
(
āb,{q2,q4}

)
∈ sigΠ1(q1) =

sigΠ1(q3) and
(
āb,{q2,q4}

)
6∈ sigΠ1(q0).

• Π3 = Π2 the procedure stops.
The automaton obtained after this partitions refinement is shown in Figure 2.10b.
Simulation [40, 41, 44, 81, 11] reduction is a generalization and an improvement of the bisim-

ulation reduction. Simulation relation between two states q and q′ is based on the inclusion of the
sets of infinite runs starting from q and q′, instead of equality between these sets of infinite runs
as in bisimulation relation between q and q′. Recently, [3] proposed a simulation reduction that
improves the determinism of the resulting automaton.

2.4.6 Converting LTL formula into Büchi Automaton

Any LTL formula ϕ can be converted into a Büchi Automaton whose language is the set of execu-
tions that satisfy ϕ. This conversion is central to the process of model checking, thus a substantial
number of research has been conducted in this area. Several algorithms have been proposed to
translate an LTL formula into a BA, GBA or TGBA.

The first translation algorithm was proposed by Wolper [93, 92], it allows to convert an LTL
formula ϕ into an automaton whose size is always equal to 2O(|ϕ|) states (exponential in the size
of ϕ). In [92], the algorithm proposed is dedicated to LTL and produces a GBA. Despite its
exponential complexity, this algorithm is easier to understand than others. In the following, we
present a concise variant of this algorithm proposed in [66].

Using the equivalences between the LTL operators (Section 2.3.1.3), we can assume that the
LTL formula ϕ to translate, is only composed of the operators ¬, ∨, X and U. There are several
optimizations based on rewriting rules[81, 40, 11] that simplify the LTL formula before translating
it into an automaton.

We note Aϕ the GBA constructed by the following translation. The computation of the states
of Aϕ is based on the set cl(ϕ), the closure of ϕ containing all the subformulas of ϕ and X(φ1 Uφ2)

for each subformula (φ1 Uφ2) of ϕ, it is in addition closed by the operator ¬.

Definition 19 (Closure). Let sub(ϕ) be the set of all subformulas of ϕ. The closure of ϕ is the
smallest set cl(ϕ) satisfying:
• sub(ϕ)⊆ cl(ϕ),

• {X(φ1 Uφ2) | (φ1 Uφ2) ∈ sub(ϕ)} ⊆ cl(ϕ),

• ∀φ ∈ cl(ϕ), (¬φ) ∈ cl(ϕ) (With reduction of redundancies like φ = ¬¬φ and ¬Xφ = X¬φ).

For example, cl(F p) = cl(>U p) = {p, p̄,(>U p),X(>U p),¬(>U p),X¬(>U p)}. It is easy
to deduce that |cl(ϕ)| ∈ O

(
|ϕ|
)
.

Each state of Aϕ is labeled by an atom, where an atom is a subset of cl(ϕ) that satisfies the
following three consistency rules:

Definition 20 (Atom). An atom α of ϕ is a subset of cl(ϕ), satisfying the following rules:
• Logical consistency rules (α is maximal and does not contain logical contradictions):

– ∀φ ∈ cl(ϕ), φ ∈ α⇔¬φ 6∈ α, this rule also implies that α is maximal, i.e., ∀φ ∈ cl(ϕ),
either φ ∈ α or ¬φ ∈ α,
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– ∀(φ1∨φ2) ∈ cl(ϕ), (φ1∨φ2) ∈ α⇔ (φ1 ∈ α) or (φ2 ∈ α),

• Temporal consistency rule:
∀(φ1 Uφ2) ∈ cl(ϕ), (φ1 Uφ2) ∈ α⇔ (φ2 ∈ α) or

(
(φ1 ∈ α) and X(φ1 Uφ2) ∈ α)

)
.

This temporal consistency rule is deduced from the expansion law stating that: φ1 Uφ2 =

φ2∨ (φ1∧X(φ1 Uφ2)).

Let Atoms(ϕ) denotes the set of atoms of ϕ, we have Atoms(ϕ)⊆ 2cl(ϕ) and the number of states
of Aϕ is |Aϕ|= |Atoms(ϕ)| ≤ |2cl(ϕ)| ∈ O(2|ϕ|).

{(>U p), p,X(>U p)} {(>U p), p̄,X(>U p)}

{(>U p), p,X¬(>U p)} {¬(>U p), p̄,X¬(>U p)}

p

p

p

p̄

p̄

p̄

p

p̄

Figure 2.11: A GBA Aϕ constructed form (ϕ = F p) by the algorithm of Definition 21.

As an illustration, we use the above rules to compute the atoms for the translation of the LTL
formula ϕ = F p = (>U p), we obtain the set Atom(F p) composed of the four atoms labeling the
states of the GBA A(F p) shown in Figure 2.11. This set of atoms is obtained by the following
reasoning:
In order to satisfy the temporal consistency rule, the atoms that contain the sub-formula (>U p)
must also contain p or X(>U p). Thus, we obtain three atoms containing (>U p):
• {(>U p), p,X(>U p)} ∈ Atom(F p)

• {(>U p), p̄,X(>U p)} ∈ Atom(F p)

• {(>U p), p,X¬(>U p)} ∈ Atom(F p)
On the other hand, the atoms that do not contain (>U p) must contain ¬(>U p) because they have
to be maximal (the first rule), and they can only contain p̄ and ¬X(>U p) to satisfy the temporal
consistency rule. We obtain an unique atom that contain ¬(>U p): {¬(>U p), p̄,X¬(>U p)} ∈
Atom(F p).

Once the atoms labeling the states computed, we can build the GBA Aϕ according to the
following definition:

Definition 21 (From ϕ to Aϕ). Given an LTL formula ϕ over AP, A GBA over the alphabet Σ= 2AP

that accepts the same language as ϕ, is a tuple Aϕ = 〈Q ,I ,δ,F 〉 where:

• Q = Atoms(ϕ),

• I = {α ∈ Atoms(ϕ) | ϕ ∈ α},
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• δ = {(α,α∩AP,α′) ∈ Q ×Σ×Q | ∀Xφ ∈ cl(ϕ), (Xφ ∈ α)⇔ (φ ∈ α′)},

• F = {Fφ1 Uφ2 | (φ1 Uφ2) ∈ cl(ϕ)}, with Fφ1 Uφ2 = {α ∈ Q |φ2 ∈ α∨ (φ1 Uφ2) 6∈ α}

This construction of Aϕ is illustrated in Figure 2.11 presenting the GBA A(F p) obtained from
the LTL formula ϕ = F p = (>U p). Intuitively, when the constructed automaton Aϕ reads a
word σ = `0`1`2 . . . by exploring a sequence of states α0α1α2 . . ., in each step i, the “sub-"word
wi = `i`i+1`i+1 . . . satisfies all the formulas labeling the state αi. In addition, wi does not satisfy any
other state of Q \αi because wi does not satisfy any formulas of cl(ϕ)\αi by definition of the atom
αi. The formulas of the form Xφ are verified in the next step by the transition relation δ, because δ

is constructed according to the equivalence (Xφ ∈ αi)⇔ (φ ∈ αi+1) where (αi,αi∩AP,αi+1) ∈ δ

(Definition 21).
The automata produced by translation algorithms often contain redundant states, which can be

eliminated using the bisimulation/simulation rOneductions presented in Section 2.4.5.
As we mentioned earlier, the algorithm presented above is not optimal, it produces a GBA

composed of 4 states (Figure 2.11) for ϕ = F p, while this LTL formula can be converted into a
GBA having only 2 states.

Many other more efficient algorithms are proposed to translate an LTL formula into the differ-
ent variants of Büchi Automata. One common way to obtain a BA from an LTL formula is to first
translate the formula into some Generalized Büchi Automata with multiple acceptance conditions
(GBA, TGBA,. . . ) and then to degeneralize this automaton to obtain a single acceptance condition.
Alternatives include the translation of the property into a state-based [48] generalized automaton
which can then also be degeneralized, or the translation of the property into an alternating Büchi
automaton that is then converted into a BA using the construction proposed by [45].

The degeneralization process can increase the size of the Büchi automaton (see Sec-
tion 2.4.2.1). In addition, several model checking procedures supports generalized (i.e., multiple)
acceptance conditions, making such degeneralization unnecessary and even costly [29]. Moving
the acceptance conditions from the states (GBA) to the transitions (TGBA) also reduces the size
of the property automaton [27, 49].

Several algorithms exist to translate an LTL formula into a TGBA [49, 27, 28, 84, 45, 2]. The
one we use in the experimentations presented in this thesis is based on Couvreur’s LTL translation
algorithm [27]. The next chapter presents the results of an experimentation that compares different
model checking approaches, including those using BA and TGBA.

Most of the works that tried to improve model checking, have focused on translating the LTL
formula into the smallest possible automaton. However, [78] claims (without giving evidence)
that model checking can be improved by generating more deterministic automata (determinization
of Büchi automata was discussed in section 2.4.4). According to [3, 10], it is not yet clear when
“more deterministic” automaton should be preferred to a small one.

2.5 Explicit LTL Model checking using Büchi Automata

The explicit model checking enumerates the states of the state-spaces of both the model and the
LTL formula. These explicit state-spaces and their synchronous product are traditionally repre-
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sented using variants of ω-automata. In this automata-based approach to model checking of an
LTL formula ϕ on the model M, there are two important algorithms (represented in Figure 2.1):

1. The translation of the negation of the LTL formula ¬ϕ into (one variant of) a Büchi Au-
tomaton A¬ϕ (Translation of LTL properties into automata has already been presented in the
previous section).

2. The emptiness check of the product KM⊗A¬ϕ where KM is the Kripke structure representing
the state-space of the model M. The language of this product automaton L (KM⊗A¬ϕ) is
equal to L (KM)∩L (A¬ϕ), i.e., the set of executions of KM invalidating ϕ.

The goal of the emptiness check algorithm is to determine if the product automaton KM⊗A¬ϕ

accepts an execution or not.
In other words, it checks if the language of the product automaton is empty or not. If it is

empty, then there is no execution of the model M that invalidates the property ϕ and therefore
M |= ϕ. Otherwise, there is an execution of M that invalidates ϕ and this execution is reported as
a counterexample.

More formally, the automata-theoretic approach is based on the following equivalences:

L (KM⊗A¬ϕ) = /0 ⇐⇒L (KM)∩L (A¬ϕ) = /0

⇐⇒L (KM)∩L (Aϕ) = /0

⇐⇒L (KM)⊆L (Aϕ)

⇐⇒M |= ϕ

The emptiness check algorithms dealing with TGBA also work for GBA and BA, because a
GBA or a BA can be seen as a TGBA by pushing the acceptance conditions on the transitions
leaving accepting states (with multiple acceptance conditions in the case of GBA). For this reason,
this section only focuses on TGBA.

2.5.1 Synchronous Product

The product of a TGBA with a Kripke structure is a TGBA whose language is the intersection of
both languages.

Definition 22 (Synchronous Product of a Kripke structure and a Büchi automaton). For a Kripke
structure K = 〈S ,S0,R , l〉 and a TGBA
A = 〈Q ,I ,δ,F 〉 the product K ⊗A is the TGBA 〈S⊗,I⊗,δ⊗,F 〉 where
• S⊗ = S ×Q ,

• I⊗ = S0× I ,

• δ⊗ = {((s,q), `,F,(s′,q′)) | (s,s′) ∈ R , (q, `,F,q′) ∈ δ, l(s) = `}

Property 1. We have L (K ⊗A) = L (K )∩L (A) by construction.
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Figure 2.12: Example of a Synchronous Product K ⊗A between a Kripke structure K and a
TGBA A recognizing the LTL formula FG p, with acceptance conditions indicated by the black
dot .
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Because the set of all states of the product is defined as S⊗ = S ×Q , the maximum size (in
term of number of reachable states) of the product automaton is equal to |S |× |Q |.

Figure 2.12 shows an example of a Synchronous Product between a Kripke structure K and a
TGBA (BA) A recognizing the LTL formula FG p. Each state of K is numbered and labeled with
the set of atomic propositions (of Σ = {p}) that hold in this state. In the TGBA representing the
product K ⊗A , the states are labeled with a pairs of the form “(K state, A state)”.

Let us recall that since a BA or a GBA can be seen as a TGBA with accepting conditions
moved from accepting states onto their outgoing transitions, the above product construction using
TGBA can easily be adapted to a product between a Kripke structure and a BA or a GBA.

2.5.2 On-the-fly Emptiness check algorithms

Testing a TGBA for emptiness amounts to the search of an accepting cycle that contains at least
one occurrence of each acceptance condition. This can be done in different ways: either with a
variation of Tarjan or Dijkstra algorithm [27] or using several Nested Depth-First Searches (NDFS)
to save some memory [84]. In NDFS algorithms, a first Depth-First Search (DFS) is performed
until it reaches an accepting state s, then a second DFS is performed from s trying to return to s. [29,
46] argued that NDFS algorithms are slower than SCC-based algorithms, so in the following, we
will use in our experiments Couvreur’s SCC-based emptiness check algorithm [27] because it only
performs a single DFS, and its complexity does not depend on the number of acceptance conditions
(while NDFS may need to perform many nested DFS in the case of multiple acceptance conditions
(GBA or TGBA)). This Couvreur’s algorithm will be described in detail below. The comparison
of the different emptiness check algorithms has raised many studies [47, 77, 29, 73].

The product automaton that has to be explored during the emptiness check is generally very
large, its size can reach the value obtained by multiplying the the sizes of the model and formula
automata, which are synchronized to build this product. Therefore, building the entire product
must be avoided. "On-the-fly" emptiness check algorithms allow the product automaton to be
constructed lazily during its exploration. These on-the-fly algorithms are more efficient because
they stop as soon as they find a counterexample and therefore possibly before building the entire
product, thereby reducing the amount of memory and time used by the emptiness check.

In this work, we focus on SCC-based "On-the-fly" emptiness checks. Algorithm 1 presented
below is an iterative version of the Couvreur’s SCC-based algorithm [27].

Algorithm. 1 computes on-the-fly the Maximal Strongly Connected Components (MSCCs)
of the TGBA representing the product K ⊗A : it performs a Depth-First Search (DFS) for SCC
detection and then merges the SCCs belonging to the same maximal SCC into a single SCC. After
each merge, if the union of all acceptance conditions occurring in the merged SCC is equal to F
(line 16), then an accepting run (i.e., a counterexample) is found (line 16) and the L (K ⊗A) is
not empty. todo is the DFS stack. It is used by the procedure DFSpush to push the states of the
current DFS path and the set of their successors that have not yet been visited. H maps each visited
state to its rank in the DFS order, and H[s] = 0 indicates that s is a dead state (i.e., s belongs to
a maximal SCC that has been fully explored). Figure 2.14 illustrates a run of this algorithm on a
small example.

The SCC stack stores a chain of partial SCCs found during the DFS. For each SCC the attribute
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1 Input: A product TGBA K ⊗A = 〈S⊗,I⊗,δ⊗,F 〉
2 Result: > if and only if L (K ⊗A) = /0

3 Data: todo: stack of 〈state ∈ S ,succ⊆ δ⊗〉
SCC: stack of 〈root ∈ N, la⊆ F ,acc⊆ F ,rem⊆ S〉
H: map of S 7→ N
max← 0

4 begin
5 foreach s0 ∈ I⊗ do
6 DFSpush( /0, s0)

7 while ¬todo.empty() do
8 if todo.top().succ = /0 then
9 DFSpop()

10 else
11 pick one 〈s,_,a,d〉 off todo.top().succ
12 if d 6∈ H then
13 DFSpush(a, d)
14 else if H[d]> 0 then
15 merge(a, H[d])
16 if SCC.top().acc = F then
17 return ⊥

18 return >

19 DFSpush(la⊆ F , s ∈ S⊗)
20 max← max+1
21 H[s]← max
22 SCC.push(〈max, la, /0, /0〉)
23 todo.push(〈s,{〈q, l,a,d〉 ∈ δ⊗ | q = s}〉)

24 DFSpop()

25 〈s,_〉 ← todo.pop()
26 SCC.top().rem.insert(s)
27 if H[s] = SCC.top().root then
28 foreach s ∈ SCC.top().rem do
29 H[s]← 0

30 SCC.pop()

31 merge(la⊆ F , t ∈ N)

32 r← /0

33 acc← la
34 while t < SCC.top().root do
35 acc← acc∪SCC.top().acc

∪SCC.top().la
36 r← r∪SCC.top().rem
37 SCC.pop()

38 SCC.top().acc← SCC.top().acc∪acc
39 SCC.top().rem← SCC.top().rem∪ r

Algorithm 1: Emptiness check algorithm for TGBA.
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SCC[i−1].acc SCC[i].acc SCC[i+1].acc SCC[n].acc
SCC[i−1].la SCC[i].la SCC[i+1].la SCC[n].la

t.la

Figure 2.13: SCC stack: the use of the SCCs fields la and acc.
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Figure 2.14: Six intermediate steps in a run of algorithm 1. The states s1, . . . ,s5 are labeled by
their value in H. The stack of roots of SCCs (the root stack in the algorithm) and the DFS search
stack (induced by the recursive calls to DFSpush()) are displayed on the side. An interpretation
of the SCC stack in term of SCCs is given as yellow blobs on the automaton.
(a) Initially the algorithm performs a DFS search by declaring each newly encountered state as a
trivial SCC. (b) When the transition from s4 to s3 is processed, the algorithm detects that H[s3] 6= 0
which means the transition creates a cycle and all SCCs between s4 and s3 are merged. (c) When
the DFS exits the non-accepting {s3,s4} SCC, it marks all its states as dead (H[s] = 0). (d) When
the DFS attempt to visit a dead state, it ignores it. (e) Visiting the transition from s5 to s1 will
merge three SCCs into one, but it does not yet appear to be accepting because the white accepting
condition ( )has not been seen. (f) Finally visiting the transition from s2 back to s1 will add the
white acceptance condition to the current SCC, and the algorithm will stop immediately because
it has found an SCC labeled by all acceptance conditions.
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root is the DFS rank (H) of the first state of the SCC, acc is the set of all acceptance conditions
belonging to the SCC, la is the acceptance conditions of the transition between the previous and
the current SCC, and rem contains the fully explored states of the SCC. Figure 2.13 shows how
acc and la are used in the SCC search stack.

1. The algorithm begins by pushing in SCC each state visited for the first time (line 4), as a
trivial SCC with an empty acc set (line 22).

2. Then, when the DFS explores a transition t between two states s and d, if d is in the SCC
stack (line 11), therefore t closes a cycle passing through s and d in the product automa-
ton. This cycle “strongly connects” all SCCs pushed in the SCC stack between SCC[i] and
SCC[n]: the two SCCs that respectively contains the states d and s (SCC[n] is the top of the
SCC stack).

3. All the SCCs between SCC[i] and SCC[n] are merged (line 15) into SCC[i]. The merge of
acceptance conditions is illustrated by Figure 2.13: a “back” transition t is found between
SCC[n] and SCC[i], therefore the latest SCCs (from i to n) are merged.

4. The acceptance conditions of the merged SCC is equal to the union of SCC[i].acc∪SCC[i+
1].la∪SCC[i+1].acc∪·· ·∪SCC[n].la∪SCC[n].acc∪ t.la. If this union is equal to F , then
the merged SCC is accepting and the algorithm return false (line 16): the product is not
empty.

Figure 2.14 illustrates the successive steps of a run of algorithm 1.

2.5.3 Complexity

In the automata-theoretic approach to model checking of a Kripke structure KM against an LTL
formula ϕ, the upper bound of the time (and space) complexity is in O(|KM|×2|ϕ|), because ϕ can
be converted into Büchi automaton A¬ϕ whose size and time of construction is in O(2|ϕ|), and the
emptiness check is linear with respect to the size of the product automaton KM⊗A¬ϕ. This linear
complexity is for instance the complexity of Algorithm 1, which has the same complexity as the
algorithm for finding the maximum strong components in a directed graph of Dijkstra [32, 33].

Thus, the upper bound of the model checking complexity is directly deduced from the inequal-
ity: |KM⊗A¬ϕ| ≤ |KM|× |A¬ϕ|.

2.6 Conclusion

Automata-theoretic approach is traditionally used for the explicit LTL model checking. In this
approach, a Kripke structure KM is used to represent the state-space of the model M, and the
property to be checked is expressed as an LTL formula ϕ, then its negation is converted into a Büchi
automaton A¬ϕ. The third operation is the synchronization between KM and A¬ϕ. This constructs
a product automaton KM⊗A¬ϕ whose language, L (KM)∩L (A¬ϕ), is the set of executions of M
invalidating ϕ. The last operation is the emptiness check algorithm that explores the product to
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tell whether it accepts or not an infinite word, i.e., a counterexample. The model M satisfies ϕ iff
L (AM⊗A¬ϕ) = /0.

The main problem of model checking is the well known state-space explosion problem. In
particular, the performance of the automata-theoretic approach depends (in practice) on the size of
the explored part during the emptiness check of the product automaton. This explored part itself
depends on three parameters: the automaton A¬ϕ obtained from the LTL formula ϕ to be checked,
the Kripke structure KM representing the state-space of the model M, and the emptiness check
algorithm. The fact that this algorithm is performed on-the-fly, potentially avoids building the
entire product automaton. Indeed, the states of this product that are not visited by the emptiness
check are not generated at all.

In order to reduce the size of the product KM ⊗A¬ϕ, many works have attempted to reduce
the size of A¬ϕ, either by improving the LTL translation (Section 2.4.6), or by proposing several
reductions for the automaton produced by this translation (examples of these reductions are the
bisimulation/simulation based reductions presented in Section 2.4.5). However, [78] claims that
the size of the product automaton depends more on the "determinism degree" of A¬ϕ rather than
its size.

Another optimization that can reduce the size of A¬ϕ is to simplify the LTL formula ¬ϕ before
translating it into an automaton, several rewriting rules have been proposed [81, 40, 11] to perform
LTL simplifications.

According to [27, 49], moving the accepting conditions from the states (as in GBA) to the
transitions (TGBA) also reduces the size A¬ϕ. In addition, any algorithm that translates LTL
into a Büchi automaton has to deal with generalized Büchi acceptance conditions at some point,
for instance the obtained automaton is a GBA or a TGBA, and the process of degeneralizing
this generalized automaton to obtain a BA often increases its size (see Section 2.4.2.1). Several
emptiness-check algorithms can deal with generalized Büchi acceptance conditions, making such
a degeneralization unnecessary and even costly [29].

It is important to note that in this thesis, we only focus on optimizing the property automaton
A¬ϕ. We do not consider the techniques whose aim is to reduce the model’s state-space KM, such
as the partial order reduction implemented in Spin tool [55]. Several partial order reduction tech-
niques have been proposed, as the stubborn sets of Valmari [86], the persistent sets of Godefroid
[50] and the ample sets of Peled [69]. However, these techniques require additional knowledge
about the model. In addition, the state-space of the model is more difficult to manipulate than the
property automaton, which is generally smaller.

In the next chapter, we will present the results of an experimentation that compares the per-
formance of different automata-based approaches to model checking, including those using BA
versus TGBA, and another kind of ω-automaton, called Testing Automata (TA), that is specific to
represent stutter-invariant LTL formulas.
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3.1 Introduction

The previous chapter presented the classical automata-theoretic approach to model checking based
on Büchi automata. The main limitation of this approach is the large size of the product automaton
(KM ⊗ A¬ϕ) obtained by synchronizing the Kripke structure of the model KM with the Büchi
automaton A¬ϕ, which represents the negation of the LTL property to be checked.

Different variants of Büchi automata have been used with the automata-theoretic approach. In
Spot [64, 35], the model checking library we used in the experiments presented in this thesis, LTL
properties are represented using TGBA (i.e., the variant of Büchi automata with generalized Büchi
acceptance conditions on transitions rather on states). Indeed, according to [36], it is preferable
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to use TGBA for their conciseness. Unfortunately, having a smaller property automaton A¬ϕ does
not always imply a smaller product automaton KM ⊗A¬ϕ. Instead of targeting smaller property
automata, some people have attempted to build more deterministic [78] ones; however even this
does not guarantee the product to be smaller [3, 10].

This chapter focuses on another kind of ω-automaton called Testing Automaton (TA). TA are
a variant of an “extended” Büchi automata introduced by Hansen et al. [52]. Instead of observing
the valuations on states or transitions, the TA transitions only record the changes between these
valuations. In addition, TA are less expressive than Büchi automata since they are able to represent
only stutter-invariant LTL properties. Also they are often a lot larger than their equivalent Büchi
automaton, but their high degree of determinism [52] often leads to a smaller product size [46].

We first provide a detailed presentation of TA and their associated operations for model check-
ing. Then, in order to evaluate the efficiency of LTL model checking using TA, we report and dis-
cuss the results of an experimental comparison of three kinds of ω-automata: classical Büchi Au-
tomata (BA), Transition-based Generalized Büchi automata (TGBA), and Testing Automata (TA)
(this part completes our experiment presented in [5]). Our main motivation is to find the technique
that seems the most suitable to check a given stutter-invariant property on a given model. This is
of interest when a tool offers the choice of several techniques, which is the case for the Spot [64]
tool in which I implemented the TA approach.

3.2 Stutter-invariant Languages

For any ω-automaton A , we say that a language L (A) is stutter-invariant if the number of the
successive repetitions of any letter of a word σ ∈ L (A) does not affect the membership of σ

to L (A) [39]. In other words, L (A) is stutter-invariant iff for any finite sequence u ∈ Σ∗, any
element ` ∈ Σ, and any infinite sequence v ∈ Σω we have u`v ∈L (A) ⇐⇒ u``v ∈L (A).

Two infinite words w1 and w2 are stuttering equivalent iff they are equal after removing all
repeated letters.

Two languages L (A) and L (B) are stuttering equivalent iff any word of L (A) is stuttering
equivalent to a word of L (B) and vice versa.

Given a stutter-invariant LTL formula ϕ (Definition 2.3.3) and an ω-automaton Aϕ such that
L (Aϕ) = L (ϕ), then L (Aϕ) is a stutter-invariant language (we also say that Aϕ is a stutter-
invariant automaton).

3.3 Testing Automata (TA): a natural way to monitor the stuttering

Testing Automata were introduced by Hansen et al. [52] to represent stutter-invariant proper-
ties. While a Büchi automaton observes the value of the atomic propositions AP, the basic idea
of TA is to only detect the changes in these values, making TA particularly suitable for stutter-
invariant properties; if a valuation of AP does not change between two consecutive valuations of
an execution, the TA can stay in the same state, this kind of transitions are called stuttering transi-
tions. To detect infinite executions that end stuck in the same TA state because they are stuttering,
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1ab̄

2ab

3āb

4

{b}

{a,b}{b}
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{a}
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{a}

Figure 3.1: A TA T recognizing the LTL formula aUGb.

a new kind of accepting states is introduced: livelock-accepting states.
If A and B are two valuations, A⊕ B denotes the symmetric set difference, i.e., the set of

atomic propositions that differ (e.g., ab̄⊕ ab = {b}). Technically, this is implemented with an
XOR operation (also denoted by the symbol ⊕).

Definition 23 (TA). A TA over the alphabet Σ = 2AP is a tuple T = 〈Q ,I ,U,δ,F ,G〉, where:
• Q is a finite set of states,

• I ⊆ Q is the set of initial states,

• U : I → 2Σ is a function mapping each initial state to a set of valuations (set of possible
initial configurations),

• δ⊆ Q × (Σ\ /0)×Q is the transition relation where each transition (s,k,d) is labeled by a
changeset: k ∈ Σ is interpreted as a non empty set of atomic propositions whose value must
change between states s and d,

• F ⊆ Q is a set of Büchi-accepting states,

• G ⊆ Q is a set of livelock-accepting states.
An infinite word σ = `0`1`2 . . . ∈ Σω is accepted by T iff there exists an infinite sequence
r = (q0, `0⊕ `1,q1)(q1, `1⊕ `2,q2) . . .(qi, `i⊕ `i+1,qi+1) . . . ∈ (Q ×Σ×Q )ω such that:
• q0 ∈ I with `0 ∈U(q0),

• ∀i∈N, either (qi, `i⊕`i+1,qi+1)∈ δ (the execution progresses in the TA), or `i = `i+1∧qi =

qi+1 (the execution is stuttering and the TA does not progress),

• Either, ∀i ∈ N, (∃ j ≥ i, ` j 6= ` j+1)∧ (∃l ≥ i, ql ∈ F ) (the TA is progressing in a Büchi-
accepting way), or, ∃n ∈ N, (qn ∈ G ∧ (∀i ≥ n, qi = qn∧ `i = `n)) (the sequence reaches a
livelock-accepting state and then stays on that state because the execution is stuttering).

The language accepted by T is the set L (T )⊆ Σω of executions it accepts.

To illustrate this definition, let us consider Figure 3.1, representing a TA T for aUGb. In this
figure, the initial states 1, 2 and 3 are labeled respectively by the set of valuations U(1) = {ab̄},
U(2) = {ab} and U(3) = {āb}. Each transition of T is labeled with a changeset over the set of
atomic propositions AP = {a,b}. In a TA, states with a double enclosure belong to either F or G :
states in F \G have a double plain line, states in G \F have a double dashed line (states 2 and 3
of T ), and states in F ∩G use a mixed dashed/plain style (state 4).
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• The infinite word ab; āb;ab; āb;ab; āb;ab; . . . is accepted by a Büchi accepting run of T .
Indeed, a run recognizing such word must start in state 2, then it always changes the value

of a, so it has to take transitions labeled by {a}. For instance it could be the run 2
{a}−−→ 4

{a}−−→
4
{a}−−→ 4 · · · or the run 2

{a}−−→ 3
{a}−−→ 4

{a}−−→ 4 · · · Both visit the state 4 ∈ F infinitely often, so
they are Büchi accepting.

• The infinite word ab; āb; āb; āb; . . . is accepted by a livelock accepting run of T . An accept-
ing run starts in state 2, then moves to state 4, and stutters on this livelock-accepting state.
Another possible accepting run goes from state 2 to state 3 and stutters in 3 ∈ G .

• The infinite word ab;ab̄;ab;ab̄;ab;ab̄; . . . is not accepted. It would correspond to a run
alternating between states 2 and 1, but such a run is neither Büchi accepting (does not visit
any F state) nor livelock-accepting (it passes through state 2∈G , but does not stay into this
state continuously).

Property 2. The language accepted by a testing automaton is stutter-invariant.

Proof. This follows from definition of accepted infinite words: a TA may not change its state when
an infinite word stutters, so stuttering is always possible.

3.4 TA Construction

BA /0-TA
TA

Two passes

Labeling transitions

with “changesets”
Elimination of useless

stuttering transitions ( /0)

Figure 3.2: The two steps of the construction of a TA from a BA.

A TA is constructed from a BA in two steps as illustrated in Figure 3.2. The first step con-
structs an intermediate form of TA, called /0-TA (for “empty-changesets” TA), which can contain
stuttering transitions between two distinct states (i.e., δ ⊆ Q ×Σ×Q in /0-TA). The second step
allows to eliminate these useless stuttering transitions and thus to obtain a TA that satisfies the
Definition 23 (i.e., δ⊆ Q × (Σ\ /0)×Q in TA).

We begin by formally defining an /0-TA automaton and how it accepts infinite words:

Definition 24 ( /0-TA). An /0-TA over the alphabet Σ= 2AP is a tuple T = 〈Q ,I ,U,δ,F ,G〉, where:
• Q is a finite set of states,

• I ⊆ Q is the set of initial states,

• U : I → 2Σ is a function mapping each initial state to a set of valuations,

• δ ⊆ Q × Σ×Q is the transition relation where each transition (s,k,d) is labeled by a
changeset k ∈ Σ interpreted as a set of atomic propositions whose value must change be-
tween states s and d,

• F ⊆ Q is a set of Büchi-accepting states,

• G ⊆ Q is a set of livelock-accepting states.
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aUGb, ab̄ab̄

aUGb, abab

aUGb, ābāb Gb,ab
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(b) /0-TA after the construction from property 3.
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aUGb, ābāb Gb,ab
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(c) TA after the simplifications from property 4.

1ab̄
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3āb
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{b}

{a,b}
{b}

{a}

{a}
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(d) TA after bisimulation.

Figure 3.3: Steps of the construction of a TA from a BA. States with a double enclosure belong to
either F or G: states in F \G have a double plain line, states in G \F have a double dashed line,
and states in F ∩G use a mixed dashed/plain style.
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An infinite word σ = `0`1`2 . . . ∈ Σω is accepted by T iff there exists an infinite sequence
r = (q0, `0⊕ `1,q1)(q1, `1⊕ `2,q2) . . .(qi, `i⊕ `i+1,qi+1) . . . ∈ (Q ×Σ×Q )ω such that:
• q0 ∈ I with `0 ∈U(q0),

• ∀i ∈ N, either (qi, `i⊕ `i+1,qi+1) ∈ δ (we are always progressing in /0-TA),

• Either, ∀i ∈ N, (∃ j ≥ i, q j ∈ F ) (the /0-TA is progressing in a Büchi-accepting way), or,
∃n ∈ N,∀i≥ n,(`i = `n)∧ (qi ∈ G) (a suffix of the infinite word stutters in G).

The language accepted by T is the set L (T )⊆ Σω of infinite words it accepts.

Figure 3.3b shows an example of an /0-TA. The /0-TA does not respect the constraint of TA that
prohibits having stuttering transitions between two distinct states. The second difference is that
the stuttering transitions are explicitly represented in an /0-TA. In other words, an /0-TA does not
use the implicit stuttering of TA (which consists of having an implicit stuttering self-loop on each
state of TA).

3.4.1 From BA to /0-TA: Construction of an intermediate /0-TA from a Büchi Au-
tomaton BA

Geldenhuys and Hansen [46] have shown how to convert a BA into a TA by first converting the BA
into an automaton with valuations on the states (called state-labeled Büchi automaton (SLBA)),
and then converting this SLBA into an intermediate form of TA (i.e., an /0-TA) by computing the
difference between the labels of the source and destination states of each transition. The next
proposition implements these first steps.

Property 3 (Converting a BA into an /0-TA (an intermediate form of TA) [46]). For any BA B =

〈QB ,IB ,δB ,FB〉 over the alphabet Σ = 2AP and such that L (B) is stutter-invariant, let us define
the /0-TA T = 〈QT ,IT ,UT ,δT ,FT , /0〉 with:
• QT = QB ×Σ,

• IT = IB ×Σ,

• ∀(s, `) ∈ IT ,UT ((s, `)) = {`},

• ∀(s, `) ∈ QT ,∀(s′, `′) ∈ QT ,

((s, `), `⊕ `′,(s′, `′)) ∈ δT ⇐⇒ ((s, `,s′) ∈ δB),

• FT = FB ×Σ.
Then L (B) = L (T ).

The proof of Property 3 is similar to the proof of Property 8, which will be given in Sec-
tion 5.3.1.

Figure 3.3b shows the result of applying this construction to the example of Büchi automaton
shown for aUGb. This testing automaton does not yet use livelock-accepting states (the G set).
The next property, again from Geldenhuys and Hansen [46], shows how filling G allows to remove
all stuttering transitions (i.e., transitions labeled by /0) and therefore build the final form of the TA.
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q q0 · · · qn

q′ q...
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k /0 /0

/0

/0

/0

(a) Before stuttering transitions ( /0) reduction. q′ is a
Büchi accepting state

q q0 qn

...

. . .k

(b) After reduction, q0 and qn are livelock-
accepting states.

Figure 3.4: Elimination of useless stuttering transitions. The states q0 and qn are added to the set
of livelock-accepting states G .

3.4.2 From /0-TA to TA: Elimination of useless stuttering transitions ( /0) and intro-
ducing livelock-acceptance

The second step consists in filling G to simplify T , the intuition of this second step is illustrated
by Figure 3.4. For that, we compute all strongly connected components using only stuttering
transitions (i.e., transitions labeled by /0). If such a SCC is not trivial (i.e., it contains a cycle) and
contains a Büchi-accepting state, then add all its states to G . Then, add to G any state that can
reach G using only stuttering transitions. Finally remove all stuttering transitions from δ. The
following property formalizes this second step.

Property 4 (Filling G to obtain a TA [46]). Let T = 〈Q ,I ,U,δ,F ,G〉 be /0-TA such that L (T )

is stutter-invariant. By combining the first three of the following operations we can remove all
stuttering transitions (q, /0,q′) from T and thus obtain a TA. The fourth simplification can be
performed along the way.

1. If Q′ ⊆ Q is a Strongly Connected Component (SCC) such that Q′ ∩F 6= /0 (it is Büchi-
accepting), and any two states q,q′ ∈ Q′ can be connected using a non-empty sequence
of stuttering transitions (q, /0,q1) · (q1, /0,q2) · · ·(qn, /0,q′) ∈ δ∗, then the automaton T ′ =
〈Q ,I ,U,δ,F ,G ∪Q′〉 is such that L (T ′) = L (T ). Such a component Q′ is called an
accepting Stuttering-SCC.

2. If there exists a transition (q, /0,q′) ∈ δ such that q′ ∈ G , then the /0-TA T ′′ =
〈Q ,I ,U,δ,F ,G ∪{q}〉 is such that L (T ′′) = L (T ).

3. Let T † = 〈Q ,I ,U,δ,F ,G†〉 be the /0-TA obtained after repeating the previous two opera-
tions as much as possible (i.e., G† contains all states that can be added by the above two
operations (Figure 3.4b)). Then, because L (T ) and thus L (T †) are stutter-invariant,
we can remove all stuttering transitions form T † to obtain a TA (since stuttering can be
captured by the implicit stuttering of TA and the livelock-accepting states of G† after the
previous two operations). After this last reduction of stuttering transitions, we obtain the
final TA T ′′′. Formally, the TA T ′′′ = 〈Q ,I ,U,δ′′′,F ,G†〉 with δ′′′ = {(q,k,q′) ∈ δ | k 6= /0}
is such that L (T ′′′) = L (T †) = L (T ).

4. Any state from which one cannot reach a Büchi-accepting cycle nor a livelock-accepting
state can be removed without changing the automaton’s language.
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The proof of Property4 is similar to the proof of Property 9, which will be given in Sec-
tion 5.3.2.

The resulting TA can be further simplified by merging bisimilar states (two states are bisimilar
if the automaton can accept the same infinite words starting for either of these states). This can
be achieved using any algorithm based on partition refinement, the same as for Büchi automata
presented in section 2.4.5, taking {F ∩G ,F \G ,G \F ,Q \ (F ∪G)} as initial partition.

Figure 3.3 shows how a BA denoting the LTL formula aUGb is transformed into a TA by
applying prop. 3, prop. 4, and finally merging bisimilar states.

A TA for GFa∧GFb is too big to be shown: even after simplifications it has 11 states and 64
transitions.

3.4.3 TA Optimizations (that are not yet implemented)

Looking at Figure 3.3 inspires two optimizations. The first one is based on the fact that the
construction of testing automata, described in the previous section, generates a lot of bisimilar
states such as the two states labeled with (Gb, āb) and (Gb,ab). This is because the construc-
tion considers all the elements of Σ that are compatible with Gb. Had the LTL formula been
over AP = {a,b,c}, e.g., (a∨ c)UGb, then we would have had four bisimilar states: (Gb, ābc̄),
(Gb, ābc), (Gb,abc̄), and (Gb,abc). These states are necessarily isomorphic, because they only
differ in a and c, some propositions that the formula Gb does not observe.

A more efficient way to construct the testing automaton (and to construct the automaton from
Figure 3.3d directly) would be to consider only the subset of atomic propositions that are observed
by the corresponding state of the Büchi automaton or its descendants (if the state is labeled by an
LTL formula, the atomic propositions occurring in this formula give an over-approximation of that
set).

A second optimization relies on the fact any state that does not belong to an SCC can be added
to F without changing the language of the automaton (this is also true for Büchi automata). For
instance on Figure 3.3 the state labeled (aUGb, āb) can be added to F . Since this state is not part
of any cycle, it cannot occur infinitely often and therefore cannot change the accepted language of
the automaton.

This change allows further simplifications by bisimula-
aUGb, ab̄ab̄

aUGb, abab

Gb,b

āb

{b}

{a,b}

{b}

{a}

{a}

Figure 3.5: Reduced TA for aUGb.

tion: the state (aUGb, āb) is now obviously equivalent to
the (Gb,b) state. Figure 3.5 shows the resulting automaton.
Note that putting any trivial SCC x in F before performing
bisimulation could hinder the reduction if x was isomorphic
to some state not in F . However if x has only successors
in F , as in our example, then it can be put safely in F : in-
deed, it can only be isomorphic to an F -state, or to another

trivial SCC that will be added to F . This condition is similar to the one used by Löding before
minimizing deterministic weak ω-automata [61].

Unfortunately, these optimizations have not been implemented for this work and we had no
time to implement the simulation [40, 44] reduction.

However, the bisimulation reduction (section 2.4.5) was implemented for the three approaches
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BA, TGBA and TA, and used in the experimental comparisons presented later in this thesis.

3.5 Explicit Model checking using TA

A first difference between the BA and TA approaches resides in the computation of the syn-
chronous product. Indeed, during the computation of the product between a TA T and a Kripke
structure K , T remains in the same state when K executes a stuttering step.

The emptiness check also requires a dedicated algorithm because there are two ways to accept
an infinite word: Büchi accepting or livelock accepting. In the algorithm sketched by Geldenhuys
and Hansen [46], a first pass is used with an heuristic to detect both Büchi and livelock accepting
cycles. Unfortunately, in certain cases, this first pass fails to report existent livelock accepting cy-
cles. This implies that when no counterexample is found by the first pass, a second one is required
to double-check for possible livelock accepting cycles. Thus, when there is no counterexample
(i.e., the property is satisfied), the entire state-space has to be explored twice.

3.5.1 Synchronous Product of a TA with a Kripke structure

For traditional Büchi automata, the product of a BA or a TGBA with a Kripke structure, is also
respectively a BA or a TGBA. In the case of testing automata, the product of a Kripke structure
and a TA is not a TA. Indeed, while an execution in a TA is allowed to stutter on any state, the
execution in a product must execute an explicit stuttering transition [46]. This product automaton
can be seen as an /0-TA but with a small difference in the way of recognizing Büchi-accepting
runs. Indeed, a Büchi-accepting run of the product must visit at least a non-stuttering transition
infinitely often.

Chapter 5 will introduce a new type of ω-automata that improve the TA, called TGTA [6],
which simplifies the definition of the product and improves its emptiness check (by proposing
a single-pass algorithm). Indeed, the /0-TGTA used as an intermediate form in the construction
of a TGTA will also serve to represent the product between a TGTA and a Kripke structure. In
addition, the emptiness check of this product using TGTA will be done in a single pass (in the next
section, we will show that the product using TA requires two passes for its emptiness check).

Definition 25. For a Kripke structure K = 〈S ,S0,R , l〉 and a TA T = 〈Q ,I ,U,δ,F ,G〉, the
product K ⊗T is a tuple 〈S⊗,I⊗,U⊗,δ⊗,F⊗,G⊗〉 where
• S⊗ = S ×Q ,

• I⊗ = {(s,q) ∈ S0× I | l(s) ∈U(q)},

• ∀(s,q) ∈ I⊗,U⊗((s,q)) = {l(s)},

• δ⊗ = {((s,q),k,(s′,q′)) | (s,s′) ∈ R , (q,k,q′) ∈ δ, k = l(s)⊕ l(s′)}
∪{((s,q), /0,(s′,q′)) | (s,s′) ∈ R ,q = q′, l(s) = l(s′)}

,

• F⊗ = S ×F ,

• and G⊗ = S ×G .
An execution σ = `0`1`2 . . . ∈ Σω is accepted by K ⊗ T if there exists an infinite sequence r =
(s0, `0⊕ `1,s1)(s1, `1⊕ `2,s2) . . .(si, `i⊕ `i+1,si+1) . . . ∈ (S⊗×Σ×S⊗)ω such that:
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• s0 ∈ S 0
⊗ with `0 ∈U⊗(s0),

• ∀i ∈ N,(si, `i⊕ `i+1,si+1) ∈ δ⊗ (we are always progressing in the product)

• Either, ∀i ∈ N, (∃ j ≥ i, ` j 6= ` j+1)∧ (∃l ≥ i, sl ∈ F⊗) (the automaton is progressing in a
Büchi-accepting way), or, ∃n ∈ N,∀i ≥ n,(`i = `n)∧ (si ∈ G⊗) (a suffix of the execution
stutters in G⊗).

We have L (K ⊗T ) = L (K )∩L (T ) by construction.

0

1 2

3

p̄

p̄ p

p

(a) A Kripke structure K

0

{ p̄}

1

{p}

p̄

{p}

{p}

(b) A TA T for FG p

0,0{p̄} 3,1

2,11,0

p̄

/0

{p}

/0/0

{p}

(c) K ⊗T

Figure 3.6: Example of a synchronous product between a Kripke structure K and a TA T recog-
nizing the LTL formula FG p. The bold cycle of K ⊗T is livelock-accepting.

Figure 3.6 shows an example of a synchronous product between a Kripke structure K and a TA
T recognizing the LTL formula FG p. Each state of K is numbered and labeled with a valuation
of atomic propositions (over AP = {p}) that hold in this state. In the product K ⊗T , states are
labeled with a pairs of the form (s,q) with s is a state of K and q of T , and the livelock accepting
states are denoted by a double dashed circle (as in T ). We can notice that this product using TA is
smaller than the product of Figure 2.12 using Büchi automata, i.e., the product between the same
Kripke structure K and the TGBA (or BA) recognizing the LTL formula FG p.

3.5.2 A two-pass emptiness check algorithm

In this section, we present a two-pass algorithm for the emptiness check of the synchronous prod-
uct between a TA and a Kripke structure. While the emptiness check proposed by Geldenhuys
and Hansen [46] is based on the Tarjan algorithm [82, 83], the emptiness check proposed in this
section, consists of Algorithm 2 (first-pass) and Algorithm 3 (second-pass), which are based
on the Dijkstra algorithm for SCCs detection [32, 33].

In model checking approach using TA, the emptiness check requires a dedicated algorithm
because according to the Definition 25 (of the different ways to accept a sequence) , there are two
ways to detect an accepting cycle in the product:
• Büchi accepting: a cycle containing at least one Büchi-accepting state (F ) and at least one

non-stuttering transition (i.e., a transition (s,k,s′) with k 6= /0),

• livelock accepting: a cycle composed only by stuttering transitions and livelock accepting
states (G).

A straightforward emptiness check would have the following two passes:
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1 Input: A product K ⊗T = 〈S⊗,I⊗,U⊗,δ⊗,F⊗,G⊗〉
2 Result: > if and only if L (K ⊗T ) = /0

3 Data: todo: stack of 〈state ∈ S⊗,succ⊆ δ⊗〉
SCC: stack of 〈root ∈ N, lk ∈ 2AP,k ∈ 2AP,acc⊆ F⊗,rem⊆ S⊗〉
H: map of S⊗ 7→ N
max← 0

4 begin
5 if ¬ first-pass() then return ⊥ ;
6 return second-pass()

7 first-pass()

8 foreach s0 ∈ I⊗ do
9 DFSpush1( /0, s0)while ¬todo.empty() do

10 if todo.top().succ = /0 then
11 DFSpop()

12 else
13 pick one 〈s,k,d〉 off todo.top().succif d 6∈ H then
14 DFSpush1(k, d)
15 else if H[d]> 0 then
16 merge1(k, H[d])if (SCC.top().acc 6= /0)∧

(SCC.top().k 6= /0) then return ⊥;
17 if (d ∈ G⊗)∧ (SCC.top().k = /0) then return ⊥ ;

18 return >

19 DFSpush1(lk ∈ 2AP, s ∈ S⊗)
20 max← max+1
21 H[s]← max
22 if s ∈ F⊗ then
23 SCC.push(〈max, lk, /0,{s}, /0〉)
24 else
25 SCC.push(〈max, lk, /0, /0, /0〉)

26 todo.push(〈s,{〈q,k,d〉 ∈ δ⊗ |q = s}〉)

27 merge1(lk ∈ 2AP, t ∈ N)

28 acc← /0

29 r← /0

30 k← lk
31 while t < SCC.top().root do
32 acc← acc∪SCC.top().acc
33 k← k∪SCC.top().k∪SCC.top().lk
34 r← r∪SCC.top().rem
35 SCC.pop()

36 SCC.top().acc← SCC.top().acc∪acc
37 SCC.top().k← SCC.top().k∪ k
38 SCC.top().rem← SCC.top().rem∪ r

Algorithm 2: The first-pass of the Emptiness check algorithm for TA products, see Algorithm 3
for the second-pass.
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1 Data: todo: stack of 〈state ∈ S⊗,succ⊆ S⊗〉
SCC: stack of 〈root ∈ N,rem⊆ S⊗〉
H: map of S⊗ 7→ N
max← 0; init← I⊗

2 second-pass()

3 while ¬init.empty() do
4 pick one s0 off init if s0 6∈ H then DFSpush2( /0, s0) ;
5 while ¬todo.empty() do
6 if todo.top().succ = /0 then
7 DFSpop()

8 else
9 pick one d off todo.top().succ if d 6∈ H then

10 DFSpush2(d)
11 else if H[d]> 0 then
12 merge2(H[d]) if (d ∈ G⊗) then return ⊥ ;

13 return >

14 DFSpush2(s ∈ S⊗)
15 max← max+1
16 H[s]← max
17 SSCC.push(〈max, /0〉)
18 todo.push(〈s,{d ∈ S⊗ |(s, /0,d) ∈ δ⊗}〉)
19 init← init ∪{d ∈ S⊗ | (s,k,d) ∈ δ⊗∧ k 6= /0}

20 merge2(t ∈ N)

21 r← /0

22 while t < SCC.top().root do
23 r← r∪SCC.top().rem
24 SCC.pop()

25 SCC.top().rem← SCC.top().rem∪ r

Algorithm 3: The second-pass of the TA emptiness check algorithm.
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• a first pass to detect Büchi accepting cycles, it corresponds to Algorithm 2 without the test
at line 17,

• a second pass presented in Algorithm 3 to detect livelock accepting cycles.
It is not possible to merge these two passes into a single DFS: the first DFS requires the

exploration of every transition of the product while the second one must consider only stuttering
transitions.

The first-pass of Algorithm 2 detects all Büchi-accepting cycles, and with line 17 included
in this algorithm, it detects also some livelock-accepting cycles. Since in certain cases it may fail
to report some livelock-accepting cycles, a second pass is required to look for possible livelock-
accepting cycles.

This first-pass is based on the TGBA emptiness check algorithm presented in Algorithm 1
(page 34) with the following changes:

• In each item scc of the SCC stack: the field scc.acc contains the Büchi-accepting states
detected in scc, scc.lk is analogous to la in Figure 2.13 but it stores the change-set labeling
the transition coming from the previous SCC, and scc.k contains the union of all change-sets
in scc (lines 33 and 37).

• After each merge, SCC.top() is checked for Büchi-acceptance (line 16) or livelock-
acceptance (line 17) depending on the emptiness of SCC.top().k.

Figure 3.6 illustrates how the first-pass of Algorithm 2 can fail to detect the livelock ac-
cepting cycle in a product K ⊗T as defined in Definition 25. In this example, GT = {1} therefore
(3,1) and (2,1) are livelock-accepting states, and C2 = [(3,1)→ (2,1)→ (3,1)] is a livelock-
accepting cycle.

However, the first-pass may miss this livelock-accepting cycle depending on the order in
which it processes the outgoing transitions of (3,1). If the transition t1 = ((3,1),{p},(0,0)) is
processed before t2 = ((3,1), /0,(2,1)), then the cycle C1 = [(0,0)→ (1,0)→ (2,1)→ (3,1)→
(0,0)] is detected and the four states are merged in the same SCC before exploring t2. After this
merge (line 16), this SCC is at the top of the SCC stack. Subsequently, when the DFS explores
t2, the merge caused by the cycle C2 does not add any new state to the SCC, and the SCC stack
remains unchanged. Therefore, the test line 17 still return false because the union SCC.top().k of
all change-sets labeling the transitions of the SCC is not empty (it includes for example t1’s label:
{p}). Finally, first-pass algorithm terminates without reporting any accepting cycle, missing
C2.

On the other side, if the first-pass had processed t2 before t1, it would have merged the
states (3,1) and (2,1) in an SCC, and would have detected it to be livelock-accepting.

In general, to report a livelock-accepting cycle, the first-pass computes the union of all change-
sets of the SCC containing this cycle. However, this union may include non-stuttering transitions
belonging to other cycles of the SCC. In this case, the second-pass is required to search for
livelock-accepting cycles, ignoring the non-stuttering transitions that may belong to the same SCC.

In the next chapter, we propose a Single-pass Testing Automata STA, which allows to obtain a
synchronous product in which such mixing of non-stuttering and stuttering transitions will never
occur in SCCs containing livelock-accepting cycles, making the second-pass unnecessary.
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The second-pass (Algorithm 3) is a DFS exploring only stuttering transitions (line 18). To
report a livelock-accepting cycle, it detects “stuttering-SCCs” and tests if they contain a livelock-
accepting state (line 12).

Ignoring the non-stuttering transitions during the DFS, may lead to miss some parts of the
product so any destination of a non stuttering transition is stored in init for later exploration
(line 19).

In the algorithm proposed by Geldenhuys and Hansen [46], the first pass uses a heuristic to
detect livelock-accepting cycles when possible. This heuristic detects more livelock-accepting
cycles than Algorithm 2. In certain cases this first pass may still fail to report some livelock-
accepting cycles. Yet, this heuristic is very efficient: when counterexamples exist, they are usually
caught by the first pass, and the second is rarely needed. However, when properties are satisfied,
the second pass is always required.

Note. It is important to say that in the experiments presented in the sequel, we implement Algo-
rithm 2 including the heuristic proposed by Geldenhuys and Hansen [46] to detect more livelock-
accepting cycles during the first pass of the TA approach. We don’t present the details of this
heuristic because we show in the next chapters other solutions that allow to detect all the livelock-
accepting cycles during the first pass and therefore remove the second pass.

3.6 Experimental Comparison of TA versus TGBA and BA

This section presents our experimentation of the various types of automata within our tool
Spot [64]. We first present the Spot architecture and the way the variation on the model checking
algorithm was introduced. Then we present our benchmarks (formulas and models) prior to the
description of our experiments.

3.6.1 Implementation on top of Spot

Spot is a model-checking library offering several algorithms that can be combined to build a model
checker [36].

Figure 3.7 shows the building blocks we used to implement the three approaches:
• the TGBA and BA approaches that share the same synchronous product construction and

emptiness check,

Kripke
Structure

LTL
Formula

Synchr.
Product

LTL2TGBA

TGBA2BA

BA2TA

Synchr.
Product 2

Emptiness
Check

Emptiness
Check 2

TRUE or
counterexample

Figure 3.7: The experiment’s architecture. Two command-line switches control which one of the
three approaches is used to verify an LTL formula on a Kripke structure.
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• the dedicated algorithms required by the TA approach.
The construction of TGBA and BA already exists in Spot. In addition, we have implemented

all algorithms used in the TA approach (TA construction and TA product and its emptiness check).
We have also implemented the bisimulation reduction (section 2.4.5) for three approaches BA,
TGBA and TA.

In order to evaluate our approach on “realistic” models, we decided to couple the Spot library
with the CheckPN tool [36]. CheckPN implements Spot’s Kripke structure interface in order
to build on-the-fly a state-space of a Petri net. This Kripke structure is then synchronized with
an ω-automaton (TGBA, BA, or TA), and fed to the suitable emptiness check algorithm. The
latter algorithm drives the on-the-fly construction: only the explored part of the product (and the
associated states of the Kripke structure) will be constructed.

Constructing the state-space on-the-fly is a double-edged optimization. Firstly, it saves mem-
ory, because the state-space is computed as it is explored and thus, does not need be stored. Sec-
ondly, it also saves time when a property is violated because the emptiness check can stop as soon
as it has found a counterexample. However, on-the-fly exploration is costlier than browsing an
explicit graph: an emptiness check algorithm such as the one for TA [52] that does two traversals
of the full state-space in the worst case (e.g. when the property holds) will pay twice the price of
that construction.

In the CheckPN implementation of the Kripke structure, the Petri Net marking are compressed
to save memory. The marking of a state has to be uncompressed every time we compute its
successors, or when we compute the value of the atomic properties on this state. These two
operations often occur together, so there is a one-entry cache that prevents the marking from being
uncompressed twice in a row.

3.6.2 Benchmark Inputs

We selected some Petri net models and formulas to compare these approaches.

Case Studies The following two bigger models, were taken from actual case studies. They come
with some dedicated properties to check.

PolyORB models the core of the µbroker component of a middleware [56] in an implementa-
tion using a Leader/Followers policy [71]. It is a Symmetric Net and, since CheckPN processes
P/T nets only, it was unfolded into a P/T net. The resulting net, for a configuration involving three
sources of data, three simultaneous jobs and two threads (one leader, one follower) is composed
of 189 places and 461 transitions. Its state space contains 61 662 states. The authors propose to
check that once a job is issued from a source, it must be processed by a thread (no starvation). It
corresponds to:

Φ1 = G(MSrc1→ F(DOSrc1))∧G(MSrc2→ F(DOSrc2))∧G(MSrc3→ F(DOSrc3))

MAPK models a biochemical reaction: Mitogen-activated protein kinase cascade [53]. For
a scaling value of 8 (that influences the number of tokens in the initial marking), it contains 22
places and 30 transitions. Its state-space contains 6.11×106 states. The authors propose to check
that from the initial state, it is necessary to pass through states RafP, MEKP, MEKPP and ERKP



54 Chapter 3. Evaluation of the Testing Automata Approach

in order to reach ERKPP. In LTL:

Φ2 = ¬((¬RafP)UMEKP)∧¬((¬MEKP)UMEKPP)∧
¬((¬MEKPP)UERKP)∧¬((¬ERKP)UERKPP)

Toy Examples A second class of models were selected from the Petri net literature [19, 59]: the
flexible manufacturing system (FMS), the Kanban system, the Peterson algorithm, the slotted-
ring system, the dining philosophers and the Round-robin mutex [21]. All these models have a
parameter n. For the dining philosophers, the Peterson algorithm, the Round-robin, and the slotted-
ring, the models are composed of n 1-safe subnets. For FMS and Kanban, n only influences the
number of tokens in the initial marking. In our experiments, we selected the following 12 models
instances:
• n = 4 and n = 5 for Peterson, FMS and Kanban,

• n = 6 and n = 5 for slotted-ring,

• n = 9 and n = 10 for dining philosophers,

• n = 14 and n = 15 for Round-robin.
Types of Formulas As suggested by Geldenhuys and Hansen [46], the type of formula may affect
the performances of the various algorithms. In addition to the formulas Φ1 and Φ2 above, we
consider two classes of formulas:
• RND: randomly generated LTL formulas (without X operator). Since random formulas are

very often trivial to verify (the emptiness check needs to explore only a handful of states),
we selected for each model only those formulas requiring more than one second of CPU for
the emptiness check in all approaches.

• WFair: properties of the form (
∧n

i=1 GF pi)→ ϕ, where ϕ is a randomly generated LTL for-
mula. This represents the verification of ϕ under the weak-fairness hypothesis

∧n
i=1 GF pi.

The automaton representing such a formula has at least n acceptance conditions which
means that the BA will in the worst case be n+ 1 times bigger than the TGBA. For the
formulas we generated for our experiments we have n = 3.51 on the average.

All formulas were translated into automata using Spot, which was shown experimentally to be
very good at this job [74, 34].

For each selected model instance, we generated:
• Verified formulas (i.e., no counterexample in the product): 100 random and 100 weak-

fairness,

• Violated formulas (i.e., a counterexample exists): 100 random and 100 weak-fairness.
We consequently have a total 5600 pairs of (model, formula): 2800 violated formulas and

2800 verified formulas.

3.6.3 Results

Table 3.1 and Table 3.2 show how BA, TGBA and TA approaches deal with toy models and random
formulas.
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Verified properties (no counterexample)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Pe
te

rs
on

5 BA
avg 13 502 0 2791685 14311851 2791685 14311851 18968
max 82 2827 7 11010896 108553439 11010896 108553439 80529

TGBA
avg 12 460 1 2753024 14166594 2753024 14166594 18656

max 54 2816 6 11010896 108553439 11010896 108553439 80455

TA
avg 83 4324 12 2600539 10293714 5201077 20587428 34992
max 509 37096 242 9384663 42614845 18769326 85229690 124863

R
in

g6

BA
avg 13 448 0 1467181 10533598 1467181 10533598 2422
max 49 3788 4 4272666 50547840 4272666 50547840 11538

TGBA
avg 12 411 0 1398021 10139043 1398021 10139043 2325

max 49 3788 4 4269384 50547840 4269384 50547840 10181

TA
avg 69 3118 9 1097667 6606130 2195333 13212259 3748
max 509 25773 151 2851152 19625864 5702304 39251728 9688

FM
S5

BA
avg 10 267 0 2077187 15144149 2077187 15144149 3074
max 31 2612 4 9132417 89397363 9132417 89397363 16452

TGBA
avg 9 245 0 2038054 15037218 2038054 15037218 3017

max 28 2612 4 9132417 89397363 9132417 89397363 15594

TA
avg 48 1643 5 1401286 11000449 2802572 22000898 5347
max 282 11007 100 6109887 54324903 12219774 108649806 26238

K
an

ba
n5

BA
avg 9 185 0 3494358 33955856 3494358 33955856 5424
max 94 1994 4 22360464 282849140 22360464 282849140 43179

TGBA
avg 8 166 0 3356053 32800737 3356053 32800737 5253

max 60 1994 4 20253072 258315134 20253072 258315134 44281

TA
avg 44 1659 3 2433853 23389805 4867707 46779609 9192
max 277 21251 82 15272712 161364553 30545424 322729106 61873

Ph
ilo

10

BA
avg 16 705 1 4952039 29080163 4952039 29080163 9841
max 81 5995 7 18399098 121269824 18399098 121269824 43970

TGBA
avg 14 636 1 4668178 27564474 4668178 27564474 9352

max 81 5397 6 17947837 119545256 17947837 119545256 40273

TA
avg 71 4092 20 2334154 19893200 4668308 39786400 14494
max 412 55321 232 8378151 74240975 16756302 148481950 53359

R
ob

in
15

BA
avg 16 717 1 2776200 31544574 2776200 31544574 9345
max 100 7680 4 15198075 238617470 15198075 238617470 71576

TGBA
avg 15 664 0 2682881 30981263 2682881 30981263 9192

max 82 5792 4 13129644 225905117 13129644 225905117 62328

TA
avg 95 6048 15 2027251 17168855 4054503 34337710 12401
max 481 43547 143 8169472 68645888 16338944 137291776 48675

Table 3.1: Comparison of the three approaches on toy examples with random formulæ, when
counterexamples do not exist.
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Violated properties (a counterexample exists)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Pe
te

rs
on

5 BA
avg 17 738 1 8591425 45706072 608443 2310272 3932
max 70 3568 5 50366303 365239596 3599887 21728436 24720

TGBA
avg 14 646 0 8118953 42865329 600828 2325266 3892
max 47 3392 5 50297469 364396821 3632979 22095045 24665

TA
avg 90 5683 15 8592222 33972863 546562 1886028 3667

max 656 62947 132 56166663 224108070 3178506 11478152 21823

R
in

g6

BA
avg 20 832 1 3378684 28026221 876552 5897370 1369
max 64 4460 3 11012779 123266244 6792681 70374257 15784

TGBA
avg 17 713 1 3163763 26260802 854229 5805080 1329
max 51 3788 4 9855589 108310156 5914415 65020741 13999

TA
avg 125 7462 14 2846468 18131253 650592 3881701 1170

max 472 41068 162 8960960 62840996 4923301 36659892 9895

FM
S5

BA
avg 16 553 1 10949858 101710172 1765510 11843265 2319
max 104 4524 3 42512695 432252072 14455789 120456128 25056

TGBA
avg 14 496 1 10174866 95061682 1602719 10636471 2148
max 96 4200 3 40672843 404072123 11075871 110774947 18644

TA
avg 90 4112 9 8418689 70784299 1051522 7742600 1956

max 390 22702 79 31864749 267656316 8518894 63178516 16558

K
an

ba
n5

BA
avg 15 391 1 11646608 127363073 1204137 9094855 1518
max 87 2696 4 43038083 587543197 13023468 185410581 25805

TGBA
avg 13 355 0 10952627 119272618 1153850 8728297 1473
max 87 2184 3 43038083 587543197 13023468 185410581 26750

TA
avg 75 2870 6 8429948 83120910 670472 5873480 1224

max 473 30375 92 31602068 331833407 7673335 77364100 14239

Ph
ilo

10

BA
avg 14 641 0 20491935 206666412 1551357 7673496 2713
max 74 5928 4 84068722 1377479362 9032250 53881112 17065

TGBA
avg 13 590 0 19118012 195258228 1518296 7522623 2651
max 74 5928 3 84068722 1377479362 9032250 53881112 15880

TA
avg 92 5690 14 16012398 148019289 900840 6499314 2545

max 356 46498 170 66535322 696331784 7342016 64470840 25536

R
ob

in
15

BA
avg 24 1113 1 5866595 71526501 1719685 18722554 5549
max 84 5928 6 17192350 282229101 13627374 191356248 53159

TGBA
avg 21 965 1 5514573 67871153 1676314 18343280 5475
max 74 5928 7 15127431 281880971 13627374 191356248 52962

TA
avg 164 11366 21 4869334 41343229 1249161 10420582 4052

max 854 62419 107 11791872 104488704 7767216 74241202 28352

Table 3.2: Comparison of the three approaches on toy examples with random formulæ, when
counterexamples exist.
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Verified properties (no counterexample)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Pe
te

rs
on

5 BA
avg 9 93 0 3530202 17259383 3530202 17259383 23976
max 32 494 2 14572104 105106990 14572104 105106990 99998

TGBA
avg 4 52 0 3071854 15745483 3071854 15745483 21163

max 17 357 2 9551018 87453872 9551018 87453872 70107

TA
avg 50 564 1 3018533 11771410 6037065 23542820 41176
max 184 3362 3 10750205 42228050 21500410 84456100 146637

R
in

g6

BA
avg 10 104 0 1565890 9845113 1565890 9845113 2345
max 34 494 2 4945096 44945800 4945096 44945800 9306

TGBA
avg 5 64 0 1121590 7920270 1121590 7920270 1903

max 25 357 2 3873576 38047692 3873576 38047692 7910

TA
avg 58 682 1 1118511 6494556 2237021 12989111 3697
max 183 3353 3 3383372 22481284 6766744 44962568 10865

FM
S5

BA
avg 9 84 1 3966306 28568464 3966306 28568464 5596
max 25 340 2 14865917 130390060 14865917 130390060 24590

TGBA
avg 4 41 0 3030750 23589355 3030750 23589355 4674

max 12 212 2 11882973 114787553 11882973 114787553 23008

TA
avg 48 515 1 2259230 17600147 4518460 35200294 8482
max 171 4256 3 9764223 79707273 19528446 159414546 36382

K
an

ba
n5

BA
avg 8 62 0 3784743 33114074 3784743 33114074 5190
max 32 221 2 15768592 198359739 15768592 198359739 29290

TGBA
avg 4 33 1 3098615 29435137 3098615 29435137 4712

max 21 168 2 13014212 187004177 13014212 187004177 26143

TA
avg 36 306 1 2083777 19156589 4167555 38313178 7883
max 140 2049 2 11039112 106534190 22078224 213068380 48724

Ph
ilo

10

BA
avg 9 80 0 5478383 33455338 5478383 33455338 11245
max 31 547 1 16695369 140088618 16695369 140088618 41598

TGBA
avg 4 35 0 4255979 26793678 4255979 26793678 9064

max 21 216 2 12974557 112561242 12974557 112561242 39806

TA
avg 47 501 1 3229690 27631036 6459379 55262071 20439
max 289 8199 6 10987384 94141317 21974768 188282634 64593

R
ob

in
15

BA
avg 9 98 0 2262431 20634259 2262431 20634259 6703
max 38 608 1 5849069 76754676 5849069 76754676 20953

TGBA
avg 5 59 0 1782133 17996764 1782133 17996764 5749

max 16 337 1 5029881 70344648 5029881 70344648 19263

TA
avg 54 618 1 1508082 12171559 3016163 24343119 9099
max 239 3706 4 3944448 32391168 7888896 64782336 23018

Table 3.3: Comparison of the three approaches on toy examples with weak-fairness formulæ,
when counterexamples do not exist.
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Violated properties (a counterexample exists)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Pe
te

rs
on

5 BA
avg 12 184 1 9604699 42508151 654497 2230146 4265
max 74 1338 2 34771276 235328943 7043181 27266804 46628

TGBA
avg 5 78 0 3731947 17751951 522414 1759041 3438

max 18 351 2 13508730 79589415 3696481 16733420 24769

TA
avg 95 1400 1 10950499 42790086 641997 2123401 4368
max 350 5968 8 30354888 120985972 7637347 29621420 51378

R
in

g6

BA
avg 18 291 1 4076877 30760035 1312236 7496631 1822
max 70 2248 3 6924114 96086800 3706323 34372404 6998

TGBA
avg 7 123 1 2000787 15868857 890567 5736568 1410

max 38 1168 3 4670124 53246768 2766283 26917302 6101

TA
avg 128 2009 2 3456785 21069783 905280 5156350 1583
max 388 12783 13 6152232 43283696 2747578 17464827 4995

FM
S5

BA
avg 12 139 0 13634313 123924884 1623286 8873430 1807
max 46 550 2 38283058 436545323 11138596 82531874 14207

TGBA
avg 5 68 0 7978129 75701408 1372877 7544397 1607
max 23 370 2 27570312 293219919 6676584 53451994 9961

TA
avg 71 871 1 10007988 81736556 845087 5687307 1471

max 245 3766 5 27733464 249573778 6425987 51962113 11856

K
an

ba
n5

BA
avg 12 133 1 11528567 115461763 1541122 10510834 1738
max 34 501 2 34735366 497454792 12460358 113423964 16932

TGBA
avg 5 66 0 7040236 73867374 1344870 9279129 1562
max 17 305 2 25423161 388961954 7950633 80041971 11336

TA
avg 69 849 1 8102548 77515606 809384 6986502 1440

max 237 3655 5 32732392 329125090 5501242 53375472 10359

Ph
ilo

10

BA
avg 12 148 0 20724516 190232774 1144023 5417407 1849
max 44 688 3 52231021 996567139 7775968 45330784 13909

TGBA
avg 5 69 0 10515366 102622810 833663 3762217 1357

max 25 392 3 24496745 402197001 5017174 32273634 9802

TA
avg 81 1027 1 16779360 150030607 743065 5019598 1936
max 267 4339 6 43186049 394172486 6703064 55546036 21005

R
ob

in
15

BA
avg 21 356 1 7007406 78083493 1916523 16640621 5468
max 73 2248 2 23830436 327588082 8911386 101808220 28268

TGBA
avg 9 157 1 4006015 46910526 1486839 14360747 4691
max 44 1168 2 14802883 195152925 5666009 78112291 21619

TA
avg 143 2467 2 5832674 48201707 1347956 10786002 4257

max 466 12783 12 18204684 151155748 6486142 53115008 18506

Table 3.4: Comparison of the three approaches on toy examples with weak-fairness formulæ,
when counterexamples exist.
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Verified properties (no counterexample)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Po
ly

O
R

B
3/

3/
2

R
N

D

BA
avg 18 781 1 111714 337573 111714 337573 612
max 136 7680 5 373039 2138028 373039 2138028 2097

TGBA
avg 16 715 1 109158 328976 109158 328976 601

max 136 5792 4 373039 2138028 373039 2138028 2207

TA
avg 94 5768 17 94283 205464 188566 410928 1037
max 481 43547 196 261318 604061 522636 1208122 2847

W
Fa

ir

BA
avg 11 157 0 132102 369787 132102 369787 713
max 71 1294 2 799355 2630204 799355 2630204 4339

TGBA
avg 5 72 0 96435 277426 96435 277426 524

max 18 337 2 368898 1450005 368898 1450005 2049

TA
avg 79 1106 1 120479 262456 240958 524913 1302
max 351 5920 9 633208 1408943 1266416 2817886 6806

Φ
1

BA – 7 576 1 345241 760491 345241 760491 1675

TGBA – 7 576 1 345241 760491 345241 760491 1688

TA – 80 14590 8 342613 742815 685226 1485630 3391

M
A

PK
8

R
N

D

BA
avg 12 374 1 2894799 25769242 2894799 25769242 5477
max 79 3813 5 13636352 147555158 13636352 147555158 29292

TGBA
avg 10 333 1 2808973 25212509 2808973 25212509 5325

max 64 3813 5 13636352 147555158 13636352 147555158 28979

TA
avg 50 2239 9 1724291 20203618 3448582 40407237 9591
max 336 22614 146 8469258 108847708 16938516 217695416 53824

W
Fa

ir

BA
avg 10 82 0 4290714 38013034 4290714 38013034 7887
max 46 437 2 17600440 177748756 17600440 177748756 33063

TGBA
avg 5 39 0 3898645 34822961 3898645 34822961 7344

max 21 198 2 14452198 162156912 14452198 162156912 31117

TA
avg 44 407 1 2112810 24492299 4225619 48984598 12092
max 171 1920 3 6110748 75624744 12221496 151249488 40347

Φ
2

BA – 6 165 0 46494 302350 46494 302350 45

TGBA – 6 165 1 46494 302350 46494 302350 50

TA – 9 293 2 33376 289235 66752 578470 95

Table 3.5: Comparison of the three approaches for the case studies when counterexamples do
not exist.
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Violated properties (a counterexample exists)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Po
ly

O
R

B
3/

3/
2

R
N

D

BA
avg 15 839 1 137958 397495 54412 130427 294
max 74 7004 11 1520649 5898222 192692 514905 1088

TGBA
avg 14 760 1 132232 380305 53901 128960 291
max 65 7004 9 1295661 5045814 192692 514905 1049

TA
avg 81 6223 29 135237 296081 56518 126300 310

max 540 59971 631 1377784 2976709 243950 547459 1324

W
Fa

ir

BA
avg 11 150 0 190987 472205 112918 279490 600
max 43 788 2 604611 1951062 328442 1419816 1794

TGBA
avg 5 66 0 96849 258704 69053 177391 372

max 22 516 2 432240 1584372 193264 1031898 1110

TA
avg 82 1157 1 201879 434747 113705 250573 612
max 262 4636 6 560685 1194198 254328 594751 1330

M
A

PK
8

R
N

D

BA
avg 15 578 1 29980338 454492066 1939885 13406649 2890
max 61 4398 2 141058746 2921365220 13284206 120933281 24053

TGBA
avg 13 513 1 27266223 405363157 1850695 12575125 2702
max 59 4298 2 91059214 1963331216 13284206 111916150 21771

TA
avg 88 4818 13 22458466 298950743 967363 9259668 2346

max 334 35401 164 90049281 1300904178 5241327 61655512 13808

W
Fa

ir

BA
avg 13 176 0 34857814 493530217 2249726 16186296 3515
max 46 541 2 111139060 1700666096 15349474 123057668 26758

TGBA
avg 6 81 0 20904101 300416331 1962765 13896236 3129
max 23 414 2 101813441 1681905871 9463562 72266873 16928

TA
avg 88 1212 1 27535941 358622897 1112324 11462361 2869

max 245 3749 4 93441682 1258076980 5203746 59642346 14489

Table 3.6: Comparison of the three approaches for the case studies when counterexamples exist.
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Table 3.3 and Table 3.4 show toy models against weak-fairness formulas.
Table 3.5 and Table 3.6 show the results of the two cases studies against random, weak-

fairness, and dedicated formulas issued from the studies.
These tables separate cases where formulas are verified from cases where they are violated.

In the former (Table 3.1, 3.3 and 3.5 ), no counterexample are found and the full state-space had
to be explored; in the latter (Table 3.2, 3.4 and 3.6 ) the on-the-fly exploration of the state-space
stops as soon as the existence of a counterexample is computed.

All values shown in all tables are averaged over 100 different formulas (except for the lines
Φ1 and Φ2 in Table 3.5, where only one formula is used). For instance we checked Peterson5
against 100 random formulas that had no counterexample, and against 100 random formulas that
had a counterexample. The average and maximum are computed separately on these two sets of
formulas.

Column-wise, these tables show the average and maximum sizes (states and transitions) of:
(1) the automata A¬ϕi expressing the properties ϕi; (2) the products A¬ϕi⊗K of the property with
the model; and (3) the subset of this product that was actually explored by the emptiness check.
For verified properties, the emptiness check of TGBA and BA always explores the full product
so these sizes are equal, while the emptiness check of TA always performs two passes on the full
product so it shows double values. On violated properties, the emptiness check aborts as soon as it
finds a counterexample, so the explored size is usually significantly smaller than the full product.

The emptiness check values show a third column labeled “T”: this is the time in 1
100e of seconds

(a.k.a. centiseconds) spent doing that emptiness check, including the on-the-fly computation of the
subset of the product that is explored. The time spent constructing the property automata A¬ϕi is
shown in column “Tϕ” (it is negligible compared to that of the emptiness check “T”).

Figure 3.8 compares the number of visited transitions when running the emptiness check;
plotting TA against BA and TGBA. This gives an idea of their relative performance. Each point
corresponds to one of the 5600 evaluated formulas (2800 violated with counterexample as black
circles, and 2800 verified having no counterexample as green crosses). Each point below the
diagonal is in favor of TA while others are in favor of the other approach. Axes are displayed
using a logarithmic scale.

Figure 3.9 compares the number of visited transitions between BA and TGBA. Each point
below the diagonal is in favor of TGBA (this clearly shows that BA are less efficient than TGBA).

All these experiments were run on a 64bit Linux system running on an Intel(R) 64-bit Xeon(R)
@2.00GHz, with 10GB of RAM.

3.6.4 Discussion (TA two-pass emptiness check problem)

Although the state-space of cases studies can be very different from those of random state-
spaces [68], a first look at our results confirms two facts already observed by Geldenhuys and
Hansen using random state-spaces [46]: (1) although the TA constructed from properties are usu-
ally a lot larger than BA, the average size of the full product is smaller thanks to the more deter-
ministic nature of the TA. (2) For violated properties, the TA approach explores less states and
transitions on the average than the BA.



62 Chapter 3. Evaluation of the Testing Automata Approach

1E+05

1E+06

1E+07

1E+08

1
E
+
0
5

1
E
+
0
6

1
E
+
0
7

1
E
+
0
8

T
A

BA

violated

verified

(a) TA against BA approaches

1E+05

1E+06

1E+07

1E+08

1
E
+
0
5

1
E
+
0
6

1
E
+
0
7

1
E
+
0
8

T
A

TGBA

violated

verified

(b) TA against TGBA approaches

Figure 3.8: Performance (number of transitions explored by the emptiness check) of TA against
BA and TGBA.
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Figure 3.9: Performance (number of transitions explored by the emptiness check) of TGBA against
BA.

We complete this picture by showing execution times, by separating verified properties from
violated properties, and by also evaluating the TGBA approach.

On verified properties, the results are very straightforward to interpret: the BA are slightly worse
than the TGBA because the degeneralization increases the size of the property automaton. In fact,
the average number of acceptance conditions needed in random formulas (Table 3.1 and 3.5) is so
close to 1 that the degeneralization barely changes the sizes of the automata. With weak-fairness
formulas (Table 3.3 and 3.5), the number of acceptance conditions is greater, so TGBA are favored
over BA. Surprisingly, both TGBA and BA, although they are not tailored to stutter-invariant
properties like TA, appear more effective to prove that a stutter-invariant property is verified. In the
three tables, although the full product of the TA approach is smaller than the other approaches, it
has to be explored twice (as explained in section 3.4): the emptiness-check consequently explores
more states and transitions. This double exploration is not enough to explain the big runtime
differences. Two other subtle implementation details of the synchronous products contribute to
the time difference:
• To synchronize a transition of a Kripke structure with a transition (or a state in case of

stuttering) of a TA, we must compute the symmetric difference (i.e., the changeset) l(s)⊕
l(d) between the labels of the source and destination states. The same synchronization in
the TGBA and BA approaches requires to know only the source label.

Computing these labels is a costly operation in CheckPN because Petri net marking are
compressed in memory to save space. Although we implemented some (limited) cache to
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alleviate the number of such label computation, profiling measures revealed the TA approach
was 3 times slower than the TGBA and BA approaches, but that labels where computed 9
times more.

• A second implementation difference is that the transitions of testing automata are labeled
by elements of Σ, while in the Spot implementation of TGBA and BA, the transitions are
labeled by elements of 2Σ. That means that once l(s)⊕ l(d) ∈ Σ has been computed, we
can use a hash table to immediately find matching transitions of the testing automaton. In
the TGBA and BA implementations, we linearly scan the list of transitions of the property
automaton until we find one compatible with l(s).

In order to protect the results against the influence of various optimizations, implementation
tricks, and the central processor and memory architecture, Geldenhuys and Hansen [46] have
decided (in their work about TA) to report only the number of explored states and transitions, and
not the number of bytes and milliseconds consumed by their implementations. They found that
the number of states gives a reliable indication of the memory required, and, similarly, the number
of transitions a reliable indication of the time consumption. That is why in our discussion (in this
chapter and in the next chapters), we focus on the number of explored states and transitions more
than time consumption.

On violated properties, it is harder to interpret these tables because the emptiness check returns
as soon as it finds a counterexample. Changing the order in which non-deterministic transitions
of the property automaton are iterated is enough to change the number of states and transitions
to be explored before a counterexample is found: in the best case the transition order leads the
emptiness check straight to an accepting cycle; in the worst case, the algorithm explores the whole
product until it finally finds an accepting cycle. Although the emptiness check algorithms for the
three approaches share the same routines to explore the automaton, they are all applied to different
kinds of property automata, and thus provide different transition orders.

This ordering luckiness explains why the BA approach sometimes outperforms the TGBA one.
We believe that the TA, since they are more deterministic, are less sensible to this ordering.

They also explore a smaller state-space on the average. This smaller exploration is not always
tied to a good runtime because of the extra computation of labels discussed in this section. Again,
looking at the average number of transitions explored by the emptiness check indicates that the
TA approach would outperform the others if labels computation would have been cheap.

3.7 Conclusion

Geldenhuys and Hansen evaluated the performance of the BA and TA approaches with small
random Kripke structures checked against LTL formulas taken from the literature [46]. In this
work, we have completed their experiments by using actual models and different kinds of formulas
(random formulas not trivially verifiable, random formulas expressing weak-fairness formulas,
and a couple of real formulas), by evaluating the TGBA approach, and by distinguishing violated
formulas and verified formulas in the benchmark.

In TA approach, an unfortunate consequence of having two different ways of accepting infinite
words (livelock or Büchi), is that the emptiness-check algorithm required during model checking
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must perform two passes on the whole state-space in the worst case.
For verified formulas, we found that the state-space reduction achieved by the TA approach

was not enough to compensate for the two-pass emptiness check this approach requires. It is
therefore better to use the TGBA approach to prove that a stutter-invariant formula is verified and
TA approach in an earlier “debugging phase”.

When the formulas are violated, the TA approach usually processes less transitions than the
BA approach and TGBA to find a counterexample. This approach should therefore be a valuable
help to debug models (i.e. when counterexamples are expected). This is especially true on random
formulas. With weak-fairness formulas, generalized automata are advantaged and are able to beat
the TA on the average in 4 of our 8 examples (Peterson5, Philo10, Ring6, PolyORB 3/2/2).

In the next chapter, we propose some optimizations in order to omit the second pass in TA
approach, in particular when no livelock-accepting states is encountered during the first pass. We
also propose STA (Single-pass Testing Automata), a transformation of TA that never requires such
a second pass.

In Chapter 5, we propose a single-pass and generalized testing automata, called TGTA
(Transition-based Generalized Testing Automata). TGTA combines ideas from TA and TGBA.
The basic idea is to have a form of testing automata with transition-based generalized acceptance
conditions, which allows us to modify the automata construction in order to remove the second
pass of the emptiness check of the product.

We also noted that making a product between a TA and a Kripke structure is not a good idea
when computing the label of the Kripke structure is expensive. A more efficient model checker
using testing automata should probably represent the model using labeled Kripke structure in
which the transition labels represent the symmetric difference (i.e., the changeset) between the
label of the source and destination state. This optimization is exploited in the chapter 6 concerning
the symbolic model checking using TGTA.
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4.1 Introduction

In the previous chapter, we evaluated the use of Testing Automata (TA) for the model checking
of stutter-invariant properties. We have shown that the TA approach is efficient when the formula
to be verified is violated (i.e., a counterexample exists). This is not the case when the property is
verified since the entire state-space has to be visited twice to check for each acceptance mode of a
TA (Büchi-acceptance or livelock-acceptance).

In this chapter we improve the TA approach in two ways. First, we propose optimizations
of the emptiness check algorithm that avoid the second pass when it is possible. Second, we
propose a transformation of TA into a normal form that never requires such a second pass, called
Single-pass Testing Automata (STA).

Although STA are more constrained than TA, we provide a transformation that automatically
translates the latter into the former. Then we prove the correctness of the single pass emptiness
check for STA. We also present an optimization that allows to build a smaller STA.

We have implemented the algorithms of STA approach in Spot, our model checking library.
We are thus able to compare them with the “traditional” algorithms we used on Testing Automata
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(TA) and Transition-based Generalized Büchi Automata (TGBA). These experiments show that
STA compete well on our examples.

4.2 Improving the Emptiness check by avoiding the second pass in
particular cases

In the evaluation of TA approach presented in the previous chapter, we have implemented the
heuristic for livelock detection proposed by Geldenhuys and Hansen [46] to avoid the second pass
of the emptiness check algorithm. Unfortunately, this heuristic fails in certain cases to detect
livelock cycles. In addition to this heuristic, we add the following improvements to the first pass
in order to avoid the second pass in the following particular cases:

1. In the previous chapter, we have shown that the second pass is only used to detect livelock-
accepting cycles. Therefore, if no livelock-accepting state is visited during the first pass
(i.e., the product does not contain livelock-accepting states), then the second pass can be
disabled: this can be done by simply adding a variable Gseen in Algorithm 2 (page 49),
where Gseen is a flag that records if a livelock-accepting state is detected during the explo-
ration of the product by the first pass. In the experiments presented at the end of this chapter,
this optimization greatly improves the performance of the TA approach in the cases where
the formula is verified.

2. A cycle detected in the product during the first pass is also accepted if it contains a livelock-
accepting state (s,q) of the product such that q has no successor in the TA. Indeed, from
this state, a run of the product can only execute stuttering transitions. Therefore, a cycle
containing this state, is composed only by stuttering transitions: it is a livelock-accepting
cycle.

This second optimization may detect some livelock-accepting cycles, but it misses livelock-
accepting cycles that are mixed with non-stuttering transitions in the same SCC, as discussed
in section 3.5.2 (page 48) of the previous chapter.

We now introduce a class of TA where the second optimization will always detect any livelock-
accepting cycle during the first-pass.

4.3 Converting a TA into a Single-pass Testing Automaton (STA)

In this section, we introduce STA, a transformation of TA into a normal form such that livelock-
accepting states have no successors, and therefore STA approach does not need the second pass
of the emptiness check of TA approach. This contribution improves the efficiency of the model
checking (this will be experimentally evaluated in section 4.4). In addition, STA simplify the
implementation (and the optimization) of the emptiness check algorithm as it renders unnecessary
the implementation of the second pass.
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4.3.1 Single-pass Testing Automata (STA)

Definition 26 (STA). A Single-pass Testing Automaton (STA) is a TA T = 〈Q ,I ,U,δ,F ,G〉 over
Σ such that δ∩(G×2Σ×Q ) = /0. In other words, an STA is a TA in which every livelock-accepting
state has no successors.

4.3.2 Construction of an STA from a TA
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Figure 4.1: Example of a product between a Kripke structure K and a TA T of FG p. The bold
cycle of K ⊗T is livelock-accepting.
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Figure 4.2: Impact on the product of using STA T + instead of TA T . Bold states and transitions
are addition relative to Figure 4.1.

Property 5 formalizes the construction of an STA from a TA. We can transform a TA into an
STA by adding an unique livelock-accepting state g (i.e., in STA, G= {g}), and adding a transition
(q,k,g) for any transition (q,k,q′) that goes into a livelock-accepting state q′ ∈ G of the original
automaton. In addition, if q′ has no successors then q′ can be removed, since it is bisimilar to the
new state g.

Property 5. Let T = 〈Q ,I ,U,δ,F ,G〉 be a TA, the equivalent STA is T ′= 〈Q ′,I ′,U ′,δ′⊕,F ,{g}〉
where
• Q ′ = (Q \G /0)∪{g} where G /0 = {q ∈ G | ({q}×Σ×Q )∩δ = /0} is the set of states of G

that have no successors, and g 6∈ Q is a new state,

• I ′ = I ∪{g} if G ∩ I 6= /0, I ′ = I otherwise,

• δ′⊕ = (δ\ (Q ×Σ×G /0))∪{(q,k,g) | (q,k,q′) ∈ δ, q′ ∈ G},
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• ∀q ∈ I ,U ′(q) =U(q) and U ′(g) =
⋃

q∈(G∩I )
U(q).

is such that L (T ′) = L (T ).

Figure 4.2a shows how the TA from Figure 4.1b was transformed into an STA using Property 5.
The idea behind this transformation is that any livelock-accepting execution of T will be mapped
to an execution of T + that is captured by the new state g. The new g state has an impact on the size
of the product (Figure 4.2b), but the strongly connected components of this new product no longer
mix non-stuttering transitions and livelock-accepting cycles: this renders the second-pass of
Algorithm 3 useless. However, adding an artificial state in STA will increase the size of the product
automaton to be explored by the emptiness check (i.e. the first-pass of Algorithm 2) . In the
next chapter, we present a new improvement of TA, called TGTA that removes the second-pass

without adding an artificial state.
The objective of STA is to isolate in the product the exploration of the parts that are composed

only by livelock-accepting states and stuttering transitions, like the bold part of the product rep-
resented in the Figure 4.2b. In this kind of sub-products, it is easy to find all livelock accepting
cycles.

The STA emptiness check algorithm is the first-pass of the TA emptiness check algorithm
without the second-pass procedure. In other words, in STA approach, the emptiness check is
only Algorithm. 2 (page 49) without line 6.

4.3.3 Correctness of the one-pass emptiness check using STA

In the following lemmas, K , T , T + denote respectively a Kripke structure, a TA and an STA.
The first-pass is an SCC-based algorithm, it computes the set of all MSCCs (i.e., Maximal

SCCs) of the product automaton. Therefore, in order to prove that the first-pass is sufficient to
detect all livelock-accepting cycles, we prove that in K ⊗T +, searching for all livelock-accepting
cycles is equivalent to searching for all MSCCs that are only composed of stuttering transitions
and livelock-accepting states. In Algorithm. 2, line 17 allows to detect this kind of MSCCs.

Lemma 1. In a product automaton K ⊗T : if one MSCC M contains a product state (s,q) such
that q is a livelock-accepting state that has no successors in T , then M is only composed of
stuttering transitions and livelock-accepting states.

Proof. q has no successors in the TA T , therefore from q, a run of T can only execute stuttering
transitions: it stays in the same livelock-accepting state q. Consequently, all product states of M
are connected by stuttering transitions. In addition, they have the same livelock-accepting state as
TA component (q), therefore by Definition 25 all states of M are livelock-accepting.

Lemma 2. In a product automaton K ⊗T +: one MSCC M contains a livelock-accepting state if
and only if M is only composed of stuttering transitions and livelock-accepting states.

Proof. (=⇒) If an MSCC M contains a livelock-accepting state (s,q) of K ⊗ T +, then q is a
livelock-accepting state that has no successors in T + because in an STA every livelock-accepting
state has no successors. The proof follows from Lemma 1 applied to K ⊗T +.
(⇐=) Any state of M is livelock-accepting.
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The difference between lemma 1 and lemma 2 is that the livelock-accepting states of STA have
no successors, while those of a TA can. Therefore, the following lemma is true only for STA.

Lemma 3. In the product automaton K ⊗T +: there exists at least one livelock-acceptance cycle
C if and only if there exists at least one non trivial MSCC M such that M is only composed of
stuttering transitions and livelock-accepting states.

Proof. (=⇒): C contains at least one livelock-accepting state, therefore applying Lemma 2 with
M is the MSCC containing C allows us to conclude.
(⇐=): M is non-trivial (it contains at least two states or a single state with a self-loop), therefore
M contains at least one non-trivial cycle only composed of stuttering transitions and livelock-
accepting states. This cycle is the livelock-accepting cycle C.

In Algorithm. 2, the first-pass computes all MSCCs and line 17 allows to detect only the
MSCCs satisfying Lemma 3. Therefore the STA emptiness check algorithm reports one cycle if
and only if this cycle is a livelock-accepting cycle or a Büchi-accepting cycle.

Emptiness check optimizations According to Lemma 2, it is sufficient to verify that an MSCC
contains a livelock-accepting state at line 17 of Algorithm. 2. Therefore, computing SCC.top().k
is not necessary for detecting livelock-accepting cycles.

4.3.4 STA optimization

The goal of this optimization is to reduce the number of transitions in STA, by exploiting a special
property of livelock-accepting states that are also Büchi-accepting. We begin by introducing a
definition to distinguish these particular states:

Definition 27 (Fully-accepting state). In a TA (or in a product of a TA with a Kripke structure), a
state that is both livelock-accepting and Büchi-accepting, is called fully-accepting state.

Definition 26 previously proposed for STA introduces a constraint on livelock-accepting states.
This constraint (which we call in the following “livelock-constraint”) allowed us to remove the
second-pass of the emptiness check. However, in order to transform a TA into an STA that
satisfies this “livelock-constraint”, we have to add an artificial state g and artificial transitions
having g as destination (Property 5).

In this optimization, we start by introducing Property 6 that allows us to deduce that the fully-
accepting states do not require the second pass of the emptiness check. Then, we propose a new
STA definition that removes the “livelock-constraint" for the fully-accepting states and therefore
reduces the number of artificial transitions added during the transformation of a TA into an STA.

The goal of the following Lemma 4 and Property 6 is is to prove that every cycle C that
contains a fully-accepting state s f is an accepting cycle . In addition, C is necessarily included in
an MSCC M detected by the first-pass of the emptiness check.

We remind that in a product of a TA with a Kripke structure, the definition of an accepting
cycle does not depend only on its states but also on its transitions:
• On the one hand, any cycle that contains a livelock-accepting state, is considered as an

accepting cycle if it is only composed of stuttering transitions.
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• On the other hand, a cycle that contains a Büchi-accepting state, must contains a non-
stuttering transition, to be considered an accepting cycle.

In the following lemma 4, we distinguish a particular kind of cycles that can be reported as accept-
ing without checking if they contain or not non-stuttering transitions:

Lemma 4. In a product automaton K ⊗T : if a cycle C contains a fully-accepting state s f , then
C is an accepting cycle.

Proof. There are two cases depending on the transitions composing the cycle C:
• If C contains at least one non-stuttering transition, then using the fact that s f is Büchi-

accepting, we deduce that C is a Büchi-accepting cycle.

• Otherwise, if C contains only stuttering transitions, in this case we exploit the fact that s f is
a livelock-accepting state to deduce that C is a livelock-accepting cycle.

In addition, these particular accepting cycles also verify the following property:

Property 6. In a product automaton K ⊗ T : for every accepting cycle C containing a fully-
accepting state s f , the MSCC M that includes C is detected by the first-pass of Algorithm. 2.

Proof. There are two cases depending on the transitions of the MSCC M:
• If M includes C and contains at least one non-stuttering transition, then M is detected by the

line 16 of the first-pass, because M contains a Büchi-accepting state s f and M contains
non-stuttering transitions.

• Otherwise, if M includes C and is only composed of stuttering transitions, then M is detected
by the line 17 of the first-pass, because M contains a livelock-accepting state s f and M
is only composed of stuttering transitions).

We deduce from Property 6 that the “livelock-constraint” is not necessary for fully-accepting
states. This leads us to propose the following optimized definition of STA:

Definition 28. A Single-pass Testing Automaton (STA) is a TA T = 〈Q ,I ,U,δ,F ,G〉 over Σ such
that δ∩ ((G \F )×2Σ×Q ) = /0. In other words, an STA is a TA in which every state in G \F has
no successors.

Consequently, during the TA to STA transformation described by Property 5, it was unneces-
sary to add artificial transitions (q,k,g) for any transition (q,k,q′) where q′ ∈ (G ∩F ) (i.e., q′ is a
fully-accepting state).

This optimization of Property 5 is formalized by the following Property 7:

Property 7. Let T = 〈Q ,I ,U,δ,F ,G〉 be a TA, the equivalent STA is T ′ = 〈Q ′,I ′,U ′,δ′⊕,F ,G ′〉
where
• G ′ = (G ∩F )∪{g} where g 6∈ Q is a new state,

• Q ′ = (Q \G /0)∪{g} where G /0 = {q ∈ G | ({q}×Σ×Q )∩δ = /0} is the set of states of G
that have no successors,
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Figure 4.3: Transformation of a TA recognizing aUGb into an optimized STA (according to
Property 7). The state 4 is a fully-accepting state

• I ′ = I ∪{g} if G ∩ I 6= /0, I ′ = I otherwise,

• δ′⊕ = (δ\ (Q ×Σ×G /0))∪{(q,k,g) | (q,k,q′) ∈ δ, q′ ∈ ((G\F)∪G /0)},

• ∀q ∈ I ,U ′(q) =U(q) and U ′(g) =
⋃

q∈(G∩I )
U(q).

is such that L (T ′) = L (T ).

Property 7 is illustrated by figure 4.3 that shows the transformation of a TA into an STA
satisfying Definition 28. The state 4 is a fully-accepting state in the TA, therefore in the STA we
don’t add an artificial transition from state 4 to g.

4.4 Experimental evaluation of the TA improved emptiness check
and of STA

This section presents our experimentation conducted under the same conditions as the previous
chapter (see section 3.6), i.e., within the same tools Spot and CheckPN and using the same bench-
mark inputs (formulas and models).

4.4.1 Implementation

Figure 4.4 shows the building blocks we used to implement the different approaches. The TGBA
and BA approaches share the same synchronous product and emptiness check, while a dedicated
algorithms are required by the TA and STA approaches.

For TA approach, we have implemented the first-pass improvements of section 4.2 that allow
to avoid the second-pass in more cases than the implementation of the previous chapter.

For STA approach, our STA emptiness check implementation shares the same first-pass with
the TA algorithm and then disables the second-pass. We also disable the heuristic [46] livelock
detection for the STA because it is useless.



76 Chapter 4. Improving the Testing Automata Approach

Kripke
Structure

LTL
Formula

Synchr.
Product

LTL2TGBA

TGBA2BA

BA2TA

Synchr.
Product 2

Emptiness
Check

Emptiness
Check 2

TRUE or
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Figure 4.4: The experiment’s architecture. The transformation of TA into STA is represented by
the block "TA2TA+". Two command-line switches control which one of the different approaches
is used to verify an LTL formula on a Kripke structure.

4.4.2 Results

Table 4.1 and Table 4.2 shows how the TGBA, TA and STA approaches deal with the toy models
and random formulas already presented in Section 3.6.2. We omit data for BA since they are
outperformed by TGBA (see Section 3.6.3). Table 4.5 and Table 4.6 show toy models against
weak-fairness formulas.

Table 4.3 and Table 4.4 show the results of the two cases studies against random, weak-
fairness, and dedicated formulas issued from the studies.

All values shown in tables are averaged over 100 different formulas: we checked each model
against 100 random and 100 weak-fairness formulas that had no counterexample, and against 100
random and 100 weak-fairness formulas that had a counterexample. The average and maximum
are computed separately on each model against each set of formulas.

The cases with formulas verified are separated from cases with violated ones. For verified
formulas (Table 4.1, 4.5 and 4.3 ), no counterexample is found and the full state-space has to be
explored. For violated formulas (Table 4.2, 4.6 and 4.4 ) the on-the-fly exploration of the state-
space stopped as soon as the existence of a counterexample could be computed.

Column-wise, these tables show the average and maximum sizes (states and transitions) of: (1)
the automata A¬ϕi expressing the properties ϕi; (2) the products A¬ϕi⊗K of the property with the
model; and (3) the subset of this product that was actually explored by the emptiness check. For
verified properties, the emptiness check of TGBA and STA always explores the full product, so the
sizes shown in the columns of the product and the emptiness check are equal, while the emptiness
check of TA must in many cases perform two passes on the full product (see the linear cloud of
green crosses below the diagonal of Figure 4.5a), so the columns of the product and the emptiness
check in TA approach show different values. On violated properties, the emptiness check aborts
as soon as it finds a counterexample, so the explored size is usually significantly smaller than the
full product.

The emptiness check values show a third column labeled “T”: this is the time in 1
100e of seconds

(a.k.a. centiseconds) spent doing that emptiness check, including the on-the-fly computation of the
subset of the product that is explored. The time spent constructing the property automata from the
formulas, shown in column “Tϕ” (in centiseconds), is negligible compared to that of the emptiness
check.
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Verified properties (no counterexample)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Pe
te

rs
on

5 TGBA
avg 12 460 1 2753024 14166594 2753024 14166594 18656
max 54 2816 6 11010896 108553439 11010896 108553439 80455

TA
avg 83 4324 12 2600539 10293714 4498653 17832896 30334
max 509 37096 240 9384663 42614845 18769326 85229690 122867

STA
avg 83 5131 13 2620919 10388576 2620919 10388576 17784

max 509 48968 292 9867135 45471783 9867135 45471783 65036

R
in

g6

TGBA
avg 12 411 0 1398021 10139043 1398021 10139043 2325
max 49 3788 4 4269384 50547840 4269384 50547840 10181

TA
avg 69 3118 9 1097667 6606130 2155839 12981954 3744
max 509 25773 150 2851152 19625864 5702304 39251728 11149

STA
avg 70 3768 10 1229116 7453297 1229116 7453297 2238

max 509 33578 170 2950460 20815264 2950460 20815264 5635

FM
S5

TGBA
avg 9 245 0 2038054 15037218 2038054 15037218 3017
max 28 2612 4 9132417 89397363 9132417 89397363 15594

TA
avg 48 1643 5 1401286 11000449 1496882 11732337 3084
max 282 11007 98 6109887 54324903 6368802 54324903 14894

STA
avg 49 1962 6 1413836 11090638 1413836 11090638 2889

max 283 13230 118 6109887 54324903 6109887 54324903 12928

K
an

ba
n5

TGBA
avg 8 166 0 3356053 32800737 3356053 32800737 5253
max 60 1994 4 20253072 258315134 20253072 258315134 44281

TA
avg 44 1659 3 2433853 23389805 2433853 23389805 4871
max 277 21251 80 15272712 161364553 15272712 161364553 33129

STA
avg 44 1873 4 2433853 23389805 2433853 23389805 4824

max 277 22324 87 15272712 161364553 15272712 161364553 31731

Ph
ilo

10

TGBA
avg 14 636 1 4668178 27564474 4668178 27564474 9352
max 81 5397 6 17947837 119545256 17947837 119545256 40273

TA
avg 71 4092 20 2334154 19893200 2334154 19893200 7742
max 412 55321 235 8378151 74240975 8378151 74240975 27233

STA
avg 72 4904 22 2334154 19893200 2334154 19893200 7593

max 413 67836 260 8378151 74240975 8378151 74240975 27799

R
ob

in
15

TGBA
avg 15 664 0 2682881 30981263 2682881 30981263 9192
max 82 5792 4 13129644 225905117 13129644 225905117 62328

TA
avg 95 6048 15 2027251 17168855 3928111 33295175 12207
max 481 43547 149 8169472 68645888 16338944 137291776 48584

STA
avg 96 7158 17 2303685 19603937 2303685 19603937 7257

max 482 47171 175 8755200 75356160 8755200 75356160 27955

Table 4.1: Comparison of the three approaches on toy examples with random formulæ, when
counterexamples do not exist.
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Violated properties (a counterexample exists)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Pe
te

rs
on

5 TGBA
avg 14 646 0 8118953 42865329 600828 2325266 3892
max 47 3392 5 50297469 364396821 3632979 22095045 24665

TA
avg 90 5683 15 8592222 33972863 546562 1886029 3683

max 656 62947 134 56166663 224108070 3178506 11478151 22221

STA
avg 91 6824 17 9035627 35735598 590613 2053508 3955
max 657 69867 146 56483288 225386395 3644229 13374186 25569

R
in

g6

TGBA
avg 17 713 1 3163763 26260802 854229 5805080 1329
max 51 3788 4 9855589 108310156 5914415 65020741 13999

TA
avg 125 7462 15 2846468 18131253 646844 3858721 1198

max 472 41068 162 8960960 62840996 4923301 36659892 10659

STA
avg 126 8960 17 3160137 20284936 728890 4365527 1291
max 473 52838 180 9204480 67482964 5041865 38542138 10459

FM
S5

TGBA
avg 14 496 1 10174866 95061682 1602719 10636471 2148
max 96 4200 3 40672843 404072123 11075871 110774947 18644

TA
avg 90 4112 9 8418689 70784299 1044896 7693244 1968
max 390 22702 78 31864749 267656316 8518894 63178516 16437

STA
avg 91 4855 11 9021110 75667584 1033999 7665018 1979

max 391 26803 84 34082475 286582247 7336271 61123648 15463

K
an

ba
n5

TGBA
avg 13 355 0 10952627 119272618 1153850 8728297 1473
max 87 2184 3 43038083 587543197 13023468 185410581 26750

TA
avg 75 2870 6 8429948 83120910 670172 5871206 1260

max 473 30375 94 31602068 331833407 7673335 77363942 15562

STA
avg 76 3353 7 9248939 90946642 670376 5873036 1241
max 474 38397 99 34070884 364831218 7673335 77363941 14607

Ph
ilo

10

TGBA
avg 13 590 0 19118012 195258228 1518296 7522623 2651
max 74 5928 3 84068722 1377479362 9032250 53881112 15880

TA
avg 92 5690 14 16012398 148019289 900960 6499587 2558
max 356 46498 164 66535322 696331784 7342016 64470840 23509

STA
avg 93 6676 16 17277606 159696150 870692 6437341 2528

max 357 55042 187 70986407 759461806 7340801 64469273 23022

R
ob

in
15

TGBA
avg 21 965 1 5514573 67871153 1676314 18343280 5475
max 74 5928 7 15127431 281880971 13627374 191356248 52962

TA
avg 164 11366 21 4869334 41343229 1248873 10418682 4110

max 854 62419 115 11791872 104488704 7767216 74241202 27244

STA
avg 165 13727 23 5452751 46556753 1497531 12536773 4671
max 855 80513 134 12072448 108812032 8860848 85541043 30942

Table 4.2: Comparison of the three approaches on toy examples with random formulæ, when
counterexamples exist.
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Verified properties (no counterexample)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Po
ly

O
R

B
3/

3/
2

R
N

D

TGBA
avg 16 715 1 109158 328976 109158 328976 601
max 136 5792 4 373039 2138028 373039 2138028 2207

TA
avg 94 5768 17 94283 205464 158401 346203 867
max 481 43547 183 261318 604061 522636 1208122 2753

STA
avg 95 6854 20 103955 227203 103955 227203 570

max 482 47171 248 279251 687246 279251 687246 1534

W
Fa

ir

TGBA
avg 5 72 0 96435 277426 96435 277426 524

max 18 337 2 368898 1450005 368898 1450005 2049

TA
avg 79 1106 1 120479 262456 121096 263776 652
max 351 5920 8 633208 1408943 633208 1408943 3359

STA
avg 80 1145 1 120483 262464 120483 262464 651
max 352 6072 8 633208 1408943 633208 1408943 3373

Φ
1

TGBA – 7 576 1 345241 760491 345241 760491 1688

TA – 80 14590 8 342613 742815 685226 1485630 3374
STA – 81 17110 12 348499 760788 348499 760788 1716

M
A

PK
8

R
N

D

TGBA
avg 10 333 1 2808973 25212509 2808973 25212509 5325
max 64 3813 5 13636352 147555158 13636352 147555158 28979

TA
avg 50 2239 9 1724291 20203618 1724291 20203618 4852
max 336 22614 149 8469258 108847708 8469258 108847708 25029

STA
avg 51 2702 10 1724291 20203618 1724291 20203618 4813

max 337 26522 170 8469258 108847708 8469258 108847708 25445

W
Fa

ir

TGBA
avg 5 39 0 3898645 34822961 3898645 34822961 7344
max 21 198 2 14452198 162156912 14452198 162156912 31117

TA
avg 44 407 1 2112810 24492299 2112810 24492299 6126
max 171 1920 3 6110748 75624744 6110748 75624744 20653

STA
avg 44 422 1 2112810 24492299 2112810 24492299 6067

max 172 2012 3 6110748 75624744 6110748 75624744 18566

Φ
2

TGBA – 6 165 1 46494 302350 46494 302350 50
TA – 9 293 2 33376 289235 33376 289235 50

STA – 10 415 1 33376 289235 33376 289235 51

Table 4.3: Comparison of the three approaches for the case studies when counterexamples do
not exist.
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Violated properties (a counterexample exists)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Po
ly

O
R

B
3/

3/
2

R
N

D

TGBA
avg 14 760 1 132232 380305 53901 128960 291

max 65 7004 9 1295661 5045814 192692 514905 1049

TA
avg 81 6223 29 135237 296081 56518 126300 311
max 540 59971 574 1377784 2976709 243950 547459 1284

STA
avg 82 7771 33 148699 325993 58989 131829 324
max 541 72599 759 1438600 3109093 253761 570216 1373

W
Fa

ir

TGBA
avg 5 66 0 96849 258704 69053 177391 372

max 22 516 2 432240 1584372 193264 1031898 1110

TA
avg 82 1157 1 201879 434747 113705 250573 615
max 262 4636 5 560685 1194198 254328 594751 1358

STA
avg 83 1197 1 202820 436769 114335 251969 617
max 263 4674 5 560685 1194198 254328 594751 1392

M
A

PK
8

R
N

D

TGBA
avg 13 513 1 27266223 405363157 1850695 12575125 2702
max 59 4298 2 91059214 1963331216 13284206 111916150 21771

TA
avg 88 4818 13 22458466 298950743 965567 9245311 2392

max 334 35401 165 90049281 1300904178 5241327 61655512 14227

STA
avg 89 5658 15 23784395 315527818 967140 9251558 2389
max 335 42297 184 91186725 1328333534 5241327 61655512 14256

W
Fa

ir

TGBA
avg 6 81 0 20904101 300416331 1962765 13896236 3129
max 23 414 2 101813441 1681905871 9463562 72266873 16928

TA
avg 88 1212 1 27535941 358622897 1112324 11462361 3002

max 245 3749 5 93441682 1258076980 5203746 59642346 16992

STA
avg 89 1252 1 28387255 372261767 1110154 11456800 3007

max 246 3796 4 94454379 1279166220 5203741 59642337 15180

Table 4.4: Comparison of the three approaches for the case studies when counterexamples exist.
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Verified properties (no counterexample)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Pe
te

rs
on

5 TGBA
avg 4 52 0 3071854 15745483 3071854 15745483 21163
max 17 357 2 9551018 87453872 9551018 87453872 70107

TA
avg 50 564 1 3018533 11771410 3436223 13401691 23597
max 184 3362 4 10750205 42228050 11867218 47116180 78154

STA
avg 51 589 1 3018776 11772694 3018776 11772694 20870

max 185 3456 4 10750205 42228050 10750205 42228050 77007

R
in

g6

TGBA
avg 5 64 0 1121590 7920270 1121590 7920270 1903

max 25 357 2 3873576 38047692 3873576 38047692 7910

TA
avg 58 682 1 1118511 6494556 1774991 10328239 3046
max 183 3353 3 3383372 22481284 6766744 44962568 11037

STA
avg 59 712 1 1126059 6547031 1126059 6547031 2024
max 184 3447 4 3386972 22595612 3386972 22595612 6062

FM
S5

TGBA
avg 4 41 0 3030750 23589355 3030750 23589355 4674
max 12 212 2 11882973 114787553 11882973 114787553 23008

TA
avg 48 515 1 2259230 17600147 2259230 17600147 4589
max 171 4256 3 9764223 79707273 9764223 79707273 18521

STA
avg 49 534 1 2259230 17600147 2259230 17600147 4561

max 172 4367 4 9764223 79707273 9764223 79707273 18365

K
an

ba
n5

TGBA
avg 4 33 1 3098615 29435137 3098615 29435137 4712
max 21 168 2 13014212 187004177 13014212 187004177 26143

TA
avg 36 306 1 2083777 19156589 2083777 19156589 4112
max 140 2049 3 11039112 106534190 11039112 106534190 23453

STA
avg 36 315 1 2083777 19156589 2083777 19156589 4059

max 141 2120 3 11039112 106534190 11039112 106534190 22420

Ph
ilo

10

TGBA
avg 4 35 0 4255979 26793678 4255979 26793678 9064
max 21 216 2 12974557 112561242 12974557 112561242 39806

TA
avg 47 501 1 3229690 27631036 3229690 27631036 10439

max 289 8199 6 10987384 94141317 10987384 94141317 38378

STA
avg 48 524 1 3229690 27631036 3229690 27631036 10576
max 290 8346 6 10987384 94141317 10987384 94141317 34352

R
ob

in
15

TGBA
avg 5 59 0 1782133 17996764 1782133 17996764 5749
max 16 337 1 5029881 70344648 5029881 70344648 19263

TA
avg 54 618 1 1508082 12171559 1802576 14591484 5731
max 239 3706 4 3944448 32391168 7098368 61216768 22074

STA
avg 54 642 1 1520057 12265094 1520057 12265094 4897

max 240 3763 4 3944448 32391168 3944448 32391168 12200

Table 4.5: Comparison of the three approaches on toy examples with weak-fairness formulæ,
when counterexamples do not exist.
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Violated properties (a counterexample exists)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Pe
te

rs
on

5 TGBA
avg 5 78 0 3731947 17751951 522414 1759041 3438

max 18 351 2 13508730 79589415 3696481 16733420 24769

TA
avg 95 1400 2 10950499 42790086 641997 2123401 4370
max 350 5968 13 30354888 120985972 7637347 29621420 51473

STA
avg 95 1448 1 10951464 42793386 642215 2124081 4362
max 351 6120 9 30354888 120985972 7637348 29621421 51487

R
in

g6

TGBA
avg 7 123 1 2000787 15868857 890567 5736568 1410

max 38 1168 3 4670124 53246768 2766283 26917302 6101

TA
avg 128 2009 2 3456785 21069783 905265 5156327 1621
max 388 12783 14 6152232 43283696 2747578 17464827 4793

STA
avg 129 2063 2 3459344 21101063 907368 5174029 1614
max 389 12873 14 6160248 43438480 2747578 17464827 5352

FM
S5

TGBA
avg 5 68 0 7978129 75701408 1372877 7544397 1607
max 23 370 2 27570312 293219919 6676584 53451994 9961

TA
avg 71 871 1 10007988 81736556 848557 5707348 1522
max 245 3766 5 27733464 249573778 6425987 51962113 12307

STA
avg 71 900 1 10128248 82964077 841164 5667421 1511

max 246 3766 4 27733464 249573778 6425987 51962113 11806

K
an

ba
n5

TGBA
avg 5 66 0 7040236 73867374 1344870 9279129 1562
max 17 305 2 25423161 388961954 7950633 80041971 11336

TA
avg 69 849 1 8102548 77515606 809467 6987095 1474
max 237 3655 3 32732392 329125090 5501242 53375472 10218

STA
avg 70 875 1 8355726 80541627 788150 6773391 1442

max 238 3710 3 33147912 335772570 5498955 53371193 10147

Ph
ilo

10

TGBA
avg 5 69 0 10515366 102622810 833663 3762217 1357

max 25 392 3 24496745 402197001 5017174 32273634 9802

TA
avg 81 1027 1 16779360 150030607 742819 5019286 1943
max 267 4339 5 43186049 394172486 6703064 55546036 20284

STA
avg 81 1068 1 16801072 150313327 727226 4926991 1920
max 268 4386 6 43194029 394299774 6703064 55546036 20201

R
ob

in
15

TGBA
avg 9 157 1 4006015 46910526 1486839 14360747 4691
max 44 1168 2 14802883 195152925 5666009 78112291 21619

TA
avg 143 2467 2 5832674 48201707 1348406 10788993 4327

max 466 12783 14 18204684 151155748 6486142 53115008 18844

STA
avg 144 2529 2 5841364 48285515 1354923 10843123 4324
max 467 12873 13 18204684 151155748 6486142 53115008 19093

Table 4.6: Comparison of the three approaches on toy examples with weak-fairness formulæ,
when counterexamples exist.
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Figure 4.5: Performance (number of transitions explored by the emptiness check) of STA against
TA and TGBA.
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Figure 4.5 compares the number of visited transitions when running the emptiness check;
plotting STA against TA and TGBA. This gives an idea of their relative performance. Each point
corresponds to one of the 5600 evaluated formulas (2800 violated with counterexample as black
circles, and 2800 verified having no counterexample as green crosses). Each point below the
diagonal is in favor of STA while others are in favor of the other approach. Axes are displayed
using a logarithmic scale.

No comparison is presented with BA since they are less efficient than TGBA (see the experi-
mental evaluation presented in section 3.6.3).

All these experiments were run on a 64bit Linux system running on an Intel(R) 64-bit Xeon(R)
@2.00GHz, with 10GB of RAM.

4.4.3 Discussion

Before discussing the performance of different approaches, we recall that in our implementation
using CheckPN tool, the cost of computing labels in the Kripke structure is higher (despite the fact
that we use a cache). This increases the computing time of products in TA and STA approaches
(more than in the approaches TGBA and BA), because TA and STA approaches query two labels
by transition of the Kripke structure (to compute an xor between source label and destination label)
while other approaches query only one label.

In an implementation where computing labels is cheap, the execution time should be pro-
portional to the number of transitions explored by the emptiness check, so it is important to not
consider only the execution time provided by our experiments.

On verified properties, the results are very straightforward to interpret when looking at the num-
ber of states and transitions explored by the emptiness check.

The emptiness check optimizations proposed in Section 4.2 improve the performance of the
TA approach. This can be observed by comparing the results in this chapter and the results of TA
approach in the previous chapter (see Section 3.6.3: for verified properties, the number of transi-
tions visited by the emptiness check was always twice the number of transitions in the product).

TA outperform TGBA except for both Random and weak-fairness properties against Peterson,
Ring, Robin and PolyORB.

STA significantly improve TA in all cases where a second pass was necessary. In these cases,
the STA approach, with its single-pass emptiness check, is a clear improvement over TA. These
cases where the STA approach is twice faster than TA’s, appear as a linear cloud of green crosses
below the diagonal in the scatter plot of Figure 4.5a (we recall that the axes are displayed using a
logarithmic scale) Otherwise, they have the same performance because if no livelock-acceptance
states are detected in the product then the TA and STA approaches explore exactly the same prod-
uct (these cases correspond to the green crosses on the diagonal).

In the scatter plot comparing STA against TGBA, the green crosses appear on both side of
the diagonal, with much more points where STA is better. Furthermore, in the results tables, if
we observe in more details the average number of states/transitions explored during the emptiness
check, STA outperform TGBA in all cases except for weak-fairness formulas against Ring and
PolyORB. In this cases, TGBA benefits from the large number of acceptance conditions generated
when translating weak-fairness formulas.
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On violated properties, it is harder to interpret the results because they depend on the order in
which non-deterministic transitions of the property automaton are explored. In the best case, the
order of transitions leads the emptiness check straight to a counterexample; in the worst case, the
algorithm explores the whole product until it finally finds a counterexample.

The different kinds of property automata TGBA, TA and STA provide different orders of tran-
sitions and therefore change the number of states and transitions to be explored by the emptiness
check before a counterexample is found.

If we analyze in more details the results tables, we observe that:
• For the (full) product size, TA and STA produce a smaller product on the average than TGBA

for random formulas. However, for weak-fairness formulas, TGBA produces the smallest
product on the average.

• For the emptiness check, looking at the average number of transitions explored by the empti-
ness check (and taking into account the extra computation of labels discussed previously),
indicates that TA and STA approaches outperform the TGBA approach except for weak-
fairness formulas against Peterson, Philo and PolyORB. Even for STA where an artificial
state and non-deterministic transitions are added, no significant overhead is noticed.

4.5 Conclusion

In a preliminary work presented in the previous chapter, we experiment LTL model checking
of stuttering-insensitive properties with various techniques: Büchi automata (BA), Transition-
based Generalized Büchi Automata and Testing Automata [46]. At this time, conclusions were
that TA has good performance for violated properties (i.e. when a counterexample was found).
However, this was not the case when no counterexample was computed since the entire product
had to be visited twice to check for each acceptance mode of a TA (Büchi acceptance or livelock-
acceptance).

This chapter extends the above work in two ways. First, it introduces a modified emptiness
check algorithm that avoids the second pass when it is useless (i.e., no livelock-acceptance state is
detected in the product). Second, it proposes a transformation of TA into STA that avoids the need
for a second pass (in all cases).

Both new algorithms have been implemented in Spot, our model checking library and used on
several benchmark models including large models issued from case studies. Experimentation with
Spot reported that, STA remain good for violated properties, and also beat TA and TGBA in most
cases when properties exhibit no counterexample.

In the next chapter, we introduce a new kind of automata that combines ideas from TGBA
and STA. The goal is to have a form of single-pass testing automata without adding any artificial
state and with generalized acceptance conditions on transitions like a TGBA. These generalized
acceptance conditions allow to improve the performance when checking weak-fairness formulas,
as observed in the experimentation with better performance of TGBA for this kind of formulas.





CHAPTER 5

Transition-based Generalized Testing
Automata (TGTA): A Single-pass and

Generalized New Automata

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Transition-based Generalized Testing Automata (TGTA) . . . . . . . . . . . . 88

5.2.1 /0-TGTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.2 TGTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 TGTA Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.1 From TGBA to /0-TGTA: Construction of an intermediate /0-TGTA from a
TGBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.2 From /0-TGTA to TGTA: Elimination of useless stuttering-transitions ( /0)
without introducing livelock-acceptance . . . . . . . . . . . . . . . . . . . 93

5.4 Explicit Model checking using TGTA . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.1 Synchronous Product of a TGTA with a Kripke Structure . . . . . . . . . . 96

5.4.2 Emptiness check (the same as TGBA) . . . . . . . . . . . . . . . . . . . . 97

5.5 Experimental evaluation of TGTA . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5.4 Experimental Results once the TGBA is improved by simulation-reduction 108

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1 Introduction

In Chapter 3, we have shown that Testing Automata (TA) are better than Büchi Automata when the
formula to be verified is violated (i.e., a counterexample is found), but this is not the case when the
property is verified since the entire product have to be visited twice to check for each acceptance
mode of a TA. Then, in order to improve the TA approach, we proposed STA in Chapter 4. STA
is a transformation of TA into a normal form that does not need the second pass of the emptiness
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Figure 5.1: An overview of the relations between the different variants of ω-automata presented
in this thesis.

check. Unfortunately, STA can increase the size of the product automaton, because in order to
remove the second pass, the transformation from TA into STA adds an artificial state.

This chapter introduces a new type of ω-automata for stutter-invariant properties, called
Transition-based Generalized Testing Automata (TGTA) [6], that mixes features from both TA
and TGBA.

The basic idea of TGTA is to build an improved form of testing automata with generalized
acceptance conditions on transitions, which allows us to modify the automata construction in
order to remove the second pass of the emptiness check of the product. The constructed TGTA
represents all the stuttering-transitions using only self-loops.

TGTA combines the advantages of TA and TGBA and it is better than STA because TGTA
allows to remove the second pass without adding an artificial state.

In addition, as seen in Figure 5.1, a TA is built from a BA while a TGTA is built directly from
a TGBA. Therefore, compared to TA, TGTA can benefit from the fact that TGBA are smaller than
BA. Indeed, TGBA are more concise [49, 36] because they use generalized acceptance conditions
on transitions, especially for weak-fairness formulas, as was already observed in Section 3.6.3
page 54.

Another advantage of TGTA compared to TA, is that the implementation of TGTA approach
does not require a dedicated emptiness check, it reuses the same algorithm used for TGBA (and
BA), and the counterexample constructed by this algorithm is also reported as a counterexample
for the TGTA approach. We are thus able to compare TGTA with the “traditional” algorithms
we used on TA, BA and TGBA. The results of these experimental comparisons show that TGTA
compete well on our examples: the TGTA approach is statistically more efficient than the other
evaluated approaches, especially when no counterexample is found (i.e., the property is verified)
because it does not require a second pass.

5.2 Transition-based Generalized Testing Automata (TGTA)

The following definition of TGTA combines features from both TGBA and TA. From TGBA,
we inherit the use of transition-based generalized acceptance conditions. From TA, we take the
idea of labeling transitions with changesets, however we remove the use of livelock-acceptance
(because it may require a two-pass emptiness check), and we remove the implicit stuttering (in
TGTA, δ explicitly represents the stuttering transitions, but we will see in the following that our
constructed TGTA satisfies a stuttering-normalization constraint that optimizes the representation
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of these stuttering transitions).
The resulting Chimera, accepts only stuttering-insensitive languages like TA, and inherits ad-

vantages from both TA and TGBA: it has a simple one-pass emptiness-check procedure (the same
as the one for TGBA), and can benefit from reductions based on the stuttering of the properties
pretty much like a TA. Livelock acceptance states, which are no longer supported, can be emu-
lated using states with stuttering self-loops labeled by the set of all acceptance conditions F (these
particular self-loops are called “accepting stuttering self-loops” in the following).

TGBA /0-TGTA
TGTA

(One pass)

Labeling transitions

with “changesets”

Elimination of useless stuttering transitions ( /0)

without introducing a second pass

Figure 5.2: The two steps of the construction of a TGTA from a TGBA.

5.2.1 /0-TGTA

Before defining TGTA, we begin by defining an intermediate form called /0-TGTA (“empty-
changesets” TGTA). This intermediate form is a generalized Testing Automaton that allows to
represent any LTL property. Then, we define TGTA as a normal form of /0-TGTA used to only
represent stutter-invariant properties (LTL\X). In Section 5.3 we will show that a TGTA is con-
structed in two steps as illustrated in Figure 5.2. The first step transforms a TGBA into an /0-TGTA
by labeling transitions with changesets. The second step transforms an /0-TGTA into a TGTA by
normalizing the representation of stuttering transitions. This normalization benefits from the hy-
pothesis that the LTL property is stutter-invariant to remove all stuttering transitions that are not
self-loops in TGTA.

In addition to being used in the construction of TGTA, /0-TGTA will also be used to represent
the product between a TGTA and a Kripke structure in Section 5.4.1.

Definition 29 ( /0-TGTA). An /0-TGTA over the alphabet Σ is a tuple T = 〈Q ,I ,U,δ,F 〉 where:
• Q is a finite set of states,

• I ⊆ Q is a set of initial states,

• U : I → 2Σ is a function mapping each initial state to a set of symbols of Σ,

• F is a finite set of acceptance conditions,

• δ⊆ Q ×Σ×2F ×Q is the transition relation, where each element (q,k,F,q′) represents a
transition from state q to state q′ labeled by a changeset k interpreted as a (possibly empty)
set of atomic propositions whose values change between q and q′, and the set of acceptance
conditions F ∈ 2F ,

An infinite word σ = `0`1`2 . . . ∈ Σω is accepted by T if there exists an infinite path r = (q0, `0⊕
`1,F0,q1)(q1, `1⊕ `2,F1,q2)(q2, `2⊕ `3,F2,q3) . . . ∈ δω where:
• q0 ∈ I with `0 ∈U(q0) (the infinite word is recognized by the path),

• ∀ f ∈ F , ∀i ∈ N, ∃ j ≥ i, f ∈ Fj (each acceptance condition is visited infinitely often).
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Figure 5.3: An /0-TGTA (left) and a TGTA (right) for the LTL property ϕ = FG p, with acceptance
conditions indicated by the black dot .

The language accepted by T is the set L (T )⊆ Σω of infinite words it accepts.

Figure 5.3a shows an /0-TGTA recognizing the LTL formula FG p. Acceptance sets are rep-
resented using dots as in TGBAs. Transitions are labeled by changesets: e.g., the transition
(0,{p},1) means that the value of p changes between states 0 and 1. Initial valuations are shown
above initial arrows: U(0) = { p̄}, U(1) = {p} and U(2) = {p}. Any infinite path in this example
is accepted if it visits infinitely often, the acceptance transition indicated by the black dot : i.e.,
the stuttering self-loop (2, /0, ,2). As an illustration, the infinite word p̄; p; p; p; . . . is accepted

by the run 0 1 2 2 . . .
{p} /0 /0

Indeed, a run recognizing such an infinite word must start in
state 0 (because only U(0) = { p̄}), then it changes the value of p, so it has to move to state 1
because from state 0 only the transition (0,{p},1) is labeled by {p}. In the next step, the value of
p does not change and the run must execute a stuttering transition among (1, /0,1) or (1, /0,2). To
be accepted, it must eventually move to state 2 (rather than remain in state 1), and finally stay on
state 2 by executing infinitely the accepting stuttering self-loop (2, /0, ,2).

5.2.2 TGTA

A TGTA is a normal form of /0-TGTA satisfying a structural constraint on stuttering transitions,
called “stuttering-normalization constraint”, its objective is to force the TGTA to represent the
stuttering transitions using only stuttering self-loops.

Definition 30 (TGTA). A TGTA is an /0-TGTA T = 〈Q ,I ,U,δ,F 〉 such that L (T ) is stutter-
invariant and the transition relation δ has to satisfy the following stuttering-normalization con-
straint:

1. All stuttering transitions are self-loops, and

2. and every state has a stuttering self-loop.
Formally, the stuttering-normalization constraint can be expressed by the following equivalence:
∀(q,q′) ∈ Q 2 :

(
∃F ∈ 2F , (q, /0,F,q′) ∈ δ

)
⇐⇒ (q = q′)

Figure 5.3b shows a TGTA recognizing the LTL formula FG p. We note that this TGTA sat-
isfies the stuttering-normalization constraint. Indeed, we have that the set of stuttering transitions
is {(0, /0, /0,0),(1, /0, /0,1),(2, /0, ,2)}, i.e., a stuttering self-loop on each state. In this TGTA, the
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infinite word p̄; p; p; p; . . . is accepted by the run 0 2 2 2 . . .
{p} /0 /0

because the value p only
changes between the first two steps. Indeed, a run recognizing such an infinite word must start in
state 0 (because only U(0) = { p̄}), then it changes the value of p, so it has to take transitions
labeled by {p}, i.e., (0,{p},1) or (0,{p},2). To be accepted, it must move to state 2 (rather
than state 1), and finally stay on state 2 by executing infinitely the accepting stuttering self-loop
(2, /0, ,2).

In this work, we define and use TGTA only for stutter-invariant LTL properties. Indeed, we
need this restriction to build a TGTA that satisfies the stuttering-normalization constraint (in par-
ticular , we will show in section 5.3.2 how we exploited this restriction to remove all the stuttering
transitions that are not self-loops).

In the next section, we present in detail the formalization of the different steps used to build a
TGTA that satisfies Definition 30.

5.3 TGTA Construction

Let us now describe how to build a TGTA starting from a TGBA of a stutter-invariant LTL prop-
erty. The construction is inspired by the one presented in Section 3.4 (page 42) that constructs a
TA from a BA.

Similar to TA construction, a TGTA is built in two steps as illustrated in Figure 5.2, the first
one builds an intermediate /0-TGTA from a TGBA. Then, the second step builds the final form of
TGTA by removing the useless stuttering transitions of the /0-TGTA. This simplification of stut-
tering transitions does not introduce livelock-accepting states in TGTA (this represents a crucial
difference between TA and TGTA because livelock-accepting states require a second pass in the
emptiness check of the product using TA).

Figure 5.4d shows a TGTA constructed for aUGb in the same way as we did for Figure 3.3d
(page 43) . The only accepting runs are those that see infinitely often. The reader can verify
that all the infinite words taken as example in section 3.4 are still accepted, but not always with
the same runs (for instance ab; āb; āb; āb; . . . is accepted by the run 2,4,4,4, . . ., but not by the run
2,3,3,3, . . .). This difference is due to the way we emulate livelock-accepting states, as we will
describe later (in Property 9 page 93).

5.3.1 From TGBA to /0-TGTA: Construction of an intermediate /0-TGTA from a
TGBA

This first step is similar to the first step of the TA construction and the following first property
is the counterpart of Property 3 (i.e., transforming a BA into an /0-TA presented in Section 3.4
page 42). We construct an /0-TGTA from a TGBA by moving labels to states, and labeling each
transition by the set difference between the labels of its source and destination states. While doing
so, we keep the generalized acceptance conditions on the transitions. An example of a constructed
/0-TGTA is shown on Figure 5.4b.

Property 8 (Converting TGBA into /0-TGTA). For any TGBA G = 〈QG ,IG ,δG ,F 〉 over the
alphabet Σ = 2AP and such that L (G) is stutter-invariant, let us define the /0-TGTA T =
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Figure 5.4: TGTA obtained after various steps while translating the TGBA representing aUGb,
into a TGTA with F = { }.
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〈QT ,IT ,UT ,δT ,F 〉 with QT = QG ×Σ, IT = IG ×Σ and
(i) ∀(q, `) ∈ IT ,UT ((q, `)) = {`}

(ii) ∀(q, `) ∈ QT ,∀(q′, `′) ∈ QT ,
(
(q, `), `⊕ `′,F,(q′, `′)

)
∈ δT ⇐⇒ ((q, `,F,q′) ∈ δG )

Then L (G) = L (T ).

Proof of property 8.
(((⊆⊆⊆))) Let σ1 = `0`1`2 . . . ∈L (G) be an infinite word accepted by G .
By Definition 16, σ1 is recognized by a path (q0, `0,F0,q2)(q2, `1,F1,q2) . . . ∈ δω

G of G , such that
q0 ∈ I , and ∀ f ∈ F , ∀i ∈ N, ∃ j ≥ i, f ∈ Fj. By applying (ii) and (i), we can see that there exists a
corresponding path ((q0, `0), `0⊕ `1,F0,(q1, `1))((q1, `1), `1⊕ `2,F1,(q2, `2)) . . . ∈ δω

T of T such
that (q0, `0) ∈ IT , `0 ∈UT ((q0, `0)), and still ∀ f ∈ F , ∀i ∈ N, ∃ j ≥ i, f ∈ Fj. By Definition 30
we therefore have σ1 ∈L (T ).
(((⊇⊇⊇))) Let σ2 = w0w1w2 . . . ∈L (T ) be an infinite word accepted by T .
By Definition 30, σ2 is recognized by a path ((q0, `0),w0 ⊕ w1,F0,(q1, `1))((q1, `1),w1 ⊕
w2,F1,(q2, `2))

. . . ∈ δω

T of T such that (q0, `0) ∈ IT , w0 ∈UT ((q0, `0)), and ∀ f ∈ F , ∀i ∈ N, ∃ j ≥ i, f ∈ Fj. Of
course we have wi⊕wi+1 = `i⊕ `i+1 but this does not suffice to imply that `i = wi. However (i)
tells us that w0 ∈UT ((q0, `0)) = {`0} so w0 = `0, and since wi⊕wi+1 = `i⊕ `i+1 it follows that
wi = `i. By applying (ii) can now find a corresponding path (q0, `0,F0,q2)(q2, `1,F1,q2) . . . ∈ δω

G
of G , such that q0 ∈ I , ∀i ∈N,(wi = `i), and ∀ f ∈ F , ∀i ∈N, ∃ j ≥ i, f ∈ Fj. By Definition 16 we
therefore have σ2 ∈L (G).

5.3.2 From /0-TGTA to TGTA: Elimination of useless stuttering-transitions ( /0)
without introducing livelock-acceptance

The next property is the pendent of Property 4 (page 45) to simplify the automaton by re-
moving stuttering transitions and thus obtain the final form of the TGTA. Here we cannot remove
self-loop transitions labeled by /0 (i.e., stuttering self-loops), but we can remove all others. The
intuition behind this simplification is illustrated in Figure 5.5a: q0 is reachable from state q by a
non-stuttering transition, but q0 can reach an accepting stuttering-cycle by following only stutter-
ing transitions. In the context of TA we would have to declare q0 as being a livelock-accepting
state. For TGTA, we replace the accepting stuttering-cycle by adding a self-loop labeled by all
acceptance conditions on qn, then the predecessors of q0 are connected to qn as in Figure 5.5b.

In the last step of the following construction, in order to maintain the same accepted (stuttering)
language, we add a stuttering self-loop to each state before removing all stuttering transitions
between every two distinct states.

Property 9 (Elimination of useless stuttering transitions of /0-TGTA to build a TGTA). Let T =

〈Q ,I ,U,δ,F 〉 be a /0-TGTA such that L (T ) is stutter-invariant. By combining the first three
of the following operations, we can remove all stuttering transitions that are not self-loop (see
Figure 5.5) and therefore obtain a TGTA. The fourth operation can be performed along the way
for further (classical) simplifications.
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Figure 5.5: Elimination of useless stuttering transitions of /0-TGTA to obtain a TGTA.

1. If Q⊆ Q is a SCC such that any two states q,q′ ∈ Q can be connected using a sequence of
stuttering transitions (q, /0,F0,r1)(r1, /0,F1,r2) · · ·(rn, /0,Fn,q′) ∈ δ∗ with F0∪F1∪ ·· ·∪Fn =

F , then we can add an accepting stuttering self-loop (q, /0,F ,q) on each state q ∈ Q. I.e.,
the /0-TGTA T ′ = 〈Q ,I ,U,δ∪{(q, /0,F ,q) | q ∈ Q},F 〉 is such that L (T ′) = L (T ). Let
us call such a component Q an accepting Stuttering-SCC.

2. If there exists an accepting Stuttering-SCC Q and a sequence of stuttering-transitions:
(q0, /0,F1,q1)(q1, /0,F2,q2) · · ·(qn−1, /0,Fn,qn) ∈ δ∗ such that qn ∈ Q and q0, q1, ... qn−1 6∈ Q
(as shown in Figure 5.5a), then:

• For any non-stuttering transition, (q,k,F,q0) ∈ δ going to q0 and such that k 6= /0

(and (q,k,F,qn) 6∈ δ), the /0-TGTA T ′′ = 〈Q ,I ,U,δ∪{(q,k,F,qn)},F 〉 is such that
L (T ′′) = L (T ).

• If q0 ∈ I , the /0-TGTA T ′′ = 〈Q ,I ∪{qn},U ′′,δ,F 〉 with ∀q 6= qn,U ′′(q) =U(q) and
U ′′(qn) =U(qn)∪U(q0), is such that L (T ′′) = L (T ).

3. Let T † = 〈Q ,I †,U†,δ†,F 〉 be the /0-TGTA obtained after repeating the previous two oper-
ations as much as possible (i.e., T † contains all the transitions and initial states that can
be added by the above two operations (Figure 5.5b)). Then, we can add non-accepting
stuttering self-loops (q, /0, /0,q) to all states that did not have an accepting stuttering self-
loop (Figure 5.5c), because T describes a stuttering invariant property. Also we can re-
move all stuttering transitions that are not self-loops since stuttering can be captured by
self-loops after the previous two operations. After this last reduction of stuttering transi-
tions, we obtain the final TGTA. More formally, the TGTA T ′′′ = 〈Q ,I †,U†,δ′′′,F 〉 with
δ′′′ = {(q,k,F,q′) ∈ δ† | k 6= /0∨ (q = q′∧F = F )}∪{(q, /0, /0,q) | (q, /0,F ,q) 6∈ δ†} is such
that L (T ′′′) = L (T †) = L (T ).
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4. Any state from which one cannot reach a Büchi-accepting cycle can be removed from the
automaton without changing its language.

Here again, an additional optimization is to merge bisimilar states, this can be achieved using
the same algorithm used to simplify a TA, taking Q as initial partition and taking into account the
acceptance conditions of the outgoing transitions. All these steps are shown in Figure 5.4.

Proof of property 9.

1. (((T ′′′ ⊇⊇⊇ T ))) Obvious because we are only adding transitions. (((T ′′′ ⊆⊆⊆ T ))) Let δ′ = δ ∪
{(q, /0,F ,q) | q ∈ Q}. Consider an accepting infinite word σ = `0`1`2 . . . ∈ L (T ′) rec-
ognized by an accepting path π′ on T ′. Any transition of π′ that is not in δ is a self-
loop (q, /0,F ,q) that has been added to δ′ because an accepting stuttering-SCC exists in
δ around q: so any (q, /0,F ,q) ∈ δ′ can be replaced by a sequence of stuttering transitions
(q, /0,G0,r1)(r1, /0,G1,r2) . . .(rn, /0,Gn,q) ∈ δ∗ such that G0 ∪G1 ∪ . . .Gn = F . The path
π ∈ δω obtained by replacing all such transitions is an accepting path of T that recognizes
a word that is stuttering equivalent to σ. Since L (T ) is stuttering-insensitive, it must also
contain σ.

2. (((T ′′′′′′ ⊇⊇⊇ T ))) Obvious for the same reason. (((T ′′′′′′ ⊆⊆⊆ T ))) We consider the case where q0 is
non initial (the initial case is similar). Let δ′′ = δ∪{(s,k,F,qn)}. Consider an accepting
infinite word σ = `0`1`2 . . . ∈ L (T ′′) recognized by a path π′′ on T ′′. Let π be the path
on T obtained by replacing in π′′ any occurrence of (s,k,F,qn) ∈ (δ′′ \ δ) by the sequence
(s,k,F,q0)(q0, /0,F1,q1)(q1, /0,F2,q2) · · ·(qn−1, /0,Fn,qn) ∈ δ∗. The path π ∈ δω is also an
accepting path of T that recognizes a word that is stuttering equivalent to σ. Since L (T )

is stuttering-insensitive, it must also contain σ.

3. L (T †) = L (T ) by application of the previous two properties, therefore L (T †) is a
stuttering-insensitive language. L (T ′′′) is also a stuttering-insensitive language because
T ′′′ is obtained from T † that recognizes a stuttering-insensitive language, by adding stut-
tering self-loops on all its states before removing all stuttering transitions that are not self-
loops.

To prove that two stuttering-insensitive languages are equal, it is sufficient to verify that they
contain the same words of the following two forms:

• σ = `0`1`2 . . . with ∀i ∈ N, `i⊕ `i+1 6= /0 (non-stuttering words), or

• σ = `0`1`2 . . .(`n)
ω with ∀i < n, `i⊕ `i+1 6= /0 (terminal stuttering words)

All other accepted words can be generated by duplicating letters in the above words.

Since we have only touched stuttering transitions, it is clear that the non-stuttering words of
L (T ) are the non-stuttering words of L (T ′′′).

We now consider the case of a terminal stuttering word σ = `0`1`2 . . .(`n)
ω with ∀i <

n, `i⊕ `i+1 6= /0.
(((T ′′′′′′′′′ ⊆⊆⊆ T †))) The path π′′′ that recognizes σ in T ′′′ has the form (q0, `0 ⊕ `1,F0,q1)

(q1, `1⊕ `2,F1,q2) . . .(qn, /0,F ,qn)
ω where all transitions are necessarily from T † because
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we have only added in T ′′′ transitions of the form (q, /0, /0,q). π′′′ is thus also an accepting
path of T † and σ ∈L (T †).
(((T ′′′′′′′′′ ⊇⊇⊇ T †))) The path π† that recognizes σ in T † does only stutter after `n. Be-
cause this is an accepting path, it has a lasso-shape (i.e., a finite path starting from
an initial state with a cycle at the end), where the cyclic part is only stuttering
and accepting. Let us denote it π† = (q0, `0 ⊕ `1,F0,q1)(q1, `1 ⊕ `2,F1,q2) . . .(qn−1,

`n−1⊕ `n,Fn−1,qn)(qn, /0,Fn,qn+1) . . . [(qm, /0,Fm,qm+1) . . .(ql, /0,Fl,qm)]
ω, with

∀i < n, `i⊕ `i+1 6= /0.
Thanks to property 9.1, the accepting cycle [(qm, /0,Fm,qm+1) . . .(ql, /0,Fl,qm)] of π†

can be replaced by an accepting self-loop (qm, /0,F ,qm). And thanks to property9.2,
the transitions from qn−1 to qm can be replaced by a single transition (qn−1, `n−1 ⊕
`n,Fn−1,qm). The resulting path π′′′ = (q0, `0 ⊕ `1,F0,q1)(q1, `1 ⊕ `2,F1,q2) . . .(qn−1,

`n−1 ⊕ `n,Fn−1,qm)(qm, /0,F ,qm)
ω is an accepting path of T ′′′ that accepts σ, so σ ∈

L (T ′′′).

4. This is a classical optimization on Büchi automata.

5.4 Explicit Model checking using TGTA

As for the other variants of ω-automata, the automata-theoretic approach using TGTA has two im-
portant operations: the construction of a TGTA T recognizing the negation of the stutter-invariant
LTL property ϕ and the emptiness check of the product (K ⊗T ) of the Kripke structure K with
T . Currently, the TGTA T is built from a TGBA obtained from the translation of ϕ. In future
work we plan to implement a direct translation from LTL\X to TGTA, but the construction pre-
sented above is enough to show the benefits of using TGTAs, and makes it easier to understand
how TGTAs relates to TGBAs.

5.4.1 Synchronous Product of a TGTA with a Kripke Structure

The product of a TGTA T with a Kripke structure K is an /0-TGTA (K ⊗T ) whose language is
the intersection of both languages, i.e, L (K ⊗T ) = L (K )∩L (T ).

Comparing this definition with the previous two products (for TGBA and TA) shows the double
inheritance of TGTA. This product is similar to the product between a TA and a Kripke structure
(Definition 25 page 47), except that it does not deal with livelock acceptance states and implicit
stuttering. It is also similar to the product of a TGBA with a Kripke structure (Definition 22
page 31), except for the use of changesets on transitions, and the initial labels (U).

Definition 31. For a Kripke structure K = 〈S ,S0,R , l〉 and a TGTA T = 〈Q ,I ,U,δ,F 〉, the
product K ⊗T is a /0-TGTA 〈S⊗,I⊗,U⊗,δ⊗,F⊗〉 where
• S⊗ = S ×Q ,

• I⊗ = {(s,q) ∈ S0× I | l(s) ∈U(q)},

• ∀(s,q) ∈ I⊗,U⊗((s,q)) = {l(s)},
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• δ⊗ = {((s,q),k,F,(s′,q′)) | (s,s′) ∈ R , (q,k,F,q′) ∈ δ, k = (l(s)⊕ l(s′))},

• F⊗ = F .

Property 10. We have L (K ⊗T ) = L (K )∩L (T ) by construction.
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(c) Synchronous Product K ⊗T

Figure 5.6: Example of a Synchronous Product K ⊗T between a Kripke structure K and a TGTA
T recognizing the LTL formula FG p, with acceptance conditions indicated by the black dot .

Figure 5.6 shows an example of a Synchronous Product between a Kripke structure K and a
TGTA T recognizing the LTL formula FG p. Each state of K is numbered and labeled with the set
of atomic propositions (of Σ = {p}) that hold in this state. In the TGTA representing the product
K ⊗T , the states are labeled with pairs of the form (s,q) where s ∈K and q ∈ T .

In this example, we can notice that this product using TGTA is smaller than the product using
Büchi automata presented in Figure 2.12 (page 32) ,i.e., the product between the same Kripke
structure K and the TGBA A recognizing the LTL formula FG p. Indeed, the synchronization of
the TGTA T with the stuttering parts of K produces a smaller product than in the case of TGBA
A (compare the (sub-)product of T and A with the stuttering cycle of K , i.e, the cycle between
the states 2 and 3).

5.4.2 Emptiness check (the same as TGBA)

Since a product of a TGTA with a Kripke structure is an /0-TGTA, we only need an emptiness check
algorithm for an /0-TGTA automaton. An /0-TGTA can be seen as a TGBA whose transitions are
labeled by changesets instead of valuations of atomic propositions. When checking a TGBA for
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emptiness, we are looking for an accepting cycle that is reachable from an initial state. When
checking an /0-TGTA for emptiness, we are looking exactly for the same thing. Therefore, because
emptiness check algorithms do not look at transitions labels, the same emptiness check algorithm
used for the product using TGBA (Algorithm 1) can also be used for the product using TGTA.

This is a nice feature of TGTA, not only because it gives us a one-pass emptiness check, but
also because it eases the implementation of the TGTA approach in our tool Spot or in any other
TGBA-based model checker. We only need to implement the conversion of TGBA to TGTA and
the product between a TGTA and a Kripke structure. We discuss our implementation in the next
section.

5.5 Experimental evaluation of TGTA

In order to evaluate the TGTA approach against the TGBA (BA) and TA approaches, an experi-
mentation was conducted under the same conditions as Section 3.6, i.e., within the same CheckPN
tool on top of Spot and using the same benchmark Inputs (formulas and models) used in the ex-
perimental comparison of BA, TGBA, TA and STA, see Section 3.6.2 page 53.

5.5.1 Implementation

Kripke
Structure

LTL
Formula LTL2TGBA

TGBA2BA

BA2TA

TGBA2TGTA

Sync. Product
(classic)

Sync. Product
(TA)

Sync. Product
(TGTA)

Emptiness 
check (classic)

Emptiness
check (TA)

TRUE or
counterexample

Figure 5.7: The experiment’s architecture in SPOT. Three command-line switches control which
one of the approaches is used to verify an LTL formula on a Kripke structure. The new components
required by the TGTA approach are outlined in Gray.

Figure 5.7 shows the building blocks we used to implement the three approaches. The au-
tomaton used to represent the property to check has to be synchronized with a Kripke structure
representing the model. Depending on the kind of automaton (TGBA, BA, TA, TGTA), this syn-
chronous product is implemented differently. Only the TGBA and BA approaches can share the
same product implementation. Approaches TA and TGTA require a dedicated product computa-
tion.

The TGBA, BA, and TGTA approaches share the same emptiness check, while a dedicated
algorithm is required by the TA approach. In Figure 5.7, no direct translation is provided from
LTL to TGTA (this is also true for BA and TA). This could be investigated in future work, the need
being, so far, to assess their effectiveness before optimizing the translation process.
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The time spent doing the conversion from LTL to TGBA and then to TGTA (bisimulation
included) is measured in the benchmark of the next section (see tables column “Tϕ” in centisec-
onds). This translation process is almost instantaneous, and even if its runtime could be improved
(for instance with a direct translation from LTL to TGTA) it is clearly a non significant part of the
run time of the different model checking approaches, where all the time is spent performing the
emptiness check of the product (built on-the-fly) between the Kripke structure and the property
automaton.

5.5.2 Results

Table 5.1 and Table 5.2 shows how for TGBA, TA and TGTA approaches deal with toy models and
random formulas. We omit data for BA since they are always outperformed by TGBA. Table 5.5
and Table 5.6 show toy models against weak-fairness formulas.

Table 5.3 and Table 5.4 show the results of the two cases studies against random, weak-
fairness, and dedicated formulas issued from the studies.

These tables separate cases where formulas are verified from cases where they are violated.
In the former (Tables 5.1, 5.5 and 5.3 ), no counterexample are found and the full state-space had
to be explored; in the latter (Tables 5.2, 5.6 and 5.4 ) the on-the-fly exploration of the state-space
stopped as soon as the existence of a counterexample could be computed.

All values shown in all tables are averaged over 100 different formulas. Indeed, we checked
each model against 100 random and 100 weak-fairness formulas that had no counterexample, and
against 100 random and 100 weak-fairness formulas that had a counterexample. The average and
maximum are computed separately on each model against each set of formulas.

Column-wise, these tables show the average and maximum sizes (states and transitions) of: (1)
the automata A¬ϕi expressing the properties ϕi; (2) the products A¬ϕi⊗K of the property with the
model; and (3) the subset of this product that was actually explored by the emptiness check. The
emptiness check values show a third column labeled “T”: this is the time (in hundredth of seconds,
a.k.a. centiseconds) spent doing that emptiness check, including the on-the-fly computation of
the subset of the product that is explored. In the same way, the column “Tϕ” shows the time
(in centiseconds) spent constructing the property automata A¬ϕi from the formulas (this time is
negligible compared to that of the emptiness check).

Figure 5.8 compares the number of visited transitions when running the emptiness check;
plotting TGTA against TA and TGBA. This gives an idea of their relative performance. Each
point corresponds to one of the 5600 evaluated formulas (2800 violated with counterexample as
black circles, and 2800 verified having no counterexample as green crosses). Each point below the
diagonal is in favor of TGTA while others are in favor of the other approach. Axes are displayed
using a logarithmic scale. No comparison is presented with BA since they are less efficient than
TGBA, according to the experimental evaluation presented in section 3.6.3 page 54.

All these experiments were run on a 64bit Linux system running on an Intel(R) 64-bit Xeon(R)
@2.00GHz, with 10GB of RAM.
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Verified properties (no counterexample)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Pe
te

rs
on

5 TGBA
avg 12 460 1 2753024 14166594 2753024 14166594 18656
max 54 2816 6 11010896 108553439 11010896 108553439 80455

TA
avg 83 4324 12 2600539 10293714 4498653 17832896 30334
max 509 37096 240 9384663 42614845 18769326 85229690 122867

TGTA
avg 67 4584 14 2474307 9810328 2474307 9810328 16630

max 349 49259 290 9596713 43944762 9596713 43944762 62911

R
in

g6

TGBA
avg 12 411 0 1398021 10139043 1398021 10139043 2325
max 49 3788 4 4269384 50547840 4269384 50547840 10181

TA
avg 69 3118 9 1097667 6606130 2155839 12981954 3744
max 509 25773 150 2851152 19625864 5702304 39251728 11149

TGTA
avg 57 3283 10 1075198 6646513 1075198 6646513 1884

max 349 31401 182 2853568 20290856 2853568 20290856 5247

FM
S5

TGBA
avg 9 245 0 2038054 15037218 2038054 15037218 3017
max 28 2612 4 9132417 89397363 9132417 89397363 15594

TA
avg 48 1643 5 1401286 11000449 1496882 11732337 3084
max 282 11007 98 6109887 54324903 6368802 54324903 14894

TGTA
avg 38 1713 6 1338609 10551757 1338609 10551757 2621

max 247 13150 125 6109887 54324903 6109887 54324903 12570

K
an

ba
n5

TGBA
avg 8 166 0 3356053 32800737 3356053 32800737 5253
max 60 1994 4 20253072 258315134 20253072 258315134 44281

TA
avg 44 1659 3 2433853 23389805 2433853 23389805 4871
max 277 21251 80 15272712 161364553 15272712 161364553 33129

TGTA
avg 36 1779 4 2285091 22038994 2285091 22038994 4385

max 210 21896 89 14059472 149569931 14059472 149569931 34534

Ph
ilo

10

TGBA
avg 14 636 1 4668178 27564474 4668178 27564474 9352
max 81 5397 6 17947837 119545256 17947837 119545256 40273

TA
avg 71 4092 20 2334154 19893200 2334154 19893200 7742
max 412 55321 235 8378151 74240975 8378151 74240975 27233

TGTA
avg 55 4221 23 2047915 17440829 2047915 17440829 6650

max 269 49089 256 7381980 61901565 7381980 61901565 24212

R
ob

in
15

TGBA
avg 15 664 0 2682881 30981263 2682881 30981263 9192
max 82 5792 4 13129644 225905117 13129644 225905117 62328

TA
avg 95 6048 15 2027251 17168855 3928111 33295175 12207
max 481 43547 149 8169472 68645888 16338944 137291776 48584

TGTA
avg 85 6725 17 2042586 17645326 2042586 17645326 6370

max 414 46843 137 8097792 70340609 8097792 70340609 25213

Table 5.1: Comparison of the three approaches on toy examples with random formulæ, when
counterexamples do not exist.
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Violated properties (a counterexample exists)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Pe
te

rs
on

5 TGBA
avg 14 646 0 8118953 42865329 600828 2325266 3892
max 47 3392 5 50297469 364396821 3632979 22095045 24665

TA
avg 90 5683 15 8592222 33972863 546562 1886029 3683
max 656 62947 134 56166663 224108070 3178506 11478151 22221

TGTA
avg 68 5389 16 7915691 31411013 535126 1850064 3540

max 321 40978 142 55395527 221326872 3385859 12455412 22971

R
in

g6

TGBA
avg 17 713 1 3163763 26260802 854229 5805080 1329
max 51 3788 4 9855589 108310156 5914415 65020741 13999

TA
avg 125 7462 15 2846468 18131253 646844 3858721 1198
max 472 41068 162 8960960 62840996 4923301 36659892 10659

TGTA
avg 99 7247 15 2605476 17026945 640074 3911536 1085

max 383 39636 156 8712424 65764753 5438836 40403912 10615

FM
S5

TGBA
avg 14 496 1 10174866 95061682 1602719 10636471 2148
max 96 4200 3 40672843 404072123 11075871 110774947 18644

TA
avg 90 4112 9 8418689 70784299 1044896 7693244 1968
max 390 22702 78 31864749 267656316 8518894 63178516 16437

TGTA
avg 72 4005 10 7629575 64829082 934129 6888487 1709

max 325 23548 82 29733270 247258461 7193693 60083469 14726

K
an

ba
n5

TGBA
avg 13 355 0 10952627 119272618 1153850 8728297 1473
max 87 2184 3 43038083 587543197 13023468 185410581 26750

TA
avg 75 2870 6 8429948 83120910 670172 5871206 1260
max 473 30375 94 31602068 331833407 7673335 77363942 15562

TGTA
avg 63 2986 7 7919885 79262186 631528 5523476 1113

max 321 25589 104 31771853 346223237 7673335 77364390 15411

Ph
ilo

10

TGBA
avg 13 590 0 19118012 195258228 1518296 7522623 2651
max 74 5928 3 84068722 1377479362 9032250 53881112 15880

TA
avg 92 5690 14 16012398 148019289 900960 6499587 2558
max 356 46498 164 66535322 696331784 7342016 64470840 23509

TGTA
avg 76 5797 16 14738127 138827585 804739 5945101 2273

max 352 37193 147 66964226 712347867 6062800 52054854 18939

R
ob

in
15

TGBA
avg 21 965 1 5514573 67871153 1676314 18343280 5475
max 74 5928 7 15127431 281880971 13627374 191356248 52962

TA
avg 164 11366 21 4869334 41343229 1248873 10418682 4110
max 854 62419 115 11791872 104488704 7767216 74241202 27244

TGTA
avg 133 11564 22 4637571 40182518 1283417 10882928 3999

max 485 77546 140 11726848 97390592 8539312 82390194 27829

Table 5.2: Comparison of the three approaches on toy examples with random formulæ, when
counterexamples exist.
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Verified properties (no counterexample)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Po
ly

O
R

B
3/

3/
2

R
N

D

TGBA
avg 16 715 1 109158 328976 109158 328976 601
max 136 5792 4 373039 2138028 373039 2138028 2207

TA
avg 94 5768 17 94283 205464 158401 346203 867
max 481 43547 183 261318 604061 522636 1208122 2753

TGTA
avg 78 5890 19 97432 213975 97432 213975 530

max 414 46843 241 296747 677842 296747 677842 1587

W
Fa

ir

TGBA
avg 5 72 0 96435 277426 96435 277426 524
max 18 337 2 368898 1450005 368898 1450005 2049

TA
avg 79 1106 1 120479 262456 121096 263776 652
max 351 5920 8 633208 1408943 633208 1408943 3359

TGTA
avg 34 556 1 88010 191692 88010 191692 475

max 120 2591 4 345486 798084 345486 798084 1828

Φ
1

TGBA – 7 576 1 345241 760491 345241 760491 1688

TA – 80 14590 8 342613 742815 685226 1485630 3374
TGTA – 79 17153 12 345277 753798 345277 753798 1697

M
A

PK
8

R
N

D

TGBA
avg 10 333 1 2808973 25212509 2808973 25212509 5325
max 64 3813 5 13636352 147555158 13636352 147555158 28979

TA
avg 50 2239 9 1724291 20203618 1724291 20203618 4852
max 336 22614 149 8469258 108847708 8469258 108847708 25029

TGTA
avg 40 2364 10 1574850 18534045 1574850 18534045 4289

max 279 25085 180 8469258 108847708 8469258 108847708 27737

W
Fa

ir

TGBA
avg 5 39 0 3898645 34822961 3898645 34822961 7344
max 21 198 2 14452198 162156912 14452198 162156912 31117

TA
avg 44 407 1 2112810 24492299 2112810 24492299 6126
max 171 1920 3 6110748 75624744 6110748 75624744 20653

TGTA
avg 18 184 0 1871267 21752673 1871267 21752673 5258

max 68 915 2 6110643 75624228 6110643 75624228 19865

Φ
2

TGBA – 6 165 1 46494 302350 46494 302350 50
TA – 9 293 2 33376 289235 33376 289235 50

TGTA – 8 452 1 33376 289235 33376 289235 49

Table 5.3: Comparison of the three approaches for the case studies when counterexamples do
not exist.
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Violated properties (a counterexample exists)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Po
ly

O
R

B
3/

3/
2

R
N

D

TGBA
avg 14 760 1 132232 380305 53901 128960 291
max 65 7004 9 1295661 5045814 192692 514905 1049

TA
avg 81 6223 29 135237 296081 56518 126300 311
max 540 59971 574 1377784 2976709 243950 547459 1284

TGTA
avg 68 6815 33 131544 289575 52399 116656 289

max 368 67215 821 1106728 2391169 250279 561571 1351

W
Fa

ir

TGBA
avg 5 66 0 96849 258704 69053 177391 372
max 22 516 2 432240 1584372 193264 1031898 1110

TA
avg 82 1157 1 201879 434747 113705 250573 615
max 262 4636 5 560685 1194198 254328 594751 1358

TGTA
avg 32 520 1 91642 197811 66987 147418 361

max 142 3266 5 393006 836499 153963 372478 840

M
A

PK
8

R
N

D

TGBA
avg 13 513 1 27266223 405363157 1850695 12575125 2702
max 59 4298 2 91059214 1963331216 13284206 111916150 21771

TA
avg 88 4818 13 22458466 298950743 965567 9245311 2392
max 334 35401 165 90049281 1300904178 5241327 61655512 14227

TGTA
avg 71 4822 14 19806355 264723502 954582 9085179 2243

max 283 38342 196 52079530 722041705 5265831 61724760 13674

W
Fa

ir

TGBA
avg 6 81 0 20904101 300416331 1962765 13896236 3129
max 23 414 2 101813441 1681905871 9463562 72266873 16928

TA
avg 88 1212 1 27535941 358622897 1112324 11462361 3002
max 245 3749 5 93441682 1258076980 5203746 59642346 16992

TGTA
avg 38 598 1 16051206 211401085 964009 9865703 2462

max 106 2437 3 91711581 1302884523 4279478 53059472 11687

Table 5.4: Comparison of the three approaches for the case studies when counterexamples exist.
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Verified properties (no counterexample)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Pe
te

rs
on

5 TGBA
avg 4 52 0 3071854 15745483 3071854 15745483 21163
max 17 357 2 9551018 87453872 9551018 87453872 70107

TA
avg 50 564 1 3018533 11771410 3436223 13401691 23597
max 184 3362 4 10750205 42228050 11867218 47116180 78154

TGTA
avg 25 368 1 2576578 10081563 2576578 10081563 17572

max 127 2998 3 6567277 26641077 6567277 26641077 43486

R
in

g6

TGBA
avg 5 64 0 1121590 7920270 1121590 7920270 1903
max 25 357 2 3873576 38047692 3873576 38047692 7910

TA
avg 58 682 1 1118511 6494556 1774991 10328239 3046
max 183 3353 3 3383372 22481284 6766744 44962568 11037

TGTA
avg 31 476 1 878913 5232410 878913 5232410 1567

max 127 2998 3 2700824 18878992 2700824 18878992 4862

FM
S5

TGBA
avg 4 41 0 3030750 23589355 3030750 23589355 4674
max 12 212 2 11882973 114787553 11882973 114787553 23008

TA
avg 48 515 1 2259230 17600147 2259230 17600147 4589
max 171 4256 3 9764223 79707273 9764223 79707273 18521

TGTA
avg 20 258 1 1908957 15050447 1908957 15050447 3711

max 71 1295 3 7100604 58423901 7100604 58423901 13774

K
an

ba
n5

TGBA
avg 4 33 1 3098615 29435137 3098615 29435137 4712
max 21 168 2 13014212 187004177 13014212 187004177 26143

TA
avg 36 306 1 2083777 19156589 2083777 19156589 4112
max 140 2049 3 11039112 106534190 11039112 106534190 23453

TGTA
avg 16 182 1 1876505 17440799 1876505 17440799 3512

max 60 1185 2 10017560 98020083 10017560 98020083 20406

Ph
ilo

10

TGBA
avg 4 35 0 4255979 26793678 4255979 26793678 9064
max 21 216 2 12974557 112561242 12974557 112561242 39806

TA
avg 47 501 1 3229690 27631036 3229690 27631036 10439
max 289 8199 6 10987384 94141317 10987384 94141317 38378

TGTA
avg 18 216 0 2278597 19552345 2278597 19552345 7184

max 85 2393 3 9026746 81612913 9026746 81612913 28914

R
ob

in
15

TGBA
avg 5 59 0 1782133 17996764 1782133 17996764 5749
max 16 337 1 5029881 70344648 5029881 70344648 19263

TA
avg 54 618 1 1508082 12171559 1802576 14591484 5731
max 239 3706 4 3944448 32391168 7098368 61216768 22074

TGTA
avg 28 420 1 1363362 11099030 1363362 11099030 4345

max 120 2591 4 3649536 30605312 3649536 30605312 11669

Table 5.5: Comparison of the three approaches on toy examples with weak-fairness formulæ,
when counterexamples do not exist.
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Violated properties (a counterexample exists)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Pe
te

rs
on

5 TGBA
avg 5 78 0 3731947 17751951 522414 1759041 3438
max 18 351 2 13508730 79589415 3696481 16733420 24769

TA
avg 95 1400 2 10950499 42790086 641997 2123401 4370
max 350 5968 13 30354888 120985972 7637347 29621420 51473

TGTA
avg 36 598 1 3563419 14000819 506574 1641570 3400

max 139 2666 4 11920402 47292924 3611716 14056752 24606

R
in

g6

TGBA
avg 7 123 1 2000787 15868857 890567 5736568 1410
max 38 1168 3 4670124 53246768 2766283 26917302 6101

TA
avg 128 2009 2 3456785 21069783 905265 5156327 1621
max 388 12783 14 6152232 43283696 2747578 17464827 4793

TGTA
avg 55 997 1 1640027 10134116 677559 3974017 1183

max 220 7174 8 4234800 28442432 2317315 14895284 4336

FM
S5

TGBA
avg 5 68 0 7978129 75701408 1372877 7544397 1607
max 23 370 2 27570312 293219919 6676584 53451994 9961

TA
avg 71 871 1 10007988 81736556 848557 5707348 1522
max 245 3766 5 27733464 249573778 6425987 51962113 12307

TGTA
avg 33 474 1 5682339 46813094 709810 4738120 1223

max 131 2214 3 19497180 165240528 5062934 41766785 10619

K
an

ba
n5

TGBA
avg 5 66 0 7040236 73867374 1344870 9279129 1562
max 17 305 2 25423161 388961954 7950633 80041971 11336

TA
avg 69 849 1 8102548 77515606 809467 6987095 1474
max 237 3655 3 32732392 329125090 5501242 53375472 10218

TGTA
avg 31 459 1 4837392 46966950 718473 6247954 1262

max 128 2446 3 21299320 218268197 4580718 46290149 8953

Ph
ilo

10

TGBA
avg 5 69 0 10515366 102622810 833663 3762217 1357
max 25 392 3 24496745 402197001 5017174 32273634 9802

TA
avg 81 1027 1 16779360 150030607 742819 5019286 1943
max 267 4339 5 43186049 394172486 6703064 55546036 20284

TGTA
avg 35 525 1 7800504 70806206 442830 2727715 1103

max 116 3004 4 20986825 203614146 3405659 28381991 9712

R
ob

in
15

TGBA
avg 9 157 1 4006015 46910526 1486839 14360747 4691
max 44 1168 2 14802883 195152925 5666009 78112291 21619

TA
avg 143 2467 2 5832674 48201707 1348406 10788993 4327
max 466 12783 14 18204684 151155748 6486142 53115008 18844

TGTA
avg 65 1272 1 3428985 28693985 1188348 9648116 3825

max 228 7174 7 12249088 102016000 4618329 38837339 13884

Table 5.6: Comparison of the three approaches on toy examples with weak-fairness formulæ,
when counterexamples exist.
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Figure 5.8: Performance (number of transitions explored by the emptiness check) of TGTA against
TA and TGBA.
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5.5.3 Discussion

On verified properties the results are very straightforward to interpret when looking at the number
of transitions explored by the emptiness check. TA outperform TGBA except for both Random
and weak-fairness properties against Peterson, Ring, Robin and PolyORB. These are typical cases
where the TA emptiness check has to perform two passes: this can be observed in the tables 5.1, 5.3
and 5.5 when the number of transitions visited by the emptiness check is on the average twice the
number of transitions of the product.

In these three cases, the TGTA approach, with its single-pass emptiness check, is a clear
improvement over TA. On the scatter plots of Figure 5.8a, these cases where the TGTA approach
is twice faster than TA’s, appear as a linear cloud of green crosses below the diagonal (we recall
that the axes are displayed using a logarithmic scale).

In the other cases where TA need only one pass on the average (e.g. Kanban, MAPK, Philo),
TGTA and TA have similar performance, with a slight advantage for TGTA because the products
are smaller, especially for weak-fairness formulas because TGTA represent more concisely this
kind of formulas using a large number of generalized acceptance conditions (similar to TGBA).

To summarize, the TGTA approach outperforms TGBA and TA approaches in all cases on
verified properties.

On violated properties, we recall that it is difficult to interpret the scatter plots of results because
the emptiness check is an on-the-fly algorithm. It stops as soon as it finds a counterexample.
Thus, the exploration order of non-deterministic transitions of TGBA, TA and TGTA changes the
number of states and transitions to be explored in the product before a counterexample is found.

However, if we analyze more precisely tables 5.2, 5.4 and 5.6, we observe that the TGTA
approach produces the smallest products on the average. This allows the TGTA approach to seek a
counterexample in a smaller product and therefore have a better chance to find it faster. Thus, we
observe that in the majority of cases the emptiness check of TGTA approach explores less states
and transitions on the average than TGBA or TA.

In the tables of results, we generally observe for both verified and violated properties that:
• Although the TGTA constructed from properties are usually larger than TGBA (and even

larger than BA), the average sizes of the products in TGTA approach are smaller than the av-
erage sizes of the products in TGBA approach (and BA approach, see section 3.6.3 page 54).
We believe this is due to the elimination of useless stuttering-transitions in TGTA (see Sec-
tion 5.3.2). specificity.

• In addition, if we compare the automata sizes for TA versus TGTA, we observe that TGTA
are smaller than TA in all tables in terms of average numbers of states, and in terms of
average numbers of states and transitions for weak-fairness formulas (in Tables 5.2, 5.6, 5.3
and 5.4). We believe this is due to the fact that TGTA represent more concisely the LTL
formulas using (multiple) generalized acceptance conditions, especially for weak-fairness
formulas (for which the number of acceptance conditions is greater, in our experiments
we have |F | = 3.51 on the average for weak-fairness formulas, while |F | = 1.32 on the
average for random formulas). This is the consequence of the fact that a TA is built from a
BA while a TGTA is built from a TGBA. Thus, TGTA can take advantage from the fact that
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TGBA are more concise than BA. TGBA are smaller [49, 36] because they use generalized
acceptance conditions. For example, the BA of ϕ = GFa∧GFb (Figure 2.4a) contains 3
states and it is transformed 1 into a TA that contains 10 states (30 transitions); the TGBA of
ϕ=GFa∧GFb (Figure 2.7a) is only composed by one state and it is therefore transformed 1

into a TGTA that only contains 4 states (16 transitions).

5.5.4 Experimental Results once the TGBA is improved by simulation-reduction

Recently, a new TGBA optimization was added to SPOT including the simulation-reduction [3]
of TGBA. Unfortunately, we did not have the time to implement this simulation-reduction for TA
and TGTA. However, since the construction of TA and TGTA depend on TGBA (we recall that TA
is constructed from BA, which is obtained from TGBA by degeneralization), then the reduction of
TGBA can also reduce both TA and TGTA sizes.

The tables and scatter plots presented in the Appendix A show the impact of this optimization
on the experimental results presented in the previous Section 5.5.2. This impact is positive for
the three approaches. Indeed, if we compare the results of the previous Section 5.5.2 against the
tables of Appendix A, we observe that the simulation-reduction of TGBA also reduces the TA and
TGTA sizes.

These reductions produce smaller products on average and thus improve the performance of
the three approaches. However, this does not change the result of the comparison of the three
approaches: for verified formulas, TGTA remains more efficient than the other approaches; for
violated formulas, the results are still difficult to interpret.

5.6 Conclusion

In the previous chapters, we have shown that TA outperformed BA and sometimes TGBA for
unverified properties (i.e., when a counterexample was found). However, this was not the case
when no counterexample was computed since the entire product had to be visited twice to check
for each acceptance mode of a TA (Büchi acceptance or livelock-acceptance).

In this chapter, we propose a new type of ω-automaton for stutter-invariant properties, called
Transition-based Generalized Testing Automata (TGTA).

TGTA combines advantages observed on both TA and TGBA:
• From TA, it reuses the labeling of transitions with changesets, and the elimination of the

useless stuttering-transitions, but without requiring a second pass in the emptiness check of
the product.

• From TGBA, it inherits the use of generalized acceptance conditions on transitions.
TGTA have been implemented in Spot easily, because only two new algorithms are required:

the conversion of a TGBA into a TGTA, and a new definition of a product between a TGTA and a
Kripke structure.

We have run benchmarks to compare TGTA against TA and TGBA (BA). Experiments re-
ported that, in most cases, TGTA produce the smallest products on the average and they outper-

1http://spot.lip6.fr/ltl2tgba.html

http://spot.lip6.fr/ltl2tgba.html
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form TA and TGBA when no counterexample is found in the system, but they are comparable
when the property is violated, because in this case the on-the-fly algorithm stops as soon as it finds
a counterexample without exploring the entire product.

We conclude that there is nothing to lose by using TGTA to verify stuttering-insensitive prop-
erties, since they are always at least as good as TA and TGBA.

We believe that TGTA is better than TA because TGTA does not require a second pass during
the emptiness check and because TGTA represent more concisely the LTL formulas using (multi-
ple) generalized acceptance conditions, as observed in our experiments for weak-fairness formulas
(for which the number of acceptance conditions is greater than random formulas).

Compared to TGBA, we believe that TGTA is better thanks to the elimination of the useless
stuttering-transitions during the TGTA construction (Section 5.3.2). This elimination exploits the
fact that the TGTA are specific to stutter-invariant formulas, while the TGBA does not exploit at
all this specificity.

After this elimination of useless stuttering-transitions, the obtained TGTA represents all the
stuttering-transitions with only self-loops on all states (see the “stuttering-normalization con-
straint” of the TGTA Definition 30). This advantage of TGTA will be more clearly exploited
in the symbolic approach presented in the next chapter. This symbolic model checking approach
using TGTA allows us to tackle much larger state-spaces than in explicit model checking.
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6.1 Introduction

In the previous chapter, we showed how to generalize the Testing Automata (TA) using several ac-
ceptance sets, and allowing a single-pass efficient emptiness check. Our experimental comparison
showed these Transition-based Generalized Testing Automata (TGTA) to be superior to Büchi Au-
tomata in the explicit approach for model-checking of stutter-invariant properties. In this explicit
approach, the automata and their products were represented as explicit graphs.

Another implementation of this procedure is the symbolic approach where the automata and
their products are represented by means of decision diagrams (a concise way to represent large
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sets or relations) [17]. Encoding generalized Büchi automata is pretty common [75]. With such
encoding, we can compute, in one step, the sets of all direct successors (PostImage) or predeces-
sors (PreImage) of any set of states. Using this technique, there have been a lot of propositions
for symbolic emptiness-check algorithms [43, 80, 57]. These symbolic algorithms manipulate
standard BFS-based fixed-points on the transition relation of the product which can be optimized
using saturation techniques [20, 85].

To the best of our knowledge, these algorithms do not provide efficient optimizations spe-
cific to stutter-invariant properties, and Testing Automata have never been used in symbolic model
checking. In this chapter, we propose and evaluate a symbolic approach for model checking using
TGTA [7], and compare it to the symbolic approach using TGBA. In particular, we show that the
computation of fixpoints on the transition relation of the product can be sped up with a dedicated
evaluation of stuttering transitions. The implementation uses the saturation technique introduced
by [20] that departs from standard BFS-based approaches for the symbolic fixed-point compu-
tation. Saturation nicely fits well with TGTA. Indeed, we exploit a separation of the transition
relation into two terms, one of which greatly benefits from saturation techniques.

This chapter is organized as follows. Section 6.2 presents the symbolic model-checking ap-
proach for TGBA. For generality we define our symbolic structures using predicates over state
variables in order to remain independent of the variant of Decision Diagrams used to actually
implement the approach. Section 6.3 focuses on the encoding of TGTA in the same framework.
We first show how a TGTA can be encoded, then we show how to improve the encoding of the
Kripke structure and the product to benefit from saturation in the encoding of stuttering transitions
in the TGTA. Finally, Section 6.4 compares the two approaches experimentally with an imple-
mentation that uses hierarchical Set Decision Diagrams (SDD) [85] (a particular type of Decision
Diagrams on integer variables, on which we can apply user-defined operations). We concentrate
on a comparison of TGBA versus TGTA and on the impact of the saturation technique. On our
large, BEEM-based benchmark (presented in Section 6.4.3) and huge set of LTL formulas, our
symbolic encoding of TGTA appears to be superior to TGBA.

6.2 Symbolic LTL Model Checking

We first present how to perform the automata-theoretic approach to LTL model checking using
symbolic encodings of TGBA and Kripke structures. This setup will serve as a baseline to measure
our improvements from later sections.

6.2.1 Symbolic Kripke Structure

In symbolic model checking we encode such a Kripke structure with predicates that represent sets
of states or transitions [79]. These predicates are then implemented using decision diagrams [17].

Definition 32 (Symbolic Kripke Structure). A Kripke structure K = 〈S ,S0,R , l〉 can be encoded
by the following predicates where s,s′ ∈ S and ` ∈ Σ:
• PS0(s) is true iff s ∈ S0,

• PR (s,s′) is true iff (s,s′) ∈ R ,
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• Pl(s, `) is true iff l(s) = `.
In the sequel, we use the notations S0(s), R(s,s′) and L(s, `) instead of PS0(s), PR (s,s′) and Pl(s, `).
A Symbolic Kripke structure is therefore a triplet of predicates K = 〈S0,R,L〉 on state variables.

Variables s and s′ used above are typically implemented using decision diagrams to represent
either a state or a set of states. In a typical encoding [17], states are represented by conjunctions
of Boolean variables. For instance if S = {0,1}3, a state s = (1,0,1) would be encoded as s1s̄2s3.
Similarly, s1s3 would encode the set of states {(1,0,1),(1,1,1)}. With this encoding, S0, R and
L are propositional formulas which can be implemented with BDDs or other kind of decision
diagrams. In our implementation, we used SDDs on integer variables [85].

6.2.2 Symbolic Büchi Automata TGBA

We chose the TGBA to represent the negation of the LTL property to verify, because generalized
acceptance is classically used in symbolic model checking [43] and using transition-based accep-
tance is not a problem [75]. People working with Generalized Büchi automata (GBA) can adjust
to our definitions by “pushing” the acceptance of states to their outgoing transitions [36].

Like Kripke structures, a TGBA can be encoded by predicates [79] on state variables.

Definition 33 (Symbolic TGBA). A TGBA 〈Q ,I ,δ,F 〉 is symbolically encoded by a the predi-
cates 〈I ,∆,{∆ f } f∈F 〉 where:
• I(q) is true iff q ∈ I ,

• ∆(q, `,q′) is true iff
(
∃F ∈ 2F , (q, `,F,q′) ∈ δ

)
,

• For every f ∈ F , the predicate ∆ f is defined by:
∆ f (q, `,q′) is true iff

(
∃(q, `,F,q′) ∈ δ, f ∈ F

)
.

6.2.3 Symbolic Product of a TGBA with a Kripke structure

We now show how to build a synchronous product by composing the symbolic representations of
a TGBA with that of a Kripke structure, inspired from Sebastian et al. [79].

Definition 34 (Symbolic Product for TGBA). Given a Symbolic Kripke structure K = 〈S0,R,L〉
and a Symbolic TGBA A = 〈I,∆,{∆ f } f∈F 〉 sharing a set AP of atomic propositions, the Symbolic
Product K⊗A = 〈P0,T,{Tf } f∈F 〉 is defined by the predicates P0, T and Tf encoding respectively
the set of initial states, the transition relation and the acceptance transitions of the product:
• (s,q) denotes the state variables of the product (s for the Kripke structure and q for TGBA),

• P0(s,q) = S0(s)∧ I(q),

• T ((s,q),(s′,q′)) = ∃`
[
R(s,s′)∧ L(s, `)∧ ∆(q, `,q′)

]
, where (s′,q′) encodes the next state

variables,

• ∀ f ∈ F , Tf ((s,q),(s′,q′)) = ∃`
[
R(s,s′)∧L(s, `)∧∆ f (q, `,q′)

]
.
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The labels ` are used to ensure that a transition (q, `,q′) of A is synchronized with a state s
of K such that L(s, `). This way, we ensure that the product recognizes only the executions of K
that are also recognized by A. However we do not need to remember how product transitions are
labeled to check K⊗A for emptiness. Therefore, a product can be seen as a TGBA without labels
on transitions. This explains why the predicate T ((s,q),(s′,q′)) does not take as an argument a
variable (`) to encode the labels of transitions (as in ∆(q, `,q′)).

In symbolic model checkers, the exploration of the product is based on the following
PostImage operation [79]. For any set of states encoded by a predicate P, PostImage(P) (s′,q′) =
∃(s,q)

[
P(s,q)∧T ((s,q),(s′,q′))

]
returns a predicate on state variables (s′,q′) encoding the set of

states reachable in one step from the set of states encoded by P.
Because in TGBA the acceptance conditions are based on transitions, we also define

PostImage(P, f ) to compute the successors of P reached using the transitions labeled with the
acceptance condition f ∈ F : PostImage(P, f )(s′,q′) = ∃(s,q)

[
P(s,q)∧Tf ((s,q),(s′,q′))

]
.

These two operations are at the heart of the symbolic emptiness check presented in the next
section.

6.2.4 Symbolic Emptiness Check algorithm

1 Input: PostImage, P0 and F
2 begin
3 P← Reach(P0)

4 while P changes do
5 while P changes do
6 P← PostImage(P)

7 for f in F do
8 P← Reach(PostImage(P, f))

9 return P = /0

1 Reach(P)
2 while P changes do
3 P← P ∪ PostImage(P)

4 return P

Figure 6.1: Forward-variant of OWCTY, a symbolic emptiness check.

One way to check if a product is not empty is to find a reachable Strongly Connected Com-
ponent that contains transitions from all acceptance sets (we call it an accepting SCC). Figure 6.1
shows such an algorithm implemented using symbolic operations. It mimics the algorithm FEASI-
BLE of Kesten et al. [57] and can be seen as a forward variant of OWCTY (One Way Catch Them
Young [43]) that uses PostImage computations instead of PreImage. Line 3 computes the set P of
all reachable states of the product. The main loop on lines 4–8 refines P at each iteration. Lines
5–6 keep only the states of P that can be reached from a cycle in P. Lines 7–8 then remove all
cycles that never visit some acceptance set f ∈ F . Eventually the main loop will reach a fixpoint
where P contains all states that are reachable from an accepting SCC. The product is empty iff that
set is empty.
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There are many variants of such symbolic emptiness checks [43, 80, 57]. We selected this vari-
ant mainly for its simplicity, as our contributions are mostly independent of the chosen algorithm:
essentially, we will improve the cost of computing Reach(P) (used lines 3 and8).

6.3 TGTA-based Symbolic LTL Model Checking

In this section, we show how to encode a TGTA and a product for symbolic model checking using
TGTA instead of TGBA.

6.3.1 Symbolic TGTA

A TGTA can be encoded symbolically in a similar way as we encoded a TGBA.

Definition 35 (Symbolic TGTA). A TGTA T = 〈Q ,I ,U,δ,F 〉 is symbolically encoded by the
predicates 〈U0,∆

⊕,{∆⊕f } f∈F 〉 where:
• U0(q, `) is true iff (q ∈ I )∧ (U(q) = `)

• ∆⊕(q,k,q′) is true iff
(
∃F ∈ 2F , (q,k,F,q′) ∈ δ

)
,

• For every f ∈ F , the predicate ∆
⊕
f is defined by:

∆
⊕
f (q,k,q

′) is true iff
(
∃(q,k,F,q′) ∈ δ, f ∈ F

)
.

The predicates encoding the symbolic TGTA are the same as those encoding the symbolic
TGBA, but they are based on changesets (encoded by the variable k) instead of valuations (variable
`).

The predicate U0(q, `) encodes the set of initial states and their valuations. The predicate
∆⊕(q,k,q′) encodes the set of transitions of the TGTA, with the variable k encodes the changeset
between q and q′. For each f ∈ F , a predicate ∆

⊕
f (q,k,q

′) encodes the transitions labeled with the
acceptance condition f .

6.3.2 Naive Symbolic Product of TGTA with a Kripke structure

The product between a TGTA and a Kripke structure is similar to the TGBA case, except that we
have to deal with changesets. The transitions (s,s′) of a Kripke structure that must be synchronized
with a transition (q,k,q′) of a TGTA are all the transitions such that the label of s and s′ differs
by the changeset k: in the definition below, this is encoded by the terms L(s, `)∧ L(s′, `′), with
(`⊕ `′) = k.

Definition 36 (Naive Symbolic Product for TGTA). Given a Symbolic Kripke structure K =

〈S0,R,L〉 and a Symbolic TGTA A⊕ = 〈U0,∆
⊕,{∆⊕f } f∈F 〉 sharing the same set of atomic proposi-

tions AP, the Symbolic Product K⊗A⊕ = 〈P0,T,{Tf } f∈F 〉 is defined by the following predicates:
• The set of initial states is encoded by: P0(s,q) = ∃`

[
S0(s)∧L(s, `)∧U0(q, `)

]
.

• A naive encoding of the transition relation of the product is:
T (s,q,s′,q′) = ∃k

[
R(s,s′)∧

(
∃`,`′[L(s, `)∧L(s′, `′)∧ xor(`,k, `′)]

)
∧∆⊕(q,k,q′)

]
, with the

predicate xor(`,k, `′) is true iff (`⊕ `′) = k
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• The definition of Tf is similar to T by replacing ∆⊕ with ∆
⊕
f .

The formulas of PostImage(P) and PostImage(P, f ) in TGTA approach are the same as in the
TGBA approach, with the new expressions of T and Tf defined above for K⊗A⊕.

This naive definition of T contains the term ∃`,`′[L(s, `)∧ L(s′, `′)∧ xor(`,k, `′)] which re-
quires several symbolic operations. In the next section, we show how to re-encode the transition
relation of Kripke structures to remove this term.

6.3.3 Adjusting the Symbolic Transition Relation of the Kripke Structure to TGTA

In order to reduce the number of symbolic operations in T and Tf , we introduce a changeset-based
encoding of a Kripke structure (only the transition relation changes).

Definition 37 (Changeset-based symbolic Kripke structure). A Kripke structure K = 〈S ,S0,R , l〉,
can be encoded by a changeset-based symbolic Kripke structure K⊕ = 〈S0,R⊕,L〉, where:
• the predicate R⊕(s,k,s′) is true iff ((s,s′) ∈ R ∧ (l(s)⊕ l(s′)) = k),

• the predicates S0 and L have the same definition as for a symbolic Kripke structure K of
Definition 32.

The changeset-based symbolic transition relation R⊕(s,k,s′) of a Kripke structure is similar to
the symbolic transition relation ∆⊕(q,k,q′) of a TGTA. It encodes the transitions ((s,s′) ∈ R with
the variable k encodes the changeset between the two valuations l(s) and l(s′).

In practice, the (changeset-based or not) symbolic transition relation of a Kripke structure
should be constructed directly from the model and atomic propositions of the formula to check. In
Section 6.4.2, we discuss how we build such changeset-based Kripke structures in our setup.

Adjusting the symbolic encoding of the Kripke structure to TGTA, allows us to obtain the
following natural definition of the symbolic product using TGTA:

Definition 38 (Symbolic Product for TGTA). Given a changeset-based Symbolic Kripke structure
K⊕ = 〈S0,R⊕,L〉 and a Symbolic TGTA A⊕ = 〈U0,∆

⊕,{∆⊕f } f∈F 〉 sharing the same set of atomic
propositions AP, the Symbolic Product K⊕⊗A⊕ = 〈P0,T,{Tf } f∈F 〉 is defined by the following
predicates:
• The set of initial states is encoded by: P0(s,q) = ∃`

[
S0(s)∧L(s, `)∧U0(q, `)

]
• The transition relation of the product is: T ((s,q),(s′,q′)) = ∃k

[
R⊕(s,k,s′)∧∆⊕ (q,k,q′)

]
• The definition of Tf is similar to T by replacing ∆⊕ with ∆

⊕
f .

The definitions of PostImage(P) and PostImage(P, f ) are the same as in the TGBA approach,
with the new expressions of T and Tf above.

As for the product in TGBA approach, the product in TGTA approach is a TGBA (or a TGTA)
without labels on transitions, and the same emptiness check algorithm (Figure 6.1) can be used for
the two products.
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6.3.4 Exploiting stuttering transitions to Improve Saturation in the TGTA Ap-
proach

Among symbolic approaches for evaluating a fixpoint on a transition relation, the saturation algo-
rithm offers gains of one to three orders of magnitude [20] in both time and memory, especially
when applied to asynchronous systems [18].

The saturation algorithm does not use a breadth-first exploration of the product, i.e., each
iteration in the function Reach (Figure 6.1) is not a “global" PostImage() computation. Saturation
instead recursively repeats “local” fixed-points by recognizing and exploiting transitions locality
and identity transformations on state variables [18]. This algorithm considers that the system state
consists of n discrete variables encoded by a Decision Diagram, and that the transition relation is
expressed as a disjunction of terms called transition clusters. Each cluster typically only reads or
writes a limited subset consisting of n′ ≤ n variables, called the support of the cluster. During the
least fixpoint computing the reachable states, the saturation technique consists in reordering [51]
the evaluation of (“local” fixed-points on) clusters in order to avoid the construction of (useless)
intermediate decision diagram nodes.

The algorithm to determine an ordering for saturation is based on the support of each cluster.
We now show how to decompose the transition relation of the product (K⊕⊗A⊕) to exhibit

clusters having a smaller support, favoring the saturation technique.
We base our decomposition on the fact that in a TGTA, all stuttering transitions are self-loops

and every state has a stuttering self-loop (see the stuttering-normalization constraint in Defini-
tion 30 of TGTA). Therefore, stuttering transitions in the Kripke structure can be mapped to stut-
tering transitions in the product regardless of the TGTA state.

Let us separate stuttering and non-stuttering transitions in the transition relation T of the
symbolic product K⊕⊗A⊕ (Definition 38):

T ((s,q),(s′,q′)) =
(
R⊕(s, /0,s′)∧∆

⊕(q, /0,q′)
)
∨
(
∃k
[
R⊕∗ (s,k,s

′)∧∆
⊕
∗ (q,k,q

′)
])

where R⊕∗ and ∆⊕∗ encode respectively the non-stuttering transitions of the model and of the TGTA:
• ∆⊕∗ (q,k,q

′) is true iff ∆⊕(q,k,q′)∧ (k 6= /0)

• R⊕∗ (s,k,s
′) is true iff R⊕(s,k,s′)∧ (k 6= /0)

On the one hand, according to Definition 35, the predicate ∆⊕(q, /0,q′) is defined by the
following equivalence:

∀(q,q′) ∈ Q 2 :
[
∆
⊕(q, /0,q′)⇐⇒

(
∃F ∈ 2F , (q, /0,F,q′) ∈ δ

)]
(6.1)

On the other hand, according to the stuttering-normalization constraint of Definition 30 of
TGTA (i.e., all stuttering transitions are self-loops and every state has a stuttering self-loop):

∀(q,q′) ∈ Q 2 :
[(
∃F ∈ 2F , (q, /0,F,q′) ∈ δ

)
⇐⇒ (q = q′)

]
(6.2)

Combining the two equations (6.1) and (6.2), we obtained the following third equivalence:
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∀(q,q′) ∈ Q 2 :
[
∆
⊕(q, /0,q′)⇐⇒ (q = q′)

]
(6.3)

In the other words, the predicate ∆⊕(q, /0,q′) encodes the set of all self-loops of the TGTA and
can be replaced by the identity predicate: equal(q,q′), simplifying T as:

T ((s,q),(s′,q′)) =
(
R⊕(s, /0,s′)∧ equal(q,q′)︸ ︷︷ ︸

T/0((s,q),(s′,q′))

)
∨
(
∃k
[
R⊕∗ (s,k,s

′)∧∆
⊕
∗ (q,k,q

′)
]︸ ︷︷ ︸

T∗((s,q),(s′,q′))

)
(6.4)

The transition relation of equation (6.4) is a disjunction of T∗, synchronizing updates of both
TGTA and Kripke structure, and T/0, corresponding to the stuttering transitions of the Kripke struc-
ture. Since all states in the TGTA have a stuttering self-loop, T/0 does not depend on the TGTA
state. In practice, the predicate equal(q,q′) is an identity relation for variable q [18] and is simpli-
fied away (i.e., the term T/0 can be applied to a decision diagram without consulting or updating the
variable q [51]). Hence q is not part of the clusters supports in T/0 (while q is part of the clusters
supports in T∗). This gives more freedom to the saturation technique for reordering the application
of clusters in T/0.

Note that in the product of TGBA with Kripke structure (Definition 34) there is no T/0 that could
be extracted since there is no stuttering hypothesis in general. This severely limits the possibilities
of the saturation algorithm in the TGBA approach.

In the symbolic emptiness check presented in Figure 6.1, the function Reach corresponds to
a least fixpoint performed using saturation. As we shall see experimentally in the next section,
the better encoding of T/0 (without q in its support) in the product of TGTA with Kripke structure,
greatly favors the saturation technique, leading to gains of roughly one order of magnitude.

The improvement of T proposed in this section is not applicable to Tf because the term
∆
⊕
f (q, /0,q′) encodes only a subset of self-loops of the TGTA (not the all self-loops as ∆⊕(q, /0,q′)),

hence the expressions of Tf and Postimage(P, f ) are the same as the previous section.

Table 6.1 summarizes all our definitions for the predicates encoding the automaton, the Kripke
structure, and their product, in the four approaches presented in Sections 6.2 and 6.3.

The results of the TGTA based symbolic approach will be showed in the next section present-
ing our experimentation.

6.4 Experimental evaluation

We now compare the symbolic approaches presented in this chapter. The symbolic model-
checking approach using TGBA, presented in Section 6.2 serves as our baseline. We first describe
our implementation and selected benchmarks, prior to discussing the results.
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6.4.1 Implementation

We have implemented the symbolic approach based on TGTA, Changeset-based symbolic Kripke
structure and Saturation in LTL-ITS 1 tool, which already provides an implementation of the sym-
bolic approach based on TGBA and Saturation. This tool is built on top of three libraries 2:
SDD/ITS, Spot, and LTSmin.

Spot is a model-checking library providing several bricks that can be combined to build model
checkers [36]. In our implementation, we reused the modules providing a translation from an LTL
formula into a TGBA and into a TGTA [6].

SDD/ITS is a library for symbolic representation of state-spaces in the form of Instantiable
Transition Systems (ITS): an abstract interface for symbolic Labeled Transition Systems (LTS).

The symbolic encoding of ITS is based on Hierarchical Set Decision Diagrams (SDD) [85].
SDDs allow a compact symbolic representation of states and transition relation.

The algorithms presented in this paper can be implemented using any kind of decision diagram
(such as OBDD), but use of the SDD software library allows to easily benefit from the automatic
saturation mechanism described in [51].

LTSmin [12] can generate state spaces from various input formalisms (µCRL, DVE, GNA,
MAPLE, PROMELA, ...) and store the obtained LTS in a concise symbolic format, called Ex-
tended Table Format (ETF). We used LTSmin to convert DVE models into ETF for our exper-
iments. This approach offers good generality for our tool, since it can process any formalism
supported by LTSmin tool.

Our symbolic model checker inputs an ETF file and an LTL formula. The LTL formula
is converted into TGBA or TGTA which is then encoded using an ITS. The ETF model is also
symbolically encoded using an ITS (see Section 6.4.2). The two obtained ITSs are then composed
to build a symbolic product, which is also an ITS. Finally, the OWCTY emptiness check is applied
to this product.

In all the approaches evaluated in this experimentation, the symbolic products are encoded
using the same variables ordering: we used the top ordering proposed by Sebastiani et al. [79]. In
top ordering, the variables that encode the property automaton (TGBA or TGTA) are at the top of
the variable ordering, they precede the variables encoding the model in the decision diagram of
the product.

6.4.2 Using ETF to build the transition relation of a changeset-based symbolic
Kripke structure

An ETF file3 produced by LTSmin is a text-based serialization of the symbolic representation
of the transition relation of a model whose states consist in n integer variables. Transitions are
described in the following tabular form:

0/1 0/1 * *

1http://ddd.lip6.fr
2Respectively http://ddd.lip6.fr, http://spot.lip6.fr, and http://fmt.cs.utwente.nl/tools/

ltsmin.
3http://fmt.cs.utwente.nl/tools/ltsmin/doc/etf.html

http://ddd.lip6.fr
http://ddd.lip6.fr
http://spot.lip6.fr
http://fmt.cs.utwente.nl/tools/ltsmin
http://fmt.cs.utwente.nl/tools/ltsmin
http://fmt.cs.utwente.nl/tools/ltsmin/doc/etf.html
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1/2 * 0/1 *

...

where each column correspond to a variable, and each line describes the effect of a symbolic
transition on the corresponding variables. The notation “in/out” means that the variable must
have the value “in” for the transition to fire, and the value is then updated to “out”. A “*” means
that the variable is not consulted or updated by the transition. Each line may consequently encode
a set of explicit transitions that differ only by the values of the starred variables: the support of a
transition is the set of unstarred variables.

A changeset-based symbolic Kripke structure, as defined in Section 6.3.3, can be easily ob-
tained from such a description. To obtain a changeset associated to a line in the file, it is enough
to compute the difference between values of atomic propositions associated to the in variables and
the values associated to the out variables. Because they do not change, starred variables have no
influence on the changeset.

Note that an empty changeset does not necessarily correspond to a line where all variables
are starred. Even when in and out values are different, they may have no influence on the atomic
propositions, and the resulting changeset may be empty. For instance if the only atomic proposi-
tion considered is p = (v1 > 1) (where v1 denotes the first-column variable), then the changeset
associated to the first line is /0, and the changeset for the second line is {p}.

ETF example for the Dining philosophers model: In the dining philosophers problem, n
philosophers spend their lives just thinking and easting. In the dining room, there are n chairsa
around a table with a big plate of spaghetti and only n forks available. Each philosopher starts by
thinking and when he gets hungry, he sits down and try to pick up the two forks that are closest
to him. A philosopher can eat only if he pick up both forks. Then, when a philosopher finishes
eating, he puts down the forks and returns to think.

The table below shows a part of the ETF file describing the Dining philosophers model with
n = 2: In columns, we have the four variables of the state vector. The first line gives the variables
values in the initial state and the rest of the table lists the transitions. Each line describe one
ETF transition and each cell of this line indicate the change in the value of the column variable:
For example in the first ETF transition, the notation “0/1” in the first column means that the first
philosopher phil_0 changes from "0:think" to "1:one" (i.e picks up one fork); the “*” in the last
column means that the value of the second philosopher phil_1 does not change in this transition.

phil_0 fork[0] fork[1] phil_1
Initial state 0 0 0 0

Transitions
0/1 0/1 * *
1/2 * 0/1 *

. . .

phil_0 phil_1 values
0:think
1:one
2:eat
3:finish

This compressed format of transitions allowed us to easily compute the transition relation of
changeset-based symbolic Kripke structure (i.e. computing the predicate R⊕(s,k,s′) introduced in
section. 6.3.3). To illustrate the computing of the predicate R⊕(s,k,s′) (section. 6.3.3) in the Dining
philosophers example, we assume that the set of observed atomic propositions AP = {p0, p1}
where p0 = ”phil_0 = eat” and p1 = ”phil_1 = eat”. The changeset of the first ETF transition
is equal to /0 because phil_0 does not take the value “2:eat” (i.e p0 is false) before and after the
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transition, p1 also does not change because the value of phil_1 does not change in this transition.
Similarly, it is easy to compute the changeset of the second ETF transition equal to {p0}.

6.4.3 Benchmark

BEEM model
states stut.

BEEM model
states stut.

103× ratio 103× ratio

at.5 31 999 96% lann.6 144 151 44%
bakery.4 157 76% lann.7 160 025 52%
bakery.7 29 047 80% lifts.7 5 126 85%
bopdp.3 1 040 86% lifts.8 12 359 85%
brp2.3 40 73% mcs.5 60 556 81%
elevator.4 888 63% peterson.5 131 064 73%
fischer.5 101 028 82% pgm_protocol.8 3 069 88%
iprotocol.7 59 794 81% phils.7 71 934 89%
lamport_nonatomic.5 95 118 86% production_cell.6 14 520 78%
lamport.7 38 717 91% reader_writer.3 604 81%

Table 6.2: Characteristics of our selected benchmark models. The stuttering-ratio represents the
percentage of stuttering transitions in the model. Since the definition of stuttering depends on the
atomic propositions of the formula, we give an average over the 200 properties checked against
each model.

We evaluated the TGBA and TGTA approaches on the following models and formulas:
• Our models come from the BEEM benchmark [67], a suite of models for explicit model

checking, which contains some models that are considered difficult for symbolic model
checkers [12]. Table 6.2 summarizes the 20 models we used to evaluate our approaches.
These models represent various controllers, communication protocols, mutual exclusion and
leader election algorithms.

• BEEM provides a few LTL formulas, but they mostly represent safety properties and can
thus be checked without building a product. Therefore, for each model, we randomly gen-
erated 200 stutter-invariant LTL formulas: 100 verified formulas (empty product) and 100
violated formulas (non-empty product). We consequently have a total 4000 pairs of (model,
formula).

All tests were run on a 64bit Linux system running on an Intel(R) 64-bit Xeon(R) @2.00GHz
with 64GB of RAM. Executions that exceeded 60 minutes or 6GB of RAM were aborted and are
reported with time and memory above these thresholds in our graphics.

6.4.4 Results

The results of our experimental comparisons are presented by the two scatter plot matrices of
Figure 6.2 and Figure 6.3.

Figure 6.2 compares the time-performance of the TGTA-approach against the reference TGBA
approach. In order to show the influence of the saturation technique, we also ran the TGBA
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Figure 6.2: Time-comparison of the TGBA and TGTA approaches, with saturation enabled “(sat)”
or disabled “(nosat)”, on a set of 4000 pairs (model, formula). Timeouts and Out-of-memory
errors are plotted on separate lines on the top or right edges of the scatter plots. Each plot also
displays the number of cases that are above or below the main diagonal (including timeouts and
out-of-memory errors), i.e., the number of (model, formula) for which one approach was better
than the other. Additional diagonals show the location of ×10 and /10 ratios. Points are plotted
with transparency to better highlight dense areas, and lessen the importance of outliers.
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Figure 6.3: Comparison of the memory-consumption of the TGBA and TGTA approaches, with
or without saturation, on the same set of problems.
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Figure 6.4: Comparison of TGBA and TGTA approaches, without saturation “(nosat)”. Timeouts
and Out-of-memory errors are plotted on the top or right edges of the scatter plots.
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and TGTA approaches with saturation disabled. In our comparison matrix, the labels “(sat)” and
“(nosat)” indicate whether saturation was enabled or not. Each point of the scatter plots represents
a measurement for a pair (model, formula). Axes use a logarithmic scale. The colors distinguish
violated formulas (non-empty products) from verified formulas (empty products).

In each scatter plot, each point below the diagonal is in favor of the approach displayed on
the right, while each point above the diagonal is in favor of the approach displayed in the top
of the scatter plot. For instance, the highlighted scatter plot (bottom of Figure 6.2) compares the
time-performance between TGBA and TGTA approaches where the saturation is enabled (sat), the
x-axis represents the “TGBA (sat)” approach and the y-axis represents the “TGTA (sat)” approach,
so 3424 points below the diagonal correspond to cases where the “TGTA (sat)” approach is better,
and the 548 points above the diagonal corresponds to points were the “TGBA (sat)” approach is
better.

Figure 6.3 gives the memory view of this experiment.

As shown by the highlighted scatter plots in Figure 6.2 and 6.3, the TGTA approach clearly
outperforms the traditional TGBA-based scenario by one order of magnitude. This is due to the
combination of two factors: saturation and exploration of stuttering.

The saturation technique does not significantly improve the model checking using TGBA
(compare “TGBA (sat)” against “TGBA (nosat)” at the top of Figure 6.2 and 6.3). In fact, the
saturation technique is limited on the TGBA approach, because in the transition relation of Defini-
tion 34 each conjunction must consult the variable q representing the state of the TGBA, therefore
q impacts the supports and the reordering of clusters evaluated by the saturation. This situation is
different in the case of TGTA approach, where the T/0 term of the transition-relation of the prod-
uct (equation (6.4)) does not involve the state q of the TGTA: here, saturation strongly improves
performances (compare “TGTA (sat)” against “TGTA (nosat)”).

Overall the improvement to this symbolic technique was only made possible because the
TGTA representation makes it easy to process the stuttering behaviors separately from the rest.
These stuttering transitions represent a large part of the models transitions, as shown by the
stuttering-ratios of Table 6.2. Using these stuttering-ratios, we can estimate in our Benchmark
the importance of the term T/0 compared to T∗ in equation (6.4).

Figures 6.4 and 6.5 show more clearly the most important scatter plots of the two matrices.
Figure 6.4 shows the scatter plots (for time and memory performance) comparing TGBA and
TGTA approaches with saturation disabled (nosat). Figure 6.5 displays the same comparison but
with saturation enabled (sat).

Table 6.3 gives an overview of the performance of the TGBA and TGTA approach, model by
model. The average run-time and memory consumption is computed over the 3797 cases where
all methods terminated normally (without timeout or out-of-memory error).

Table 6.4 shows the best and the worst approach among the four possible combinations, i.e.,
TGBA and TGTA approaches with saturation disabled (no saturation) or with saturation enabled.
The verified formulas are separated from violated formulas.

The Tables 6.3 and 6.4 confirm the above observations deduced from the scatter plots: i.e., the
TGTA approach with saturation outperform the TGBA approach (with or without saturation).
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no saturation saturation
TGBA TGTA TGBA TGTA

Verified Win 297 (14%) 13 (0%) 222 (11%) 1613 (81%)
Lose 204 (10%) 1359 (68%) 464 (23%) 67 (3%)
Fail 29 (1%) 43 (2%) 30 (1%) 2 (0%)

Violated Win 150 (7%) 1 (0%) 97 (4%) 1795 (89%)
Lose 118 (5%) 1594 (79%) 297 (14%) 26 (1%)
Fail 12 (0%) 89 (4%) 32 (1%) 7 (0%)

Table 6.4: On all experiments (grouped by verified versus violated formulas), we count the number
of cases a specific method has (Win) the best time or (Lose) it has either run out of time/memory
or it has the worst time amongst successful methods. The Fail line shows how much of the Lost
cases failed (because of timeout or out-of-memory). The sum of a line may exceed 100% if several
methods are equally placed.

6.5 Conclusion

Testing automata are a way to improve the explicit model checking approach when verifying
stutter-invariant properties, but they had not been used for symbolic model checking.

In the previous chapters, we introduced a generalization of these testing automata, called
TGTA, and we evaluated their use for explicit model checking.

In this chapter, we have shown how to use TGTA in a symbolic approach. We compare this
new TGTA approach to a more classical symbolic approach (using TGBA).

On our benchmark, using TGTA and saturation technique, we were able to gain one order of
magnitude over the TGBA-based approach.

Three versions of this TGTA approach, including a basic version and two improvements were
implemented. The first improvement was to use a new encoding of a Kripke structure inspired by
the TGTA transition relation, i.e., based on the labeling of transitions by changesets. The second
improvement is based on the exploration of stuttering transitions during the emptiness check of
the symbolic product.

The latter optimization is based on the property of TGTA that all stuttering transitions are
self-loops and every state has a stuttering self-loop. Consequently, the exploration of stuttering
transitions in the product is equivalent to explore stuttering transitions in the model (remaining in
the same TGTA states).

Using this property, we have shown that fixpoints over the transition relation of a product
between a Kripke structure and a TGTA can benefit from the saturation technique, especially
because part of their expression is only dependent on the model, and can be evaluated without
consulting the transition relation of the property automaton. This allows to the saturation algorithm
to ignore the symbolic variables encoding the TGTA in the product, and therefore effectively
saturate the symbolic product nodes of the variables encoding the model.

This improvement was possible only because TGTA makes it possible to process stuttering
behaviors specifically, in a way that helps the saturation technique.

In the next chapter, we evaluate the use of TGTA in the context of hybrid approaches, which
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combines the use of both explicit and symbolic approaches [79, 38]. These hybrid approaches use
an On-the-Fly exploration unlike the symbolic approaches presented in this chapter.
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7.1 Introduction

In the previous chapter, we have shown that the symbolic approach to model checking allows to
encode the product automaton in a concise way, but its emptiness check can not be performed
on-the-fly as in the explicit approach.

In order to take advantage of the best of the both worlds, Hybrid approaches [79, 38] to model
checking are proposed as combinations of explicit and symbolic approaches.
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In these hybrid approaches, the property automaton is described explicilty because its size is
not large in most cases (and can be reduced by means of several explicit optimizations). However,
the state-space of the model is typically very large and must be encoded symbolically. An hybrid
approach is generally based on an on-the-fly construction of an explicit graph of symbolic nodes,
called aggregates. Each aggregate symbolically encodes a set of states of the Kripke structure
or of the product. In this work, we focused on three hybrid techniques [37]: SOG, SOP and
SLAP. The Symbolic Observation Graph (SOG) approach exploits the fact that only a subset of
the atomic propositions of the model are observed by the LTL property to check. A SOG is an
abstraction of a Kripke structure where consecutive states are aggregated if they share the same
values of the observed atomic propositions. The Symbolic Observation Product (SOP) approach
tries to allow further aggregation than SOG by exploiting the fact that the number of observed
atomic propositions decreases as we progress in the property automaton. A Self-Loop Aggregation
Product (SLAP) is similar to a SOP, an aggregation graph alternative to the traditional product
automaton. In SLAP, the Kripke structure states are aggregated according to the valuations of the
self-loops in the property automaton.

As for symbolic model checking, Testing Automata (and their variants) have never been used
before for hybrid model checking.

The goal of this chapter is to show how the traditional hybrid approaches based on TGBA can
be adapted to obtain TGTA-based approaches.

In this chapter, we present three existing hybrid approaches SOG, SOP and SLAP that are
based on TGBA. Then, we define and implement variations of these three approaches using TGTA
instead of TGBA. We then experimentally compare the performance of each hybrid approach
(SOG, SOP and SLAP) against its TGTA-based variant (SOG-TGTA, SOP-TGTA and SLAP-
TGTA).

7.2 Preliminaries

The formalization of hybrid approaches requires the following definitions and notations introduced
by Duret-Lutz et al. [38].

We firstly remind the formalization of propositional formula , then we present alternative def-
initions of TGBA Duret-Lutz et al. [38] and TGTA that use these propositional formulas as labels.

• B= {⊥,>} represents the Boolean values.

• B(AP) is the set of all propositional formulas over AP. The formulas of B(AP) are built
inductively from the propositions AP, B, and the logical operators ∧, ∨, and ¬.

• Using this definition of B(AP), AP′ ⊆ AP implies that B(AP′)⊆B(AP).

• FV (φ) (Free Variables) Duret-Lutz et al. [38] is the set of atomic propositions observed in
the formula φ, e.g., FV (ab∨ab̄) = {a} because φ = (ab∨ab̄) can be simplified into φ = a
(we say that b is a silent (or a “don’t care”) atomic proposition in φ).
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• The notation `
AP′
= `′ is equivalent to `|AP′ = `′|AP′ , where `|AP′ denotes the restriction of the

valuation ` to the subset of atomic propositions AP′. In other words, ` AP′
= `′ means that the

valuations ` and `′ match on the atomic propositions of AP′.

Duret-Lutz et al. [38] use an alternative definition of TGBA more suited than Definition 16
to define and implement the hybrid approaches SOP and SLAP. In these TGBA, each transition
is labeled with a propositional formula φ over AP (the resulting transition relation is of the form
δ ⊆ Q ×B(AP)× 2F ×Q ). In the following, we will see that this labeling of transitions with
propositional formula simplifies the formalization of the different hybrid approaches presented in
this work. For instance, in SOP and SOP-TGTA approaches, it allows to simplify the definition
(and the implementation) of the concept of observed alphabet from a state of an automaton (TGBA
or TGTA).

7.2.1 TGBA labeled with propositional formulas

In a TGBA labeled with propositional formulas, each transition is labeled with a propositional
formula φ ∈ B(AP) instead of a valuation ` ∈ 2AP. This formulas φ represents the maximal set
of valuations {`0, `1, . . . , `n} ⊆ 2AP such that ∀i ≤ n, `i |= φ. In other words, the set of valuations
{`0, `1, . . . , `n} is the set of all models of φ (it can be represented by φ =

∨
i≤n `i)). For example,

in Figure 7.1a, the formula φ = b labeling the transition q0
b−→ q1 represents the set of valuations

{āb,ab}.
In order to obtain this form of TGBA, we merge into a single transition all transitions between

each pair of states (q,q′), when these transitions are labelled with the same acceptance conditions
F . Formally, for a pair of states (q,q′) ∈ Q 2 and a set of acceptance conditions F ∈ F , the set of
transitions (q, `0,F,q′), . . . ,(q, `n,F,q′) ∈ δ are merged into a single transition (q,φ,F,q′) where
φ =

∨
i≤n `i .

Definition 39 (TGBA (labeled with propositional formulas)). A Transition-based Generalized
Büchi Automata (TGBA) over the alphabet Σ = 2AP is a tuple G = 〈Q ,I ,δ,F 〉 where
• Q is a finite set of states,

• I is a finite set of initial states,

• F 6= /0 is a finite and non-empty set of acceptance conditions,

• δ ⊆ Q ×B(AP)×2F ×Q is a transition relation, where each element (q,φ,F,q′) ∈ δ rep-
resents a transition from state q to state q′ labeled by a propositional formula φ ∈ B(AP),
and a set of acceptance conditions F ∈ 2F . In the following, an element (q,φ,F,q′) ∈ δ will

be denoted q
φ,F−−→ q′

An infinite word σ = `0`1`2 . . . ∈ Σω is accepted by G if there exists an infinite sequence of
transitions π = (q0,φ0,F0,q1)(q1,φ1,F1,q2) · · ·(qi,φi,Fi,qi+1) · · · ∈ δω (π is called a run of G)
where:
• q0 ∈ I , and ∀i ∈ N, `i |= φi (i.e., the infinite word σ is recognized by the run π)
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• ∀ f ∈ F , ∀i ∈ N, ∃ j ≥ i, f ∈ Fj (i.e., the run π is accepting iff it visits each acceptance
condition infinitely often).

The language accepted by G is the set L (G)⊆ Σω of infinite words it accepts.

Figure 7.1a shows the TGBA of the LTL formula aUb. The transitions are labeled with the
propositional formulas ab̄, b and > (which encodes all the valuations over AP = {a,b}).

Using this variant of TGBA, we obtain a new definition of the synchronous product between
a TGBA G and a Kripke structure K . We remind that this synchronous product is also a TGBA,
which only accepts the words accepted by both G and K (Formally, L (K ⊗G) = L (K )∩
L (G)).

Definition 40 (Synchronous product of a TGBA with a Kripke structure). For a TGBA G =

〈Q ,I ,δ,F 〉 over the alphabet Σ = 2AP and a Kripke structure K = 〈S ,S0,R , l〉, the product
G ⊗K is the TGBA 〈Q⊗,I⊗,δ⊗,F 〉 over the alphabet Σ = 2AP where
• Q⊗ = Q ×S ,

• I⊗ = I ×S0,

• δ⊗ ⊆ Q⊗×B(AP)×2F ×Q⊗ where

δ⊗ =

(q1,s1)
l(s1),F−−−−→ (q2,s2)

∣∣∣∣∣∣
(s1,s2) ∈ R and

∃φ ∈B(AP) s.t. q1
φ,F−−→ q2 ∈ δ and l(s1) |= φ


Figure 7.1c (taken from [37]) is an illustration of Definition 40. It shows an example of a

synchronous product G ⊗K between a TGBA G of aUb (Figure 7.1a) and an example of Kripke
structure K over AP′ = {a,b,c} shown in Figure 7.1b. The initial state of the product is (q0,s0).
Then, the successors {s1,s4} of s0 in K are synchronized with the state q0 of G , because the TGBA

self-loop q0
ab̄−→ q0 is labeled by the formula φ = ab̄ and l(s0) = ab̄c |= φ. From state (q0,s4), the

product move to state (q1,s5) through the TGBA transition q0
b−→ q1 because l(s4) = abc̄ |= b.

From the product state (q1,s5), the TGBA state q1 only requires to verify > (i.e, any valuation) to
explore the self-loop labeled with the acceptance condition . Therefore, any cycle of K starting
in s5 corresponds to an accepting cycle in the product.

7.2.2 TGTA labeled with propositional formulas

Similar to TGBA, we present in this section a definition of a TGTA labeled with propositional for-
mulas, and for the same reasons as for TGBA, we will see that this alternative definition of TGTA
is more suited than Definition 30 to define and implement the TGTA-based hybrid approaches
presented later in this chapter.

The difference between TGBA and TGTA is mainly in the interpretation of the transition
relation δ ⊆ Q ×B(AP)× 2F ×Q . Indeed, in TGTA labeled with propositional formulas, for
each transition (q,φ,F,q′) ∈ δ, the formula φ encodes a set of changesets {k0,k1, . . . ,kn} ⊆ 2AP,
where ∀i≤ n, each changeset ki |= φ.

As for TGBA, in order to obtain the TGTA labeled with propositional formulas, we merge
into a single transition all transitions between each pair of states (q,q′), when these transitions are
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labelled with the same acceptance conditions F . Formally, , for a pair of states (q,q′) ∈ Q 2 and
a set of acceptance conditions F ∈ F , the set of transitions (q,k0,F,q′), . . . ,(q,kn,F,q′) ∈ δ are
merged into a single transition (q,φ,F,q′) where the set of changesets {k0, . . . ,kn} is the set of all
models of φ. In the following, we will use (q,φ,F,q′) and (q,{k0, . . . ,kn},F,q′) interchangeably

as transitions of δ. For example, in Figure 7.2a, the formula φ = b labeling the transition q0
b−→ q1

represents the set of changesets {{b},{a,b}} (meaning that the value of b changes between q0 and
q1 and we “do not care” about a).

The following definition formalizes this form of TGTA and how it changes the way an infinite
word is accepted.

Definition 41 (TGTA (labeled with propositional formulas)). A Transition-based Generalized
Testing Automata (TGTA) over the alphabet Σ = 2AP is a tuple T = 〈Q ,I ,U,δ,F 〉 where
• Q is a finite set of states,

• I is a finite set of initial states,

• U : I → B(AP) is a function mapping each initial state to a propositional formula φ ∈
B(AP),

• F 6= /0 is a finite and non-empty set of acceptance conditions,

• δ ⊆ Q ×B(AP)×2F ×Q is a transition relation, where each element (q,φ,F,q′) ∈ δ rep-
resents a transition from state q to state q′ labeled by a propositional formula φ ∈ B(AP),
and a set of acceptance conditions F ∈ 2F .

• δ has to satisfy the following stuttering-normalization constraint:
∀(q,q′) ∈ Q 2 :

(
∃(φ,F) ∈B(AP)×2F , /0 |= φ∧ (q,φ,F,q′) ∈ δ

)
⇐⇒ (q = q′)

An infinite word σ = `0`1`2 . . . ∈ Σω is accepted by T iff there exists an infinite sequence
of transitions π = (q0,φ0,F0,q1)(q1,φ1,F1,q2) · · ·(qi,φi,Fi,qi+1) · · · ∈ δω (π is called a run of T )
where:
• q0 ∈ I , and `0 |=U(q0)

• ∀i ∈ N, (`i⊕ `i+1) |= φi (i.e., the infinite word σ is recognized by the run π)

• ∀ f ∈ F , ∀i ∈ N, ∃ j ≥ i, f ∈ Fj (i.e., the run π is accepting).
The language accepted by T is the set L (T )⊆ Σω of infinite words it accepts.

Figure 7.2a shows the TGTA of the LTL formula aUb. The valuations of the initial states are
U(q0) = ab̄ and U(q1) = b= {ab, āb}. The transitions are labeled with the propositional formulas.
The formula āb̄ labeling the stuttering self-loop on q0 is the empty changeset /0. The formula
b labeling the transition q0

b−→ q1 is obtained by merging the two changesets of the transitions

q0
{b}−−→ q1 and q0

{a,b}−−−→ q1 (because {{b},{a,b}} |= b). On the self-loop q1
>,{ }−−−→ q1, the formula

> is obtained by merging the set of all changesets over AP = {a,b}, and the acceptance condition
is indicated by the black dot (F = { }).

Using this alternative definition of TGTA, we obtain the following definition of the syn-
chronous product between a TGTA and a Kripke structure. We remind that this synchronous
product is an /0-TGTA (Definition 29).
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Definition 42 (Synchronous product of a TGTA with a Kripke structure). For a TGTA T =

〈Q ,I ,U,δ,F 〉 over the alphabet Σ = 2AP and a Kripke structure K = 〈S ,S0,R , l〉, the product
T ⊗K is the /0-TGTA 〈Q⊗,I⊗,U⊗,δ⊗,F 〉 over the alphabet Σ = 2AP where
• Q⊗ = Q ×S ,

• I⊗ = {(q,s) ∈ I ×S0 | l(s) |=U(q)}

• ∀(q,s) ∈ I⊗,U⊗((q,s)) = l(s),

• δ⊗ ⊆ Q⊗×B(AP)×2F ×Q⊗ where

δ⊗ =

(q1,s1)
(l(s1)⊕l(s2))|AP,F−−−−−−−−−−→ (q2,s2)

∣∣∣∣∣∣∣∣
(s1,s2) ∈ R and

∃φ ∈B(AP) s.t. q1
φ,F−−→ q2 ∈ δ and

(l(s1)⊕ l(s2)) |= φ


Figure 7.2c is an illustration of Definition 42. It shows an example of a synchronous product

T ⊗K between the TGTA T of aUb of Figure 7.2a and the Kripke structure K of Figure 7.1b. The
initial state of the product is (q0,s0) because l(s0) = ab̄c |= U(q0) = ab̄. Then, (q0,s0) have two
successors: the first successor is (q0,s1) because K has a transition s0 −→ s1 with l(s0)⊕ l(s1) =

/0 |= āb̄ and T have a stuttering self-loop q0
āb̄−→ q0; the second successor is (q1,s4) because in K we

have s0 −→ s4 with l(s0)⊕ l(s4) = {b,c} |= b and the TGTA have a transition q0
b−→ q1 labeled with

φ = b. From the product state (q1,s4), the TGTA can explore any changeset through the self-loop
labeled with> and the acceptance condition . Therefore, the TGTA state q1 can be synchronized
with any reachable state from s4 in K and the cycle (q1,s4) −→ (q1,s5) −→ (q1,s6) −→ (q1,s7) −→
(q1,s4) is an accepting cycle in the product. In the obtained product T ⊗K , each transition is
labeled with the changeset ((l(s1)⊕ l(s2))|AP) between the states of K . These changesets are
computed according to the set of atomic propositions AP = {a,b} observed by T . The product
transitions also bear the acceptance conditions coming from the TGTA T .

7.3 Symbolic Observation Graph (SOG)

In this section, we propose an adaptation of the SOG hybrid approach for use with TGTA instead
of TGBA. We start by presenting a variant of SOG [58, 37] used in a TGBA-based approach [37],
then we present another variant of SOG proposed in Klai and Poitrenaud [58], this variant is
called SOG-TGTA in this work because it is more suited to be used in a TGTA-based approach.
In Section 7.6.3, we will show the results of an experimental comparison between the original
approach based on SOG and TGBA and our approach based on TGTA and SOG-TGTA.

A SOG is a transformation of a Kripke structure allowing to aggregate states according to
the set AP of atomic propostions observed in the property automaton. This transformation only
preserves stutter-invariant properties. The constructed SOG is an explicit graph where each node
is a symbolic set of states. Theses states are aggregated because they share the same values for the
atomic propositions of AP (they may have different values for the other atomic propositions of the
model that are not in AP).
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In hybrid approaches, symbolic data structure are used to represent sets of states of the Kripke
structure. The following symbolic operations are introduced in [38] to manipulate this symbolic
aggregate of states.

Let K = 〈S ,S0,R , l〉 a Kripke structure, encoded by a Symbolic Kripke structure K =

〈S0,R,L〉 (Definition 32). For a set of states a ⊆ S and a propositional formula φ ∈ B(AP), the
symbolic operations SuccF(a,φ) and ReachF(a,φ) are defined as follows:
• SuccF(a,φ) = {s′ ∈ S | ∃s ∈ a, R(s,s′)∧∃`, [` |= φ∧L(s′, `)]}, i.e., the set of the Successors

of states of aggregate a, Filtered to keep only those satisfying φ.

• ReachF(a,φ) computes the least subset of S satisfying:

– a⊆ ReachF(a,φ),

– SuccF(ReachF(a,φ),φ)⊆ ReachF(a,φ).

ReachF(a,φ) is implemented using symbolic least fixed-points on Decision Diagrams.

Definition 43 (Homogeneous aggregate [37]). Let a ∈ 2S \{ /0} be a subset of states of K . We say
that a is a homogeneous aggregate w.r.t. (with respect to) a given set of atomic propositions AP
iff ∀s,s′ ∈ a, l(s) AP

= l(s′). In other words, all the states of the aggregate a have the same valuation
for all the atomic propositions in AP.

For a homogeneous aggregate a w.r.t. AP, we write lAP(a) = l(s)|AP for any state s ∈ a (i.e.,
the valuation of a is the valuation of any one of its states).

For any AP′ ⊆ AP, a homogeneous aggregate a w.r.t. AP is also homogeneous w.r.t. AP′.

7.3.1 SOG

Definition 44 (Symbolic Observation Graph [58, 37]). Let K = 〈S ,S0,R , l〉 be a Kripke structure
over the set of atomic propositions APK . A symbolic observation graph over AP⊆ APK is defined
as K̂AP = 〈S ′,S ′0,R ′, l′〉 a Kripke structure over AP satisfying :

1. S ′ = Γ
′∪2AP with Γ

′ =

{
a ∈ 2S \{ /0}

∣∣∣∣∣a is homogeneous w.r.t. AP

a = ReachF(a, lAP(a))

}
Elements of Γ′ are called aggregates and elements of 2AP are divergent states.

2. ∀a ∈ S ′, l′(a) =

{
lAP(a) if a ∈ Γ′

a if a ∈ 2AP

3. R ′ ={a−→ a′ ∈ Γ
′×Γ

′ | a′ = ReachF(SuccF(a, l′(a′))\a, l′(a′))}
∪{a−→ ` ∈ Γ

′×2AP | a contains a cycle and `= l′(a)}
∪{`−→ ` | ` ∈ 2AP}

4. S ′0 = {as0 = ReachF({s0}, l(s0)|AP) | s0 ∈ S0}.

The above Definition details how to build a SOG K̂AP. The set S ′0 of initial states of K̂AP is
composed by the set of homogenous aggregates as0 satisfying as0 = ReachF({s0}, l(s0)|AP), i.e.,

for each initial state s0 of K , as0 is the set of reachable states s′ from s0 in K such that l(s′) AP
= l(s0).

The set S ′ of states of K̂AP is composed of two kinds of nodes:
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1. homogenous aggregates a satisfying a = ReachF(a,λAP(a))

2. divergent states ` ∈ 2AP labeled with subsets of atomic propositions of AP.
For the transition relation of K̂AP, R ′ is composed of three kinds of edges:

1. case a and a′ are two aggregates of Γ′: a−→ a′ ∈R ′ iff lAP(a) 6= lAP(a′) and a′ contains every
state s′ ∈ Γ satisfying l(s′)|AP = l′(a′) and s−→ s′ ∈ R with s ∈ (a∪a′).

2. case a is an aggregates of Γ′ and ` is a divergent state: a −→ ` iff a contains a cycle and
l′(a) = `.

3. each divergent state ` ∈ 2AP has a self-loop `−→ `.
Figure 7.1d shows the SOG K̂{a,b} built from the Kripke structure K of Figure 7.1b according

to AP = {a,b} (ignoring the atomic proposition c of K ).
The initial state of K̂{a,b} is an aggregate {s0,s1,s2,s3} because they agree on the value of

atomic propositions observed in AP = {a,b}: l(s0)|{a,b} = l(s1)|{a,b} = l(s2)|{a,b} = l(s3)|{a,b} =

ab̄. This initial aggregate contains a cycle so one of its successors is a divergent state labeled by
ab̄.

The constructed SOG K̂{a,b} is also a Kripke structure, that allows to check any stutter-
invariant property over the alphabet 2{a,b}. As example, Figure 7.1e represents G ⊗ K̂{a,b}, the
synchronous product between the TGBA G of aUb and the SOG K̂{a,b}.

Theorem 2 ([58]). Given a Kripke Structure K defined on APK , then the SOG K̂AP of K built over
AP ⊆ APK preserves any stuttering-invariant property A on AP. In other words: L (A ⊗K ) 6=
/0 ⇐⇒ L (A⊗ K̂AP) 6= /0.

7.3.2 SOG for TGTA (SOG-TGTA)

Klai and Poitrenaud [58] proposed another variant of SOG that does not use divergent states. In
a TGTA-based approach, we chose to use this variant of SOG, and we call it SOG-TGTA in this
work. Instead of using divergent states, this SOG-TGTA has a self-loop on each aggregate that
contains a cycle [58]. In addition, in TGTA all stuttering transitions are self-loops. Therefore, the
synchronization between this stuttering self-loops and the self-loops of SOG-TGTA only produces
self-loops in the product automaton, and therefore does not generate new states in this product.

Definition 45 (Symbolic Observation Graph [37] (SOG-TGTA)). Let K = 〈S ,S0,R , l〉 be a
Kripke structure over APK . A SOG-TGTA over AP⊆APK of K is defined as K̂ ′AP = 〈S ′,S ′0,R ′, l′〉
a Kripke structure over AP satisfying :

1. S ′ =

{
a ∈ 2S \{ /0}

∣∣∣∣∣a is homogeneous w.r.t. AP

a = ReachF(a, lAP(a))

}

2. ∀a ∈ S ′, l′(a) = lAP(a)

3. R ′ ={a−→ a′ ∈ S ′×S ′ | a′ = ReachF(SuccF(a, l′(a′))\a, l′(a′))}
∪{a−→ a ∈ Γ

′×Γ
′ | a contains a cycle }

4. S ′0 = {ReachF({s0}, l(s0)|AP) | s0 ∈ S0}.
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The only difference between the above Definition 45 and the Definition 44 of SOG is the
fact that SOG-TGTA does not use the divergent states labeled with the elements of 2AP. These
divergent states are replaced in SOG-TGTA by adding a self-loop on each aggregate that contains
a cycle (see point 3 of Definition 45). The obtained SOG-TGTA contains only one kind of nodes:
homogenous aggregates.

Theorem 3 ([58]). Given a Kripke Structure K defined on APK , then the SOG-TGTA K̂ ′AP of
K built over AP ⊆ APK preserves any stuttering-invariant property A on AP. In other words:
L (A⊗K ) 6= /0 ⇐⇒ L (A⊗ K̂ ′AP) 6= /0.

Figure 7.2d shows an example of a SOG-TGTA K ′{a,b} and Figure 7.2e presents the product

T ⊗ K̂ ′{a,b} of K ′{a,b} with the TGTA T of aUb. K̂ ′{a,b} is similar to the SOG K̂{a,b} of Figure 7.1d,
but without the divergent state labeled with ab̄. In addition, the initial aggregate of K ′{a,b} has a
self-loop because it contains a cycle.

We can notice that T ⊗ K̂ ′{a,b} is smaller than the product G ⊗ K̂{a,b} (Figure 7.1e) using the
TGBA G (recognizing the same formula aUb as the TGTA T ). We will present in Section 7.6 an
experimental comparison that will confirm this observation.

7.4 Symbolic Observation Product (SOP)

The Symbolic Observation Product (SOP) [37] is a dynamic extension of SOG that exploits the
fact that the number of observed atomic propositions decreases as we progress in the property
automaton. The goal of this extension is to allow further aggregation than SOG. However, contrary
to SOG, which is an abstraction of a Kripke structure, SOP is an hybrid synchronous product
between a Kripke structure and the TGBA of a stutter-invariant property. In this section, we start
by giving the definition and an illustrative example of SOP. Then, we present SOP-TGTA, an
adaptation of SOP that uses TGTA instead of TGBA to represent the property automaton.

In Section 7.6.4, we will present the results of an experimental comparison between the origi-
nal SOP approach based on TGBA and our SOP-TGTA approach based on TGTA.

Given a TGBA G = 〈Q ,I ,δ,F 〉 or a TGTA G = 〈Q ,I ,U,δ,F 〉, the alphabet FV(q) of a
state q ∈ Q is defined as the union of the atomic propositions which can be observed from q.
Formally, FV(q) =

⋃
q1

φ,F−−→q2∈δ?(q)
FV(φ) with δ?(q) is the set of transitions reachable from a

state q. From this definition of FV(q), we can easily deduce that for any q1
φ,F−−→ q2 ∈ δ, we

have FV(q1) ⊇ FV(q2). In other words, the set of observed atomic propositions decreases as we
progress through the successive states of the property automaton (TGBA or TGTA).

7.4.1 SOP

SOP [38] is an hybrid product that is constructed over a dynamic alphabet (FV) which decreases
as the constrcution of the product progresses. This allows to obtain larger aggregates and therefore
fewer number of states than in SOG approach.
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Definition 46 (SOP of a TGBA and a Kripke structure). Given a stutter-invariant TGBA G =

〈Q ,I ,δ,F 〉 over AP and a Kripke structure K = 〈S ,S0,R , l〉, the Symbolic Observation Product
of G and K is the TGBA denoted G ⊗̂K = 〈Q⊗̂,I⊗̂,δ⊗̂,F 〉 where:

1. Q⊗̂ = Q ′∪D ′ where states constructed from aggregates are in Q ′ and divergent states are
in D ′:

Q ′ =

{
(q,a) ∈ Q × (2Γ \{ /0})

∣∣∣∣∣a is homogeneous w.r.t. FV(q)

a = ReachF(a, lFV(q)(a))

}
D ′ = {(q, `) | q ∈ Q and ` ∈ 2FV(q)}

2. δ⊗̂ =

(q1,a1)
`,F−−→ (q2,a2)

∣∣∣∣∣∣∣∣
(q1,a1) ∈ Q ′,(q2,a2) ∈ Q ′, `= lFV(q1)(a1),

∃φ ∈B(AP) s.t. q1
φ,F−−→ q2 ∈ δ, and ` |= φ,

∃`′ ∈ 2FV(q2) s.t. a2 = ReachF(SuccF(a1, `
′)\a1, `

′)


∪

(q1,a)
`1,F−−→ (q2, `2)

∣∣∣∣∣∣∣∣
(q1,a) ∈ Q ′,(q2, `2) ∈D ′, `1 = lFV(q1)(a),

a contains a cycle, `2 = `1|FV(q2),

∃φ ∈B(AP) s.t. q1
φ,F−−→ q2 ∈ δ, and `1 |= φ


∪

(q1, `1)
`1,F−−→ (q2, `2)

∣∣∣∣∣∣
(q1, `1) ∈D ′,(q2, `2) ∈D ′, `2 = `1|FV(q2),

∃φ ∈B(AP) s.t. q1
φ,F−−→ q2 ∈ δ, and `1 |= φ


3. I⊗̂ = {(q0,ReachF({s0}, l(s0)|FV(q0))) | (q0,s0) ∈ I ×S0}

We have L (G ⊗K ) 6= /0 ⇐⇒ L (G ⊗̂K ) 6= /0 by construction.

As in SOG, the set of states Q⊗̂ of a SOP is composed of two kinds of states in Q ′ and D ′.
The states of Q ′ are pairs of the form (q,a), where q is a state of TGBA and a is an aggregate of
states from the Kripke structure. a is similar to an aggregate in a SOG but computed according to
the alphabet FV(q) instead of all AP. The states of D ′ are the divergent states of the SOP.

The SOP transition relation δ⊗̂ is composed of three parts. The first part contains the transitions
of the form (q1,a1)−→ (q2,a2), where q1,q2 are two successive states of the TGBA, and a1,a2 are
two aggregates of states from the Kripke structure. The aggregate a2 contains the successors of
states of a1 and its computation is similar to SOG, except that a2 is homogeneous w.r.t. the set
FV(q2) instead of all AP. The second and third parts of the SOP transition relation δ⊗̂ are also
similar to the SOG transition relation parts for cycle detection. Figure 7.1f shows an example of
a SOP G ⊗̂K computed from the Kripke structure K and the TGBA G of aUb. The difference
between the SOP and the product G ⊗ K̂{a,b} using the SOG (Figure 7.1e), is mainly when the
TGBA G reaches the state q1. Indeed, from this state, the alphabet FV(q1) becomes empty. This
allows the SOP to aggregate the states {s4,s5,s6,s7}. In addition, these states form a cycle in K ,
and therefore implies to add a divergent state (q1,>) in the SOP.

7.4.2 SOP Using TGTA (SOP-TGTA)

In this section, we propose a TGTA-based SOP, called SOP-TGTA. The main difference between
SOP and SOP-TGTA is related to the changesets labeling the TGTA and their synchronization
with the states of the Kripke structure.
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Definition 47 (SOP of a TGTA and a Kripke structure). Given a TGTA T = 〈Q ,I ,U,δ,F 〉 over
AP and a Kripke structure K = 〈S ,S0,R , l〉, the SOP-TGTA of T and K is the TGTA denoted
T ⊗̂K = 〈Q⊗̂,I⊗̂,U⊗̂,δ⊗̂,F 〉 where:

1. Q⊗̂ = Q ′ ∪D ′ where states of the automaton are synchronized with aggregates in Q ′ and
with divergent states in D ′:

Q ′ =

{
(q,a) ∈ Q × (2S \{ /0})

∣∣∣∣∣a is homogeneous w.r.t. FV(q)

a = ReachF(a, lFV(q)(a))

}
D ′ = {(q, `) | q ∈ Q and ` ∈ 2FV(q)}

2. δ⊗̂ =


(q1,a1)

(`⊕`′),F−−−−→ (q2,a2)

∣∣∣∣∣∣∣∣∣∣∣

(q1,a1) ∈ Q ′,(q2,a2) ∈ Q ′, `= lFV(q1)(a1),

∃φ ∈B(AP) s.t. q1
φ,F−−→ q2 ∈ δ,

∃`′ ∈ 2FV(q1) s.t. (`⊕ `′) |= φ, and

a2 = ReachF(SuccF(a1, `
′
|FV(q2)

)\a1, `
′
|FV(q2)

)


∪

(q1,a)
/0,F−−→ (q2, `2)

∣∣∣∣∣∣∣∣
(q1,a) ∈ Q ′,(q2, `2) ∈D ′, `1 = lFV(q1)(a),

a contains a cycle, `2 = `1|FV(q2),

∃φ ∈B(AP) s.t. q1
φ,F−−→ q2 ∈ δ, and /0 |= φ


∪

(q1, `1)
/0,F−−→ (q2, `2)

∣∣∣∣∣∣
(q1, `1) ∈D ′,(q2, `2) ∈D ′, `2 = `1|FV(q2),

∃φ ∈B(AP) s.t. q1
φ,F−−→ q2 ∈ δ, and /0 |= φ


3. I⊗̂ = {(q0,ReachF({s0}, l(s0)|FV(q0))) | (q0,s0) ∈ I ×S0 and l(s0) |=U(q0)},

4. ∀(q0,a0) ∈ I⊗̂,U⊗̂((q0,a0)) = lFV(q0)(a0).
We have L (T ⊗K ) 6= /0 ⇐⇒ L (T ⊗̂K ) 6= /0 by construction.

The set of states Q⊗̂ of a SOP-TGTA is the same as in SOP. But, the transition relation is a little
different because it is based on changesets. As in SOP, the transition relation δ⊗̂ of SOP-TGTA is
composed of three rules. The first rule defines the transitions between aggregates, the second rule
is about transitions between aggregates and divergent states, and the third rule is for transitions
between divergent states.

The transitions between aggregates are of the form (q1,a1) −→ (q2,a2), where q1,q2 are two
successive states of the TGTA, and a1,a2 are two aggregates of states from the Kripke structure.
Each aggregate a2 contains the successors of states of a1, filtered to keep only those satisfying

a valuation `′|FV(q2)
, where `′ satisfies (`⊕ `′) |= φ with ` = lFV(q1)(a1) and q1

φ,F−−→ q2. In other
words, `′ is obtained from ` = lFV(q1)(a1) by applying one changeset from the set of changesets
encoded by φ. In addition, each aggregate a2 is homogeneous w.r.t. the set of atomic prpositions of
FV(q2). In the second and third parts of δ⊗̂ of SOP-TGTA, all the transitions between aggregates
and divergent states and all the self-loops on divergent states are labeled with an empty changeset
/0. Figure 7.2f shows an example of a SOP-TGTA T ⊗̂K computed from the Kripke structure K
and the TGTA T of aUb. The first difference between the SOP-TGTA T ⊗̂K and the product
T ⊗ K̂ ′{a,b} using SOG-TGTA (Figure 7.2e), is the divergent state labeled with (q0,ab̄). This
divergent state is added to the SOP-TGTA because the aggregate {s0,s1,s2,s3} of the initial state
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contains a cycle. The second difference between T ⊗̂K and T ⊗ K̂ ′{a,b} comes from the fact that
the alphabet FV(q1) becomes empty when the TGTA T reaches the state q1. This allow the SOP-
TGTA to aggregate the states {s4,s5,s6,s7} of K . In addition, this aggregate contains a cycle, and
therefore allows to add in T ⊗̂K a divergent state labeled with (q1,>).

In our example of verification of the LTL property aUb on the Kripke structure K , we observe
that the SOP-TGTA T ⊗̂K of Figure 7.2f is smaller than the original SOP G ⊗̂K of Figure 7.1f.

7.5 Self-Loop Aggregation Product (SLAP)

SLAP [38] is an hybrid synchronous product, in which the aggregation of Kripke structure states is
based on the self-loops of the property automaton. This section presents the original SLAP based
on TGBA and SLAP-TGTA, a variant of SLAP based on TGTA. In Section 7.6.5, we will show
the results of an experiment comparing the performance of SLAP and SLAP-TGTA.

Definition 48. Given a TGBA G = 〈Q ,I ,δ,F 〉 or a TGTA T = 〈Q ,I ,U,δ,F 〉, for a state q ∈ Q ,
SF(q) encodes the Self-loop Formulas labeling edges q−→ q. Formally,

SF(q) =
∨

q
φ,F−−→q∈δ

φ

.

Similar to the symbolic operations SuccF and ReachF defined in Section 7.3, for SLAP ap-
proach, we define two other operations FReach(a,φ) and Succ⊕(a,φ) with a⊆ S is a set of states
of K and φ ∈B(AP) is a propositional formula, such that:
• FSucc(a,φ) = {s′ ∈ S | ∃s ∈ a, R(s,s′)∧ ∃`, [` |= φ∧ L(s, `)]}, i.e, Filter a to only keep

states satisfying φ, then produce their Successors. The difference between SuccF and FSucc
is whether the filter is applied on the source or destination states.

• FReach(a,φ) computes the least subset of S satisfying:

– a⊆ FReach(a,φ),

– FSucc(FReach(a,φ),φ)⊆ FReach(a,φ).

7.5.1 SLAP

A SLAP is an hybrid product between a Kripke structure K and a TGBA G . The states of the
SLAP are pairs of the form (q,a) composed of a state q of G and an aggregate a containing
successive states of K aggregated as long as they model SF(q). These aggregates are computed
as symbolic least fixed-points using the operations FSucc and FReach defined in Section 7.2.

Definition 49 (SLAP of a TGBA and a Kripke structure). Given a TGBA G = 〈Q ,I ,δ,F 〉 over
AP and a Kripke structure K = 〈S ,S0,R , l〉, the Self-Loop Aggregation Product of G and K is
the TGBA denoted G �K = 〈Q�,I�,δ�,F 〉 where:
• Q� = Q × (2S \{ /0})
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• δ� =

(q1,a1)
>,F−−→ (q2,a2)

∣∣∣∣∣∣∣∣
∃φ ∈B(AP) s.t. q1

φ,F−−→ q2 ∈ δ,

q1 = q2⇒ F 6= /0, and

a2 = FReach(FSucc(a1,φ),SF(q2))


• I� = {(q0,FReach({s0},SF(q0))) | (q0,s0) ∈ I ×S0}

We have L (G ⊗K ) 6= /0 ⇐⇒ L (G �K ) 6= /0 by construction.

All transitions of the constructed SLAP are labeled with the formula >, because these labels
are irrelevant when checking language emptiness of SLAP.

Figure 7.1g shows an example of SLAP G �K obtained from the Kripke structure K and

the TGBA G of aUb. The initial state of G � K is the pair
(

q0,
{ s0 s1

s2 s3
s4

})
, where q0 is the

initial state of G and the aggregate a1 =
{ s0 s1

s2 s3
s4

}
is obtained by iteratively aggregating the suc-

cessors of the states that satisfy SF(q0) = ab̄. Then, from the initial state (q0,a1), we explore

the transition q0 b−→ q1 of TGBA and we obtain only one successor (q1,a2) with the aggregate
a2 = FReach(FSucc(a1,b),SF(q1)) computed as follows:
• The set FSucc(a1,b) contains only the successors of {s4} because only the state s4 in a1

satisfies b, thus FSucc(a1,b) = {s5};

• SF(q1) => because q1
>−→ q1

• We deduce that a2 = FReach({s5},>). a2 contains all the reachable states from s5 (satisfy-
ing >), thus a2 = {s4,s5,s6,s7}.

Finally, we explore the TGBA transition q1
>,−−→ q1 and we obtain an accepting self-loop on (q1,a2)

because the successor aggregate of a2 is a2 (i.e, FReach(FSucc(a2,>),SF(q1)) = a2).

7.5.2 SLAP Using TGTA (SLAP-TGTA)

The SLAP-TGTA is a variant of SLAP based on TGTA instead of TGBA. In SLAP-TGTA, the
states of the Kripke structure are aggregated according to the changesets labelling the TGTA transi-
tions. In particular, each SF(q) represents the set of changesets encoded by the Self-loop Formulas
labeling edges q−→ q of the TGTA. Therefore, in SLAP-TGTA the successive states of the Kripke
structure are aggregated as long as they change according to the changesets encoded by SF(q).
These aggregates are computed as least fixed-points based on changesets using the symbolic op-
erations Succ⊕ and Reach⊕ defined as follows:

Let K = 〈S ,S0,R , l〉 a Kripke structure, encoded by a changeset-based symbolic Kripke struc-
ture K⊕ = 〈S0,R⊕,L〉 (Definition 37 in page 118). For a set of states a ⊆ S and a propositional
formula φ ∈B(AP), we define the following symbolic operations:

• Succ⊕(a,φ) = {s′ ∈ S | ∃s∈ a, ∃k, [k |= φ∧R⊕(s,k,s′)]}, i.e, the set of the Successors states
of a Filtered to keep only those satisfying k |= φ where k = l(s)⊕ l(s′) is a changeset between
l(s) and l(s′).

• Reach⊕(a,φ) computes the least subset of S satisfying:

– a⊆ Reach⊕(a,φ),

– Succ⊕(Reach⊕(a,φ),φ)⊆ Reach⊕(a,φ).
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Definition 50 (SLAP of a TGTA and a Kripke structure). Given a TGTA T = 〈Q ,I ,U,δ,F 〉 over
AP and a Kripke structure K = 〈S ,S0,R , l〉, the SLAP-TGTA of T and K is the TGTA denoted
T �K = 〈Q�,I�,δ�,F 〉 where:
• Q� = Q × (2S \{ /0})

• δ� =

(q1,a1)
>,F−−→ (q2,a2)

∣∣∣∣∣∣∣∣
∃φ ∈B(AP) s.t. q1

φ,F−−→ q2 ∈ δ,

q1 = q2⇒ F 6= /0, and

a2 = Reach⊕(Succ⊕(a1,φ),SF(q2))


• q0

� = {(q0,Reach⊕({s0},SF(q0))) | (q0,s0) ∈ I ×S0 and l(s0) |=U(q0)}
We have L (T ⊗K ) 6= /0 ⇐⇒ L (T �K ) 6= /0 by construction.

For the same reason as in SLAP, the SLAP-TGTA transitions are only labeled with >. The
reachable states of a SLAP-TGTA are of the form (q,a) where q is a state of the TGTA and a is
an aggregate of states of the Kripke structure such that: For each state s ∈ a, if s′ is a successor of
s in the Kripke structure with l(s)⊕ l(s′) |= SF(q), then s′ ∈ a.

Figure 7.2g presents T �K , an example of SLAP-TGTA computed from the Kripke struc-
ture K and the TGTA T of aUb. Because l(s0) = ab̄c |= U(q0) = ab̄, the initial state of
T � K is the pair (q0,a1), where a1 is computed from s0 by iteratively aggregates succes-
sors that change according to a changeset belonging to (the set of changesets encoded by)
SF(q0). Formally, a1 = Reach⊕({s0},SF(q0)) = { s0 s1

s2 s3 } (because l(s0)⊕ l(s1) = l(s1)⊕ l(s2) =

l(s2)⊕ l(s3) = /0 |= SF(q0) = āb̄). Then, in order to compute the successors of (q0,a1), we ex-

plore the transition q0 b−→ q1 of TGTA. We obtain only one successor (q1,a2) with the aggregate
a2 = Reach⊕(Succ⊕(a1,b),SF(q1)) is computed as follows:
• Succ⊕(a1,b) = {s4} because s4 is a successor of s0 ∈ a1 and it is the unique successor of

states of a1 that satisfies l(s0)⊕ l(s4) |= b ( l(s0)⊕ l(s4) = {b,c}),

• SF(q1) => because q1
>−→ q1

• Thus, a2 = Reach⊕({s4},>) = {s4,s5,s6,s7} because a2 contains all the reachable states
from s4 through any changesets.

Finally, we compute the successors of (q1,a2) by exploring the TGTA transition q1
>,−−→ q1. This

TGTA accepting self-loop also generates an accepting self-loop on state (q1,a2) of the SLAP-
TGTA. Indeed, the unique successor of (q1,a2) is itself because:
Reach⊕(Succ⊕(a2,>),>) = a2 (the states of a2 are in a cycle).

7.6 Experimental Comparison of Hybrid Approaches using TGBA
vs. TGTA

In the previous sections, we presented three hybrid approaches based on TGBA (SOG, SOP and
SLAP) and their variants based on TGTA (SOG-TGTA, SOP-TGTA and SLAP-TGTA). This sec-
tion presents an experimental evaluation conducted to compare each hybrid approach with its
variant based on TGTA.
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This experimentation is based on BEEM benchmark [67]. It reuses the same benchmark
inputs, formulas and models used to evaluate the fully symbolic approaches in Section 6.4.3
page 124.

7.6.1 Implementation

We have implemented SOG-TGTA, SOP-TGTA and SLAP-TGTA in the same tool LTL-ITS 1

that already contains SOG, SOP, SLAP and the fully symbolic approaches (using TGBA/TGTA).
LTL-ITS tool is built on top of libraries 2: SDD/ITS, Spot, and LTSmin. These three libraries were
already presented in the previous chapter, Section 6.4.1, page 122.

The DVE variant of LTSmin [12] is used to produce an ETF file representing the transition
relation of each BEEM model. These ETF files are loaded by the SDD/ITS [85] library to encode
the symbolic transition relations (R(s,s′)) of the Kripke structures, used to implement the symbolic
operations ReachF and FReach. For SLAP-TGTA, it is a changeset-based symbolic transition
relations R⊕(s,s′) (Definition 37) that are built from the ETF files. It is used to implement the
symbolic operation Reach⊕ for the SLAP-TGTA aggregates computation.

The Spot library [36] is used to translate the LTL properties into TGBA or TGTA. It is also used
to perform the emptiness check of explicit graphs, such as the synchronous products TGBA/SOG
and TGTA/SOG-TGTA. In addition, the hybrid synchronous products SOP, SLAP, SOP-TGTA
and SLAP-TGTA are also handled by the emptiness check of Spot. Indeed, they are explicit
graphs in which each node stores a set of states encoded as a Decision Diagram. These sets of
states are computed using least fixed-points (ReachF, FReach or Reach⊕).

A SOG-TGTA is implemented in the same way as a SOG, as a concrete class of the Kripke
structure interface provided by Spot. During the the emptiness check of the products TGBA/SOG
and TGTA/SOG-TGTA, the SOG and the SOG-TGTA nodes are constructed on-the-fly using the
implementation of the symbolic operation ReachF.

Similar to SOP and SLAP, we have implemented SOP-TGTA and SLAP-TGTA as concrete
classes of the synchronous product interface of Spot. During the the emptiness check, the nodes of
these four hybrid products are built on-the-fly from the states of the property automaton (TGBA or
TGTA) and using the symbolic operations: ReachF for SOP and SOP-TGTA, FReach for SLAP
and Reach⊕ for SLAP-TGTA.

7.6.2 Results

The results of our experimentations are presented as scatter plots using logarithmic scale. Each
scatter plot compares an hybrid approach against its variant based on TGTA. Each point represents
the comparison of the performance of the model checking for a model and formula pair. Any
process that exceeded 60 minutes of runtime or 6GB of RAM was aborted (thus, the answer of the
model checker was not reported for some cases). In our scatter plots, these aborted experiments
are plotted as being three times higher than the maximum of the other values. Thus, these points
appear separately (by the wide white band) from the other experiments that succeed.

1http://ddd.lip6.fr
2Respectively http://ddd.lip6.fr, http://spot.lip6.fr, and http://fmt.cs.utwente.nl/tools/

ltsmin.

http://ddd.lip6.fr
http://ddd.lip6.fr
http://spot.lip6.fr
http://fmt.cs.utwente.nl/tools/ltsmin
http://fmt.cs.utwente.nl/tools/ltsmin
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7.6.3 SOG versus SOG-TGTA

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000 10000

SO
G

-T
G

TA

SOG

verified
violated

1E+05

1E+06

1E+07

1E+05 1E+06 1E+07

SO
G
-T
G
TA

SOG

verified
violated

Figure 7.3: Performance comparison of SOG against SOG-TGTA. Left: time (in seconds); Right:
memory (in kilobytes).

SOG SOG-TGTA
Verified Formulas Win 315 826

Fail 39 4
Violated Formulas Win 1441 609

Fail 14 5

Table 7.1: On all successful experiments, we count the number of cases a specific method has
(Win) the best time. The Fail line shows the cases were an approach failed to solve an experiment
solved by the other approach.

The scatter plots of Figure 7.3 compare the performance of two hybrid approaches: the first
is based on TGBA and SOG (called just SOG approach in the following); the second is based on
TGTA and SOG-TGTA (called SOG-TGTA approach). Each point of the left and right scatter
plots compares respectively the time and memory used in the model checking of each pair (for-
mula, model). The x-axis represents the performance of SOG approach and the y-axis shows the
performance of SOG-TGTA approach, so the points below the diagonal correspond to cases where
the SOG-TGTA approach is better. Symmetrically, the points above the diagonal corresponds to
points were the SOG approach is better. The points represented by green squares correspond to
verified formulas (empty products), and the black crosses correspond to violated formulas (non-
empty products).

In the two scatter plots, we observe that for verified formulas (green points), the SOG-TGTA
approach outperforms the SOG approach (in time and memory). This result is similar to the
comparison between the explicit approaches based on TGBA versus TGTA, presented in Chapter 5
(Section 5.5.2 page 99). This similarity is justified by the fact that these approaches are based on
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traditional explicit synchronous products.
For violated formulas, the SOG approach outperforms the SOG-TGTA approach in the cases

where the execution time is less than one second. On the contrary, for hard cases, there are more
cases that failed using SOG than using SOG-TGTA (compare the “aligned” black points at top and
on right of scatter plots, or for more details see Table 7.1).

In total in these scatter plots, SOG failed in 53 cases solved by SOG-TGTA, while SOG-TGTA
approach failed for only 9 cases solved by SOG. In addition, 875 cases are not solved by the two
approaches within the time and memory limits. In the experiments that have not failed, SOG-
TGTA was at least a ten times faster than SOG in 20 cases, and twice times faster in 287 cases. A
contrario, SOG was at least a ten times faster than SOG-TGTA in 4 cases, and twice times faster
in 144 cases.

Table 7.1 presents the best and the failed approach for each experiment where at least one
approach succeeded. This table does not take into account cases where the two approaches failed.

7.6.4 SOP versus SOP-TGTA
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Figure 7.4: Performance comparison of SOP against SOP-TGTA. Left: time (in seconds); Right:
memory (in kilobytes).

SOP SOP-TGTA
Verified Formulas Win 915 (61%) 593 (39%)

Fail 44 (2%) 327 (21%)
Violated Formulas Win 957 (47%) 1061 (52%)

Fail 18 (0%) 8 (0%)

Table 7.2: On all successful experiments, we count the number of cases a specific method has
(Win) the best time. The Fail line shows the cases were each approach failed to compute the result
of an experiment solved by the other approach.
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Figure 7.5: Performance comparison of SLAP against SLAP-TGTA. Left: time (in seconds);
Right: memory (in kilobytes).

The scatter plots of Figure 7.4 compares the performance of SOP against SOP-TGTA. Each
point compare the time (left scatter plot) and memory (right scatter plot) used to perform the
model checking of each pair (formula, model) of our benchmark. The points below the diagonal
correspond to cases where the SOP-TGTA approach is better, and for the other points the SOP
approach is better.

On the one hand, the results of the scatter plots are very difficult to interpret, because there are
many points where SOP is better and many others with SOP-TGTA which is the best ( SOP-TGTA
was at least a hundred times faster than SOP in 36 cases, ten times faster in 160 cases, and twice
times faster in 579 cases. A contrario, SOP was at least one hundred times faster than SOP-TGTA
in 38 cases, ten times faster in 169 cases, and twice times faster in 511 cases).

On the other hand, if we look at the scatter plots in more detail, we can observe that there are
more cases of failure for SOP-TGTA (represented by the linear cloud at the top of the scatter plots)
than the SOP approach (linear cloud on the right of the scatter plots ). Indeed, SOP-TGTA failed
for 335 experiments where SOP reached the result, while SOP only failed for 62 cases solved
by SOP-TGTA. Table 7.2 gives more details for these failed cases by distinguishing verified and
violated formulas (without taking into account the cases where the two approaches failed). This
table also shows the number of cases in which each approach is better.

7.6.5 SLAP versus SLAP-TGTA

The scatter plots of Figure 7.5 compares the performance of SLAP against SLAP-TGTA. The left
scatter plot compares the time performance and the right concerns the memory consumption. The
points below the diagonal correspond to the cases where SLAP-TGTA is better.

The interpretation of the scatter plots results depends on the colors of the points. For black
crosses that correpond to violated formulas, SLAP-TGTA is more efficient than SLAP in most
cases. For the green squares representing the verified formulas, the scatter plots are difficult to
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SLAP SLAP-TGTA
Verified Formulas Win 981 (50%) 964 (50%)

Fail 57 (2%) 261 (13%)
Violated Formulas Win 644 (31%) 1374 (68%)

Fail 28 (1%) 16 (0%)

Table 7.3: On all successful experiments, we count the number of cases a specific method has
(Win) the best time. The Fail line shows the cases were each approach failed to compute the result
of an experiment solved by the other approach.

interpret, there are many cases on both sides of the diagonal. In addition, according to Table 7.3,
there are roughly the same number of cases where each approach is better than the other. However,
Table 7.3 shows that SLAP is clearly better for failed cases. In total, SLAP-TGTA failed in 277
experiments solved by SLAP, while SLAP failed for only 85 cases solved by SLAP-TGTA. In the
other cases where the two approaches were successful, we observe a relative advantage for SLAP-
TGTA. Indeed, on the one hand, SLAP-TGTA was at least a hundred times faster than SLAP in
85 cases, ten times faster in 646 cases, and twice times faster in 1605 cases. On the other hand,
SLAP was at least one hundred times faster than SLAP-TGTA in 12 cases, ten times faster in 95
cases, and twice times faster in 434 cases only.

We believe that the two approaches SLAP and SLAP-TGTA are complementary and very
different because of the fact that SLAP-TGTA aggregates are based on changesets and therefore
are very different from SLAP aggregates that are based on valuations. Thus, these two approaches
can be considered complementary and can be launched in parallel in order to retrieve the result of
the fastest approach.

7.7 Conclusion

In this chapter, we proposed three hybrid approaches variants using TGTA: SOG-TGTA, SOP-
TGTA and SLAP-TGTA.

SOG-TGTA is a variant of SOG without divergent states. They are replaced in SOG-TGTA
by adding a self-loop on each aggregate that contains a cycle. Adding these self-loop is better
than adding divergent states for SOG-TGTA because in TGTA all stuttering transitions are self-
loops, and therefore adding self-loops in SOG-TGTA does not generate new states in the product
between TGTA and SOG-TGTA.

SOP-TGTA is an adaptation of SOP to TGTA. The difference between SOP and SOP-TGTA
appears when computing the transitions of the hybrid product. Indeed, the synchronisation of
the transitions between the Kripke structure aggregates and the TGTA transitions is based on
changesets.

SLAP-TGTA is also a adaptation of SLAP to use TGTA instead of TGBA. The two variants
(SLPA and SLAP-TGTA) are based on the aggregation of the states of a Kripke structure according
to the self-loops of the formula automaton (i.e., TGBA for SLAP and TGTA for SLAP-TGTA).
However, the obtained aggregates are very different between the two variants. In a SLAP-TGTA,
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the states of an aggregate change according to the changesets of the TGTA self-loops (instead of
satisfying the valuations labeling the TGBA self-loops in the case of SLAP).

We implemented and experimentally compared the performance of each TGTA based hybrid
approach (SOG-TGTA, SOP-TGTA and SLAP-TGTA) against its reference variant (SOG, SOP
and SLAP). The obtained results show that SOG-TGTA is better than SOG to check verified
properties but it is worse for the violated properties. For SOP versus SOP-TGTA, the results
are harder to interpret. The results seem balanced with a slight advantage for SOP, especially
because we have more cases solved by SOP and failed for SOP-TGTA than otherwise. Finally, for
SLAP versus SLAP-TGTA, although we can observe an advantage for SLAP-TGTA for violated
formulas, the results remain difficult to interpret. There are many cases where SLAP-TGTA is
better and vice versa in many cases SLAP is better. In addition, for verified properties, there
are many cases that failed for SLAP-TGTA but successful for SLAP. This large difference in
performance between SLAP and SLAP-TGTA can be explained by the fact that the aggregates
computed using TGBA and TGTA are very different (in SLAP-TGTA, the aggregates are based
on changesets instead of valuations as in SLAP).

More generally, for the three hybrid approachs, we believe that the two variants (using TGBA
versus TGTA) are complementary, and the best solution is to run the two variants in parallel, then
take the result of the faster one.

Our work presented in this chapter about hybrid approaches using TGTA is not finished. In
particular, we must look for an optimization that exploits the fact that TGTA is specific to stutter-
invariant properties, as we did in the previous chapter about symbolic approaches, in which we
have proposed an optimization based on the “stuttering-normalization constraint” of TGTA.



CHAPTER 8

Conclusion and Perspectives

8.1 Context

The automata-theoretic approach [89, 90] is traditionally used for the model checking of LTL
properties. In this approach, a Kripke structure KM is used to represent the state-space of the
model M. The property to check is expressed as an LTL formula ϕ, then its negation is converted
into an ω-automaton A¬ϕ. The third operation is the synchronization between KM and A¬ϕ. This
constructs a product automaton KM ⊗A¬ϕ whose language, L (KM)∩L (A¬ϕ), is the set of ex-
ecutions of M invalidating ϕ. The last operation is the emptiness check algorithm that explores
the product to tell whether it accepts or not an infinite word, i.e., a counterexample. The model M
verifies ϕ iff L (AM⊗A¬ϕ) = /0.

Problem. The performance of the emptiness check suffers from the well known state-space ex-
plosion problem [87]. The product automaton is often too large to be emptiness checked in a
reasonable run time and memory (the size of the product can reach (|A¬ϕ|×|KM|) with |KM| often
very large).

8.2 Existing Work

In order to improve the performance of the LTL model checking, many works have attempted to
build optimized property automaton A¬ϕ, either by improving the LTL translation, or by proposing
several reductions for the automaton produced by this translation such as bisimulation/simulation
reductions. In most of this works, A¬ϕ is represented using the traditional variant of Büchi Au-
tomata with state-based accepting (BA). However, according to [27, 49], moving the accepting
conditions from the states to the transitions reduces the size of A¬ϕ. For instance, Transition-based
Generalized Büchi Automata (TGBA) is another variant of Büchi Automata that represent the LTL
properties more concisely [49, 36] than BA, because TGBA use generalized (i.e., multiple) Büchi
acceptance conditions on transitions rather than on states.

Testing Automata (TA). Hansen et al. [52] propose an alternative to Büchi automata, called
Testing Automata (TA), that only represent stutter-invariant properties. According to Geldenhuys
and Hansen [46], thanks to their high degree of determinism, the TA allow during the model
checking to obtain a smaller product than BA. However, TA have two different ways to accept in-
finite words (livelock or Büchi), an unfortunate consequence is that the emptiness-check algorithm
required must perform two passes on the whole product in the worst case.
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Evaluation of the Testing Automata Approach. We experimentally evaluated the performance
of the model checking approach using TA against two variants of Büchi automata BA and TGBA.
In the benchmark results, we distinguished violated formulas (i.e., when a counterexample is
found) from verified formulas (i.e., exhibit no counterexample).

For verified formulas, we found that the product reduction achieved by the TA approach was
not enough to compensate for the two-pass emptiness check this approach requires. It is therefore
better to use the TGBA approach, which is more efficient than TA and BA to prove that a stutter-
invariant formula is verified.

For violated formulas, the TA approach usually processes less transitions in the product than
the BA approach to find a counterexample. This is especially true on random formulas. With
weak-fairness formulas, TGBA are advantaged by their generalized acceptance conditions and are
able to beat the TA on the average in half of examples.

8.3 Contributions

The general objective of this work is to fight against the state-space explosion problem, by reduc-
ing the size of the product automaton and/or by decreasing the amount of time and memory used
in the emptiness check of this product.

To achieve this goal, we focus on improving the performance of the model checking for stutter-
invariant LTL properties. We firstly extend the work of Geldenhuys and Hansen [46] about Testing
Automata (TA), by proposing new types of ω-autamata optimized for stutter-invariant LTL proper-
ties. These new automata represent all the stuttering-transitions using only self-loops, and (unlike
TA) only require a single-pass emptiness check algorithm. Secondly, using our main new type of
automata, called Transition-based Generalized Testing Automata (TGTA), we propose contribu-
tions to improve the performance of three different approaches, i.e., explicit, symbolic and hybrid
model checking approaches, where hybrid means combining explicit and symbolic approaches.

The contributions of this thesis could be summarized as follows:

Single-pass Testing Automata (STA). After improving the emptiness check of TA approach
to avoid the second pass in particular cases, we propose STA (Single-pass Testing Automata), a
transformation of TA in a normal form that never requires such a second pass.

An experimental evaluation shows that these improvements compete well on our benchmarks.
Especially, STA remain good for violated properties, and also beat TA and TGBA (and BA) in
most cases when properties are verified. Unfortunately, we observe in certain cases that the STA
increases the size of the product automaton, because the transformation from TA into STA adds
an artificial livelock-accepting state in order to remove the second pass.

Transition-based Generalized Testing Automata (TGTA): A Single-pass and Generalized
New Automata. We propose another type of ω-automata for stutter-invariant properties, bet-
ter than STA, called TGTA (Transition-based Generalized Testing Automata). TGTA combine
advantages observed on both TA and TGBA, without the second pass of TA, and without adding
an artificial state as in STA.
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TGTA inherits from TA the elimination of useless stuttering-transitions, but without introduc-
ing a second mode of acceptance (i.e, livelock-accepting states). From TGBA, it inherits the use
of generalized acceptance conditions on transitions.

We have run benchmarks to evaluate the performance of the TGTA approach against the TA
and TGBA (BA) approaches. The experiments report that, in most cases, TGTA lead to smaller
products on the average, and the TGTA approach outperforms the TA and TGBA approaches when
the property is verified. However, when the property is violated, the results are difficult to interpret
because in this case, the on-the-fly algorithm can stop as soon as it finds a counterexample before
exploring the entire product. Changing the order in which non-deterministic transitions of the
property automaton are iterated is enough to change the number of states and transitions to be
explored before a counterexample is found.

Beyond this ordering luckiness in the case of violated formula, we believe that TGTA is bet-
ter than TA firstly because TGTA does not require a second pass during the emptiness check .
Secondly, in our experiments, we observed that TGTA represent more concisely the LTL formu-
las using (multiple) generalized acceptance conditions, especially for weak-fairness formulas, for
which the number of acceptance conditions is greater than other random formulas.

We also believe that TGTA is better than TGBA because the TGTA construction exploits the
fact that it is specific to stutter-invariant properties to remove the useless stuttering-transitions,
while the TGBA does not exploit at all this specificity. The constructed TGTA represents all the
stuttering-transitions using only self-loops, which can reduce the multiplication of stuttering steps
in the product. This advantage of TGTA is better exploited in the following symbolic approach.

Using TGTA to improve Symbolic Model Checking. We also use TGTA to improve the sym-
bolic approach.

After showing how to encode a symbolic TGTA, we introduce a new symbolic Kripke struc-
ture labeled with changesets on transitions as in TGTA. This changeset-based symbolic Kripke
structure simplifies the symbolic transition relation of the product.

The main improvement proposed in this approach is based on the combination of TGTA with
saturation technique proposed by Ciardo et al. [20]. We show that the performance of the saturation
algorithm greatly benefits from the property of TGTA that all stuttering transitions are self-loops
and every state has a stuttering self-loop. In other words, the exploration of stuttering transitions in
the product is equivalent to only explore stuttering transitions in the model (remaining in the same
TGTA states). This property allowed us to improve the stuttering part in the transition relation
of the product, this part is only dependent on the model, and can be evaluated without consulting
the transition relation of the TGTA. This allows the saturation algorithm to ignore the symbolic
variables encoding the TGTA in this stuttering part of product, and therefore efficiently computes
(i.e. saturates) the product nodes corresponding to the variables encoding the model.

We experimentally compared this TGTA-based approach to a symbolic approach based on
TGBA and saturation. On our benchmark, using TGTA, we were able to gain one order of magni-
tude over the TGBA-based approach, for both verified and violated properties.

Using TGTA in three Hybrid Model Checking Approaches. In addition of the explicit and
symbolic approaches, we evaluate the use of TGTA in the context of hybrid [79, 38] model check-
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ing that combines the use of both explicit and symbolic techniques.
We focus on three hybrid techniques proposed in [37]: the Symbolic Observation Graph

(SOG), the Symbolic Observation Product (SOP) and the Self-Loop Aggregation Product (SLAP),
and for each of them we propose a variant using TGTA: SOG-TGTA, SOP-TGTA and SLAP-
TGTA.

Implementation and experimental evaluation of each TGTA-based variant against the corre-
sponding original approach show that the obtained results depend on whether the formula is veri-
fied or violated:

• SOG vs. SOG-TGTA: For verified properties, SOG-TGTA outperforms SOG. For violated
properties, the SOG approach outperforms the SOG-TGTA approach in the cases where the
execution time is low (less than one second). On the contrary, for hard cases, there are more
cases that failed using SOG than using SOG-TGTA.

• SOP vs. SOP-TGTA (the results are harder to interpret): SOP and SOP-TGTA are compara-
ble with a slight advantage for SOP, because we have more cases solved by SOP and failed
for SOP-TGTA than otherwise.

• SLAP vs. SLAP-TGTA: For violated properties, SLAP-TGTA outperforms SLAP. For ver-
ified properties, the results are more difficult to interpret. There are many cases where
SLAP-TGTA is better and vice versa in many cases SLAP is better. We believe that SLAP
and SLAP-TGTA are complementary, and the best solution is to run the two variants in
parallel, then take the result of the faster one.

8.4 Perspectives

8.4.1 Improving TGTA-based approaches

Several optimizations can be added to TGTA and TA, such as the simulation-reduction [3], which
it is currently only implemented for TGBA in Spot. In addition, the optimizations presented in
Section 3.4.3 (page 46) for TA can be easily adapted to TGTA.

Another important optimization is to build on-the-fly the TA and the TGTA during the con-
struction of the synchronous product. Especially when the number of atomic propositions (AP) is
very large, because this may lead to build a TA or a TGTA with a large number of unnecessary
initial states, that are not synchronized with the initial state(s) of the Kripke structure, see for ex-
ample the product K ⊗T presented in Section 5.6 (page 97). In this example, a TGTA T contains
3 initial states and only one of them is synchronized with the initial state the Kripke structure K .
In addition, the optimizations of Section 3.4.3 (already mentioned above) can be easily integrated
in a on-the-fly construction of a TA or a TGTA.

As a future work, an idea would be to provide a direct conversion of LTL\X to TGTA, without
the intermediate TGBA step. We believe a tableau construction such as the one of Couvreur [27]
could be easily adapted to produce TGTA. We can also translate an LTL\X formula into an iter-
mediate /0-TGTA then we apply the stuttering reduction of Property 9 (page 93) to transform the
obtained /0-TGTA into TGTA.
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Another idea is to investigate the use of /0-TGTA to improve the model checking of LTL
properties (stutter-invariant or not). Indeed, unlike TGTA, the /0-TGTA can represent any LTL
formula. Furthermore, the procedure proposed in Chapter 5 to build an /0-TGTA from a TGBA
does not exploit the restriction to stutter-invariant properties and therefore can be used to build an
/0-TGTA for any LTL formula.

Finally, our work presented in the last chapter about hybrid approaches using TGTA is not
finished. In particular, we must look for an optimization that exploits the fact that TGTA is specific
to stutter-invariant properties, as we did in the chapter about the symbolic approach, in which we
have proposed an optimization based on the stuttering self-loops of TGTA.

8.4.2 Finding sub-classes of LTL formulas for which TGTA is always efficient

An interesting study for TGTA would be to look for a subclass of LTL formulas for which the
product of their TGTA with any model will always be smaller than the product with a TGBA or a
BA.

We have already started to look for this type of formulas by analyzing the results of our exper-
iments presented in this work. We believe that the subclass of formulas of the form ϕ = FG p is a
good candidate. In the following, for ϕ = FG p we illustrate the advantage of TGTA compared to
TGBA, in the case of a product with the stuttering parts of a Kripke structure.

Figure 8.1 shows the TGBA and the TGTA for the LTL property ϕ = FG p.
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Figure 8.1: A TGBA (left) and a TGTA (right) for the LTL property ϕ = FG p.
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Figure 8.2: The two possible cases of stuttering parts of a Kripke structure.

In order to compare the products, we analyze the two possible cases of stuttering parts of a
Kripke structure, represented in Figure 8.2. The first case of Figure 8.4a is a subpart of Kripke
structure that stutters with p true. The products of this subpart with the TGBA A and the TGTA
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T are respectively represented in Figure 8.3 and Figure 8.4. In this case, we can observe that the
product using TGTA is smaller than the one using TGBA: the (diagonal) transitions from (0,sn)

to (1,sn+1) and from (0,sn+2) to (0,sn+2) in the product using TGBA does not exist in the product
using TGTA.

In the second case where the Kripke structure stutters with p false (see Figure 8.4b), the
products using TGBA and TGTA are the same.

So overall, for the subclass of formulas of the form ϕ = FG p, the stuttering parts of a Kripke
structure lead to a smaller parts of product using TGTA than TGBA.
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Figure 8.3: The two products of the TGBA A with the two possible cases of stuttering parts of a
Kripke structure.
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Figure 8.4: The two products of TGTA T with the two possible cases of stuttering parts of a
Kripke structure.
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8.4.3 Combining TGTA with Partial Order Reductions

Finally, another future work is to combine the TGTA with other techniques that propose state-
space optimizations specific to stutter-invariant properties, such as the partial order reduction im-
plemented in Spin tool [55].

Several partial order reduction techniques have been proposed, as the stubborn sets of Valmari
[86], the persistent sets of Godefroid [50] and the ample sets of Peled [69]. The basic idea of
these reductions is to prune the state-space KM by identifying equivalent interleaving sequences
that only differ by the order of concurrent transitions.

TGTA and partial order reduction are complementary. Indeed, while the TGTA-based ap-
proaches focus on optimizing the property automata, the partial order techniques try to reduce the
state-space of the model.
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APPENDIX A

Experimental Comparison of Explicit
approaches using TGBA, TA and

TGTA, with TGBA improved using
simulation-reduction

Recently, several TGBA optimizations was added to SPOT, especially to apply the simulation-
reduction [3] to TGBA. The following tables and scatter plots show the impact of this optimiza-
tion on the results of our experimental comparison (between TGBA, TA and TGTA) presented in
Chapter 5.

Table A.1 and Table A.2 shows how for TGBA, TA and TGTA approaches deal with toy
models and random formulas. We omit data for BA since they are always outperformed by TGBA.
Table A.5 and Table A.6 show toy models against weak-fairness formulas.

Table A.3 and Table A.4 show the results of the two cases studies against random, weak-
fairness, and dedicated formulas issued from the case studies (see Section 3.6.2).

These tables separate cases where formulas are verified from cases where they are violated. In
the former (Tables A.1, A.5 and A.3 ), no counterexample are found and the full state-space had
to be explored; in the latter (Tables A.2, A.6 and 5.4 ) the on-the-fly exploration of the state-space
stopped as soon as the existence of a counterexample could be computed.

The column “Tϕ” shows the time (in 1
100e of seconds) spent constructing the property automata

A¬ϕi from the formulas, this time includes the cost of the simulation-reduction of TGBA. This cost
impacts all the other approaches because TGTA, BA and TA (through a BA) are constructed from
TGBA.

Figure A.1 and Figure A.2 compare the number of visited transitions when running the empti-
ness check; plotting TGTA against respectively TGBA and TA.
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Appendix A. Experimental Comparison of Explicit approaches using TGBA, TA and

TGTA, with TGBA improved using simulation-reduction

Verified properties (no counterexample)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Pe
te

rs
on

5 TGBA
avg 9 327 21 2134328 8691523 2134328 8691523 13038
max 48 2250 1937 8634463 58408155 8634463 58408155 53292

TA
avg 69 3444 29 2083706 8114637 3578356 13947438 22495
max 531 31459 1960 7435026 29160195 14870052 58320390 89846

TGTA
avg 57 3880 30 1963093 7650369 1963093 7650369 12294

max 386 42415 1971 6635199 26179377 6635199 26179377 41328

R
in

g6

TGBA
avg 9 273 2 1043179 6279946 1043179 6279946 1473
max 49 3550 22 2849784 21495868 2849784 21495868 4633

TA
avg 54 2127 8 838315 4871788 1648030 9579646 2690
max 531 24608 154 2209660 12784696 4419320 25569392 6815

TGTA
avg 44 2315 8 823663 4921456 823663 4921456 1361

max 386 31457 180 2084839 12563232 2084839 12563232 3357

FM
S5

TGBA
avg 7 188 4 1655712 10797107 1655712 10797107 2196
max 22 1651 286 8839019 73557865 8839019 73557865 15448

TA
avg 41 1360 8 1182686 9148797 1278218 9880397 2444
max 282 11609 295 5286393 41375144 6367350 50679714 11616

TGTA
avg 33 1469 8 1138010 8829003 1138010 8829003 2085

max 255 13384 301 5286393 41375144 5286393 41375144 9606

K
an

ba
n5

TGBA
avg 6 121 1 2585110 20573569 2585110 20573569 3344
max 48 1994 11 17706640 149153508 17706640 149153508 22039

TA
avg 38 1308 3 1895866 17696106 1895866 17696106 3562
max 264 18440 80 10558520 102370471 10558520 102370471 19446

TGTA
avg 31 1398 3 1802404 16858757 1802404 16858757 3244

max 220 22092 89 9345280 91147301 9345280 91147301 17228

Ph
ilo

10

TGBA
avg 11 500 5 3970577 20450114 3970577 20450114 6638
max 73 5397 233 17947837 85727092 17947837 85727092 29036

TA
avg 61 3397 20 2012055 16929172 2012055 16929172 6067
max 404 51034 475 7557069 65133806 7557069 65133806 22797

TGTA
avg 48 3767 23 1797978 15101356 1797978 15101356 5338

max 294 48954 444 6660936 54496416 6660936 54496416 19902

R
ob

in
15

TGBA
avg 9 357 4 1847692 16517326 1847692 16517326 5022
max 50 3284 61 7745523 77343545 7745523 77343545 23212

TA
avg 65 3881 13 1468280 11959714 2829126 23057049 8151
max 462 34568 137 6544384 52510720 13088768 105021440 35548

TGTA
avg 57 4518 14 1492636 12399229 1492636 12399229 4343

max 369 40112 133 6556672 54543361 6556672 54543361 18743

Table A.1: Comparison of the three approaches on toy examples with random formulæ, when
counterexamples do not exist.
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Violated properties (a counterexample exists)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Pe
te

rs
on

5 TGBA
avg 11 470 4 6875386 29707327 556882 2059495 3308
max 47 2630 132 35221089 164860104 3266077 13122565 19494

TA
avg 77 4616 15 7311696 28594154 531367 1847946 3303
max 688 62540 151 33610951 130319612 3034231 10910727 18973

TGTA
avg 58 4529 16 6724275 26406241 519338 1814387 3171

max 377 39300 156 32323597 126519495 3241584 11733133 19719

R
in

g6

TGBA
avg 12 443 28 2366645 15175961 423272 2286638 536
max 51 2636 2038 7710378 56195862 2543904 14240224 3351

TA
avg 96 5312 37 2181104 13018794 316826 1785138 546
max 435 36434 2069 7791264 47132088 1813390 10805447 3150

TGTA
avg 76 5389 38 1962430 12050193 304280 1732216 476

max 419 39766 2063 6516704 40390528 1709454 10552980 2790

FM
S5

TGBA
avg 10 321 5 7030618 54559769 648095 2887241 649
max 84 3034 236 28022123 252921593 9048245 63249152 13067

TA
avg 68 2903 11 6336121 51452459 523842 3433001 894
max 396 20095 281 24916116 214008832 7336262 61123574 14439

TGTA
avg 55 2963 11 5726926 47023062 389889 2490868 633

max 337 20595 301 23351734 205586222 6594559 54402238 12704

K
an

ba
n5

TGBA
avg 8 169 3 7389200 65265886 398291 2413326 403
max 25 1254 73 20380864 249816728 4154893 40027194 6514

TA
avg 50 1655 6 6099926 58043214 279149 2293392 467
max 271 15866 81 20138608 208914286 2877959 27297928 5585

TGTA
avg 41 1754 7 5664045 54798536 255545 2095285 410

max 228 18303 80 15816808 170535764 2877959 27297927 5294

Ph
ilo

10

TGBA
avg 9 389 2 14648744 127225739 746849 3135235 1108
max 52 3832 20 67346113 944250350 9032250 43945324 14928

TA
avg 71 3877 11 12807603 115165982 514894 3437571 1324
max 272 34438 103 53294292 530498041 7342016 64470778 22435

TGTA
avg 58 4118 12 11611005 105837118 434875 2948356 1098

max 268 35598 112 55198542 558520250 3622345 30490183 11529

R
ob

in
15

TGBA
avg 14 543 16 4072114 37723236 514761 5099096 1506
max 50 3832 529 12193720 166810859 10485865 153206175 41271

TA
avg 122 7708 28 3606864 29540049 473503 3870325 1446
max 799 55662 548 8984576 81599488 7108784 66618546 22451

TGTA
avg 98 8057 29 3390389 28308511 489600 4058013 1406

max 485 64827 561 9922560 91222016 8046768 76224690 24848

Table A.2: Comparison of the three approaches on toy examples with random formulæ, when
counterexamples exist.
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Appendix A. Experimental Comparison of Explicit approaches using TGBA, TA and

TGTA, with TGBA improved using simulation-reduction

Verified properties (no counterexample)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Po
ly

O
R

B
3/

3/
2

R
N

D

TGBA
avg 10 429 20 85195 207750 85195 207750 425
max 50 3284 1098 238118 1127918 238118 1127918 1248

TA
avg 67 3787 29 78382 168410 128674 276738 655
max 435 34568 1137 202874 436381 405748 872762 2017

TGTA
avg 55 4045 31 81656 176671 81656 176671 413

max 323 30547 1160 221779 485262 221779 485262 1090

W
Fa

ir

TGBA
avg 3 42 1 73879 168772 73879 168772 386
max 18 292 5 181518 619068 181518 619068 968

TA
avg 67 850 1 95006 204347 95623 205667 508
max 353 5953 11 287185 630231 287185 630231 1499

TGTA
avg 29 420 1 70158 150547 70158 150547 370

max 99 1700 4 132396 286698 132396 286698 698

Φ
1

TGBA – 4 208 2 221916 496626 221916 496626 1070
TA – 68 5677 3 219288 478950 438576 957900 2088

TGTA – 67 7556 5 221952 488136 221952 488136 1052

M
A

PK
8

R
N

D

TGBA
avg 9 246 2 2598503 22108346 2598503 22108346 4833
max 64 3551 16 11272599 120406938 11272599 120406938 22707

TA
avg 42 1651 8 1608896 18824425 1608896 18824425 4583
max 336 18971 157 8036021 100718455 8036021 100718455 23124

TGTA
avg 35 1876 9 1519337 17816286 1519337 17816286 4227

max 317 25595 211 8036021 100718455 8036021 100718455 21791

W
Fa

ir

TGBA
avg 4 31 1 3461837 28114156 3461837 28114156 5572
max 21 160 3 10871182 104579823 10871182 104579823 20539

TA
avg 42 386 1 1961055 22640584 1961055 22640584 5129
max 167 1902 4 6110748 75624744 6110748 75624744 17114

TGTA
avg 19 203 1 1777295 20615811 1777295 20615811 4550

max 80 1052 3 9523917 118607814 9523917 118607814 26652

Φ
2

TGBA – 5 152 0 46493 325442 46493 325442 51

TA – 7 210 2 33376 291602 33376 291602 58
TGTA – 6 343 3 33376 291602 33376 291602 55

Table A.3: Comparison of the three approaches for the case studies when counterexamples do
not exist.
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Violated properties (a counterexample exists)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Po
ly

O
R

B
3/

3/
2

R
N

D

TGBA
avg 10 503 6 113778 281259 57622 148161 289
max 56 4470 224 772777 1787484 279266 851459 1406

TA
avg 60 4350 24 118209 256484 56406 126308 289
max 472 46228 368 1005017 2159320 208726 487016 1037

TGTA
avg 50 5072 27 114499 249711 47468 105349 242

max 310 55353 520 758720 1627829 105707 240336 532

W
Fa

ir

TGBA
avg 3 41 1 78931 177210 63721 144633 333
max 13 203 6 187020 533673 169655 476766 885

TA
avg 71 948 1 180036 386413 107127 234966 566
max 204 3205 6 483707 1034329 245740 539608 1274

TGTA
avg 30 452 1 78297 167718 63504 138717 334

max 102 1719 5 186891 399306 169407 366693 876

M
A

PK
8

R
N

D

TGBA
avg 9 321 3 20240822 245726563 730667 3534127 894
max 41 3012 68 77833929 1306979302 6547219 51103385 12377

TA
avg 62 3294 12 17057208 219712950 425966 2967248 872
max 314 26248 163 81988164 1146895628 4859218 31565707 8378

TGTA
avg 50 3376 14 15139419 196274725 424117 2957187 829

max 229 29261 195 47574695 644775125 4859218 31565707 8192

W
Fa

ir

TGBA
avg 4 52 1 15189697 191231582 1049014 6622077 1405
max 13 221 3 53575313 764671391 7387837 64113702 12094

TA
avg 76 986 2 22798869 291635140 638187 5996662 1444
max 245 3322 5 64763487 858891872 5203746 59642224 13725

TGTA
avg 34 503 1 12475839 160851874 545160 5000866 1183

max 87 1536 4 47723696 662295506 4859666 47087918 10019

Table A.4: Comparison of the three approaches for the case studies when counterexamples exist.
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Appendix A. Experimental Comparison of Explicit approaches using TGBA, TA and

TGTA, with TGBA improved using simulation-reduction

Verified properties (no counterexample)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Pe
te

rs
on

5 TGBA
avg 3 32 1 2334992 9214963 2334992 9214963 14219
max 9 126 4 6197238 28678473 6197238 28678473 37883

TA
avg 44 453 1 2594244 10057164 2915489 11303640 18390
max 173 2360 4 10632587 41615545 10632587 41615545 66358

TGTA
avg 22 291 1 2205610 8569393 2205610 8569393 13744

max 72 1103 5 5458289 21093007 5458289 21093007 33731

R
in

g6

TGBA
avg 4 38 1 885670 5085387 885670 5085387 1309
max 16 118 4 3095400 16216920 3095400 16216920 3934

TA
avg 49 516 1 919252 5187969 1452203 8196805 2454
max 149 2382 5 2120000 12695504 3565136 20381440 5234

TGTA
avg 26 347 1 725434 4184918 725434 4184918 1256

max 73 1208 5 1300256 7556256 1300256 7556256 2432

FM
S5

TGBA
avg 4 33 1 2622090 18893040 2622090 18893040 3733
max 11 177 2 8685055 78815271 8685055 78815271 14741

TA
avg 46 483 1 2045253 15834452 2045253 15834452 3947
max 167 4256 3 7504266 60774774 7504266 60774774 14895

TGTA
avg 22 265 1 1769028 13854565 1769028 13854565 3291

max 87 1430 4 6949551 56088708 6949551 56088708 14382

K
an

ba
n5

TGBA
avg 3 27 1 2679040 22247651 2679040 22247651 3464
max 21 168 3 9183294 87988390 9183294 87988390 12204

TA
avg 33 277 1 1887122 17126840 1887122 17126840 3506
max 136 1901 3 8429960 80660846 8429960 80660846 13034

TGTA
avg 17 177 1 1711068 15682969 1711068 15682969 3072

max 62 912 3 6965000 65796520 6965000 65796520 11364

Ph
ilo

10

TGBA
avg 3 28 1 3980003 23939240 3980003 23939240 7599
max 11 154 2 12974557 112561242 12974557 112561242 31701

TA
avg 45 474 1 3072870 26224843 3072870 26224843 9283
max 289 8154 6 10987384 94141317 10987384 94141317 31547

TGTA
avg 20 239 1 2291618 19611203 2291618 19611203 6750

max 116 3303 3 9571804 85885107 9571804 85885107 28044

R
ob

in
15

TGBA
avg 3 35 1 1362987 11158101 1362987 11158101 3736
max 10 150 4 3059706 28950456 3059706 28950456 8801

TA
avg 46 489 1 1235467 9824773 1453687 11553559 4482
max 185 2558 5 2684928 21341184 4696064 37017600 13856

TGTA
avg 24 323 1 1126156 9031138 1126156 9031138 3450

max 92 1334 5 2211840 17928192 2211840 17928192 6866

Table A.5: Comparison of the three approaches on toy examples with weak-fairness formulæ,
when counterexamples do not exist.
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Violated properties (a counterexample exists)
Automaton Full product Emptiness check

st. tr. Tϕ st. tr. st. tr. T

Pe
te

rs
on

5 TGBA
avg 4 48 1 2993058 11761446 471940 1504950 2793

max 18 292 8 6711952 32894473 2933653 10800747 17392

TA
avg 81 1156 1 9841905 38327384 567949 1843300 3488
max 352 6001 11 15973169 62098442 4444487 17106565 27499

TGTA
avg 34 534 1 3055186 11931357 469284 1501463 2828
max 117 2108 9 6405145 24914480 2898184 10706849 17570

R
in

g6

TGBA
avg 5 68 1 1429086 8845224 254444 1395698 364
max 28 482 7 3032664 21798322 1416696 7920367 2086

TA
avg 107 1477 2 2871519 16768200 309870 1710585 526
max 322 6456 12 5107450 30709648 2397874 13900223 4221

TGTA
avg 44 697 2 1193721 7025538 215638 1222837 364

max 178 3687 9 2501240 14944456 1169357 6706261 2103

FM
S5

TGBA
avg 4 41 1 6039757 48073683 684361 3016021 660
max 14 200 4 20600805 163375160 6676584 53451994 9502

TA
avg 62 719 1 8698172 69734251 494830 3078804 799
max 245 3136 5 25112720 206558998 6425987 51962113 11444

TGTA
avg 29 393 1 4733810 38333115 403379 2445137 616

max 94 1439 4 13122252 109888666 5062934 41766785 8867

K
an

ba
n5

TGBA
avg 4 42 1 5411516 48648241 615574 3554349 606
max 15 161 3 17194688 155902603 7950633 80041971 10547

TA
avg 60 701 1 6955248 65524457 319238 2608392 532
max 208 3163 4 19860365 194830038 5321598 52675827 9208

TGTA
avg 28 380 1 4023776 38395802 287093 2354941 457

max 85 1228 4 10822336 106435273 5049942 50190351 8374

Ph
ilo

10

TGBA
avg 4 45 1 8488406 70073588 624958 2345810 837
max 12 164 4 21620277 175367424 4214484 21334294 6487

TA
avg 71 858 2 14875690 131208038 573945 3466645 1315
max 248 3614 6 42242159 375507068 6494793 50994037 14508

TGTA
avg 33 456 1 6888581 61271105 394840 2161711 837

max 94 1431 4 16961885 150416553 2787217 21746406 6346

R
ob

in
15

TGBA
avg 5 76 2 2822635 25680929 439215 3708242 1215
max 28 482 7 8204253 114291493 3244925 30724614 9443

TA
avg 112 1610 3 4439903 35584823 437337 3439416 1347
max 361 7372 12 16381952 141807616 3174178 25462895 10666

TGTA
avg 46 761 2 2333623 18914483 364484 2908781 1109

max 178 3687 9 6628864 56228864 2678258 21824221 8646

Table A.6: Comparison of the three approaches on toy examples with weak-fairness formulæ,
when counterexamples exist.
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Appendix A. Experimental Comparison of Explicit approaches using TGBA, TA and

TGTA, with TGBA improved using simulation-reduction
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(b) TGTA against TGBA approaches for violated properties

Figure A.1: Performance of TGTA against TGBA, with TGBA improved using simulation-
reduction.



181

1E+06

1E+07

1
E
+
0
6

1
E
+
0
7

T
G

T
A

TA

verified

(a) TGTA against TA approaches for verified properties

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1
E
+
0
1

1
E
+
0
2

1
E
+
0
3

1
E
+
0
4

1
E
+
0
5

1
E
+
0
6

1
E
+
0
7

1
E
+
0
8

T
G

T
A

TA

violated

(b) TGTA against TA approaches for violated properties

Figure A.2: Performance of TGTA against TA (with TGBA improved using simulation-reduction).
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