
Strategies for typecase optimization

Jim E. Newton
jnewton@lrde.epita.fr

Didier Verna
didier@lrde.epita.fr

EPITA/LRDE
14-16 rue Voltaire

F-94270 Le Kremlin-Bicêtre
France

ABSTRACT
We contrast two approaches to optimizing the Common Lisp
typecase macro expansion. The first approach is based on
heuristics intended to estimate run time performance of cer-
tain type checks involving Common Lisp type specifiers. The
technique may, depending on code size, exhaustively search
the space of permutations of the type checks, intent on find-
ing the optimal order. With the second technique, we rep-
resent a typecase form as a type specifier, encapsulating the
side-effecting non-Boolean parts so as to appear compati-
ble with the Common Lisp type algebra operators. The
encapsulated expressions are specially handled so that the
Common Lisp type algebra functions preserve them, and we
can unwrap them after a process of Boolean reduction into
efficient Common Lisp code, maintaining the appropriate
side effects but eliminating unnecessary type checks. Both
approaches allow us to identify unreachable code, test for ex-
haustiveness of the clauses and eliminate type checks which
are calculated to be redundant.

CCS Concepts
•Theory of computation → Data structures design
and analysis; Type theory; •Computing methodologies
→Representation of Boolean functions; •Mathematics
of computing → Graph algorithms;

1. INTRODUCTION
The typecase macro is specified in Common Lisp [4] as is

a run-time mechanism for selectively branching as a func-
tion of the type of a given expression. Figure 1 summarizes
the usage. The type specifiers used may be simple type
names such as fixnum, string, or my-class, but may also
specify more expressive types such as range checks (float

-3.0 3.5), membership checks such as (member 1 3 5), ar-
bitrary Boolean predicate checks such as (satisfies oddp),
or logical combinations of other valid type specifiers such as
(or string (and fixnum (not (eql 0))) (cons bignum)).

(typecase keyform
(Type.1 body-forms-1 ...)
(Type.2 body-forms-2 ...)
(Type.3 body-forms-3 ...)
...
(Type.n body-forms-n ...))

Figure 1: Synopsis of typecase syntax.

In this article we consider several issues concerning the
compilation of such a typecase usage.

• Redundant checks1 — The set of type specifiers used in
a particular invocation of typecase may have subtype
or intersection relations among them. Consequently, it
is possible (perhaps likely in the case of auto-generated
code) that the same type checks be performed multiple
times, when evaluating the typecase at run-time.

• Unreachable code — The specification suggests but
does not require that the compiler issue a warning if
a clause is not reachable, being completely shadowed
by earlier clauses. We consider such compiler warnings
desirable, especially in manually written code.

• Exhaustiveness — The user is allowed to specify a non-
exhaustive set of clauses. If it can be determined at
compile time that the clauses are indeed exhaustive,
even in the absence of a t/otherwise clause, then in
such a case, the final type check may be safely replaced
with otherwise, thus eliminating the need for that final
type check at run-time.

The etypecase macro (exhaustive type case) promises to
signal a run-time error if the object is not an element of any
of the specified types. The question of whether the clauses
are exhaustive is a different question, namely whether it can
be determined at compile time that all possible values are
covered by at least one of the clauses.

Assuming we are allowed to change the typecase evalua-
tion order, we wish to exploit evaluation orders which are
more likely to be faster at run-time. We assume that most
type checks are fast, but some are slower than others. In
particular, a satisfies check may be arbitrarily slow. Un-
der certain conditions, as will be seen, there are techniques

1Don’t confuse redundant check with redundancy check. In
this article we address the former, not the latter. A type
check is viewed as redundant, and can be eliminated, if its
Boolean result can determined by static code analysis.

to protect certain type checks to allow reordering without
effecting semantics. Such reordering may consequently en-
able particular optimizations such as elimination of redun-
dant checks or the exhaustiveness optimization explained
above. Elimination of redundant type checks has an addi-
tional advantage apart from potentially speeding up certain
code paths, it also allows the discovery of unreachable code.

In this article we consider different techniques for evalu-
ating the type checks in different orders than that which is
specified in the code, so as to maintain the semantics but to
eliminate redundant checks.

In the article we examine two very different approaches
for performing certain optimizations of typecase. First, we
use a natural approach using s-expression based type speci-
fiers (Section 2), operating on them as symbolic expressions.
In the second approach (Section 3) we employ Reduced Or-
dered Binary Decision Diagrams (ROBDDs). We finish the
article with an overview of related work (Section 4) and a
summary of future work (Section 5).

2. TYPE SPECIFIER APPROACH
We would like to automatically remove redundant checks

such as (eql 42), (member 40 41 42), and fixnum in Exam-
ple 1.

Example 1 (typecase with redundant type checks).
(typecase OBJ

((eql 42)
body-forms-1 ...)

((and (member 40 41 42) (not (eql 42)))
body-forms-2 ...)

((and fixnum (not (member 40 41 42)))
body-forms-3 ...)

((and number (not fixnum))
body-forms-4 ...))

The code in Example 2 is semantically identical to that
in Example 1, because a type check is only reached if all
preceding type checks have failed.

Example 2 (typecase after removing redundant checks).
(typecase OBJ

((eql 42) body-forms-1 ...)
((member 40 41 42) body-forms-2 ...)
(fixnum body-forms-3 ...)
(number body-forms-4 ...))

In the following sections, we initially show that certain du-
plicate checks may be removed through a technique called
forward-substitution and reduction (Section 2.2). A weak-
ness of this technique is that it sometimes fails to remove
particular redundant type checks. Because of this weakness,
a more elaborate technique is applied, in which we augment
the type tests to make them mutually disjoint (Section 2.4).
With these more complex type specifiers in place, the type-

case has the property that its clauses are reorderable, which
allows the forward-substitution and reduction algorithm to
search for an ordering permitting more thorough reduction
(Section 2.6). This process allows us to identify unreach-
able code paths and to identify exhaustive case analyses, but
there are still situations in which redundant checks cannot
be eliminated.

2.1 Semantics of type specifiers
There is some disagreement among experts of how to in-

terpret certain semantics of type specifiers in Common Lisp.
To avoid confusion, we state explicitly our interpretation.

There is a statement in the typecase specification that
each normal-clause be considered in turn. We interpret this
requirement not to mean that the type checks must be eval-
uated in order, but rather than each type test must assume
that type tests appearing earlier in the typecase are not sat-
isfied. Moreover, we interpret this specified requirement so
as not to impose a run-time evaluation order, and that as
long as evaluation semantics are preserved, then the type
checks may be done in any order at run-time, and in partic-
ular, that any type check which is redundant or unnecessary
need not be preformed.

The situation that the user may specify a type such as
(and fixnum (satisfies evenp)) is particularly problematic,
because the Common Lisp specification contains a dubious,
non-conforming example in the specification of satisfies.
The problematic example in the specification says that (and

integer (satisfies evenp)) is a type specifier and denotes
the set of all even integers. This claim contradicts the spec-
ification of the AND type specifier which claims that (and

A B) is the intersection of types A and B and is thus the
same as (and B A). This presents a problem, because (typep

1.0 ’(and fixnum (satisfies evenp))) evaluates to nil while
(typep 1.0 ’(and (satisfies evenp) fixnum)) raises an er-
ror. We implicitly assume, for optimization purposes, that
(and A B) is the same as (and B A).

Specifically, if the AND and OR types are commutative with
respect to their operands, and if type checks have side effects
(errors, conditions, changing of global state, IO, interaction
with the debugger), then the side effects cannot be guar-
anteed when evaluating the optimized code. Therefore, in
our treatment of types we consider that type checking with
typep is side-effect free, and in particular that it never raises
an error. This assumption allows us to reorder the checks
as long as we do not change the semantics of the Boolean
algebra of the AND, OR, and NOT specifiers.

Admittedly, that typep never raise an error is an assump-
tion we make knowing that it may limit the usefulness of
our results, especially since some non-conforming Common
Lisp programs may happen to perform correctly absent our
optimizations. That is to say, our optimizations may result
in errors in some non-conforming Common Lisp programs.
The specification clearly states that certain run-time calls
to typep even with well-formed type specifiers must raise an
error, such as if the type specifier is a list whose first ele-
ment is values or function. Also, as mentioned above, an
evaluation of (typep obj ’(satisfies F)) will raise an er-
ror if (F obj) raises an error. One might be tempted to
interpret (typep obj ’(satisfies F)) as (ignore-errors (if

(F obj) t nil)), but that would be a violation of the speci-
fication which is explicit that the form (typep x ’(satisfies

p)) is equivalent to (if (p x) t nil).
There is some wiggle room, however. The specification of

satisfies states that its operand be the name of a predicate,
which is elsewhere defined as a function which returns. Thus
one might be safe to conclude that (satisfies evenp) is not
a valid type specifier, because evenp is specified to signal an
error if its argument is not an integer.

We assume, for this article, that no such problematic type
specifier is used in the context of typecase.

2.2 Reduction of type specifiers
There are legitimate cases in which the programmer has

specifically ordered the clauses to optimize performance. A

production worthy typecase optimization system should take
that into account. However, for the sake of simplicity, the
remainder of this article ignores this concern.

We introduce a macro, reduced-typecase, which expands
to a call to typecase but with cases reduced where possi-
ble. Latter cases assuming previous type checks fail. This
transformation preserves clause order, but may simplify the
executable logic of some clauses. In the expansion, in Exam-
ple 3 the second float check is eliminated, and consequently,
the associated AND and NOT.

Example 3 (Simple invocation and expansion of reduced-

typecase).
(reduced-typecase obj

(float body-forms-1 ...)
((and number (not float)) body-forms-2 ...))

(typecase obj
(float body-forms-1 ...)
(number body-forms-2 ...))

How does this reduction work? To illustrate we pro-
vide a sightly more elaborate example. In Example 4 the
first type check is (not (and number (not float))). In or-
der that the second clause be reached at run-time the first
type check must have already failed. This means that the
second type check, (or float string (not number)), may as-
sume that obj is not of type (not (and number (not float))).

Example 4 (Invocation and expansion reduced-typecase

with unreachable code path).
(reduced-typecase obj

((not (and number (not float))) body-forms-1 ...)
((or float string (not number)) body-forms-2 ...)
(string body-forms-3 ...))

(typecase obj
((not (and number (not float))) body-forms-1 ...)
(string body-forms-2 ...)
(nil body-forms-3 ...))

The reduced-typecase macro rewrites the second type test
(or float string (not number)) by a technique called forward-
substitution. At each step, it substitutes implied values into
the next type specifier, and performs Boolean logic reduc-
tion. Abelson et al. [1] discuss lisp2 algorithms for perform-
ing algebraic reduction; however, in addition to the Abelson
algorithm reducing Boolean expressions representing Com-
mon Lisp types involves additional reductions representing
the subtype relations of terms in question. For example
(and number fixnum ...) reduces to (and fixnum ...) be-
cause fixnum is a subtype of number. Similarly, (or number

fixnum ...) reduces to (or number ...). Newton et al. [21]
discuss techniques of Common Lisp type reduction in the
presence of subtypes.

2In this article we use lisp (in lower case) to denote the
family of languages or the concept rather than a particu-
lar language implementation, and we use Common Lisp to
denote the language.

(not (and number (not float))) = nil

=⇒ (and number (not float)) = t

=⇒ number = t

and (not float) = t

=⇒ float = nil

(or float string

(not number)) = (or nil string (not t))

= (or nil string nil)

= string

With this forward substitution, reduced-typecase is able to
rewrite the second clause ((or float string (not number))

body-forms-2...) simply as (string body-forms-2...). There-
after, a similar forward substitution is made to transform the
third clause from (string body-forms-3...) to (nil body-

forms-3...).
Example 4 illustrates a situation in which a type speci-

fier in one of the clauses reduces completely to nil. In such
a case we would like the compiler to issue warnings about
finding unreachable code, and in fact it does (at least when
tested with SBCL3) because the compiler finds nil as the
type specifier. The clauses in Example 5 are identical to
those in Example 4, and consequently the expressions body-

forms-3... in the third clause cannot be reached. Yet con-
trary to Example 4, SBCL, AllegroCL4, and CLISP5 issue
no warning at all that body-forms-3... is unreachable code.

Example 5 (Invocation of typecase with unreachable code).

(typecase obj
((not (and number (not float))) body-forms-1 ...)
((or float string (not number)) body-forms-2 ...)
(string body-forms-3 ...))

2.3 Order dependency
We now reconsider Examples 1 and 2. While the seman-

tics are the same, there is an important distinction in prac-
tice. The first typecase contains mutually exclusive clauses,
whereas the second one does not. E.g., if the (member 40 41

42) check is moved before the (eql 42) check, then (eql 42)

will never match, and the consequent code, body-forms-2...
will be unreachable.

For the order of the type specifiers given Example 1, the
types can be simplified, having no redundant type checks,
as shown in Example 2. This phenomenon is both a con-
sequence of the particular types in question and also the
order in which they occur. As a contrasting example, con-
sider the situation in Example 6 where the first two clauses
of the typecase are reversed with respect to Example 1. In
this case knowing that OBJ is not of type (and (member 40 41

42) (not (eql 42))) tells us nothing about whether OBJ is of
type (eql 42) so no reduction can be inferred.

3We tested with SBCL 1.3.14. SBCL is an implementation
of ANSI Common Lisp. http://www.sbcl.org/
4We tested with the International Allegro CL Free Express
Edition, version 10.1 [32-bit Mac OS X (Intel)] (Sep 18, 2017
13:53). http://franz.com
5We tested with GNU CLISP 2.49, (2010-07-07).
http://clisp.cons.org/

Example 6 (Re-ordering clauses sometimes enable reduc-
tion).
(typecase OBJ

((and (member 40 41 42) (not (eql 42)))
body-forms-2 ...)

((eql 42)
body-forms-1 ...)

((and fixnum (not (member 40 41 42)))
body-forms-3 ...)

((and number (not fixnum))
body-forms-4 ...))

Programmatic reductions in the typecase are dependent
on the order of the specified types. There are many possi-
ble approaches to reducing types despite the order in which
they are specified. We consider two such approaches. Sec-
tion 2.6 discusses automatic reordering of disjoint clauses,
and Section 3 uses decision diagrams.

As already suggested, a situation as shown in Example 6
can be solved to avoid the redundant type check, (eql 42),
by reordering the disjoint clauses as in Example 1. How-
ever, there are situations for which no reordering alleviates
the problem. Consider the code shown in Example 7. We see
that some sets of types are reorderable, allowing reduction,
but for some sets of types such ordering is impossible. We
consider in Section 3 typecase optimization where reorder-
ing is futile. For now we concentrate on efficient reordering
where possible.

Example 7 (Re-ordering cannot always enable reduction).

(typecase OBJ
((and unsigned-byte (not bignum))
body-forms-1 ...)

((and bignum (not unsigned-byte))
body-forms-2 ...))

2.4 Mutually disjoint clauses
As suggested in Section 2.3, to arbitrarily reorder the

clauses, the types must be disjoint. It is straightforward
to transform any typecase into another which preserves the
semantics but for which the clauses are reorderable. Con-
sider a typecase in a general form.

Example 8 shows a set of type checks equivalent to those
in Figure 1 but with redundant checks, making the clauses
mutually exclusive, and thus reorderable.

Example 8 (typecase with mutually exclusive type checks).

(typecase OBJ
(Type.1
body-forms-1 ...)

((and Type.2
(not Type .1))

body-forms-2 ...)
((and Type.3

(not (or Type.1 Type .2)))
body-forms-3 ...))

...
((and Type.n

(not (or Type.1 Type.2 ... Type.n-1)))
body-forms-n ...))

In order to make the clauses reorderable, we make them
more complex which might seem to defeat the purpose of op-
timization. However, as we see in Section 2.6, the complexity
can sometimes be removed after reordering, thus resulting
in a set of type checks which is better than the original. We
discuss what we mean by better in Section 2.5.

We proceed by first describing a way to judge which of
two orders is better, and with that comparison function, we
can visit every permutation and choose the best.

One might also wonder why we suffer the pain of establish-
ing heuristics and visiting all permutations of the mutually
disjoint types in order to find the best order. One might
ask, why not just put the clauses in the best order to begin
with. The reason is because in the general case, it is not
possible to predict what the best order is. As is discussed
in Section 4, ordering the Boolean variables to produce the
smallest binary decision diagram is an NP-hard problem.
The only solution in general is to visit every permutation.
The problem of ordering a set of type tests for optimal re-
duction must also be NP-hard because if we had a better
solution, we would be able to solve the BDD NP-hard prob-
lem as a consequence.

2.5 Comparing heuristically
Given a set of disjoint and thus reorderable clauses, we can

now consider finding a good order. We can examine a type
specifier, typically after having been reduced, and heuristi-
cally assign a cost. A high cost is assigned to a satisfies

type, a medium cost to AND, OR, and NOT types which takes
into account the cost of the types specified therein, and a
low cost to atomic names.

To estimate the relative goodness of two given semanti-
cally identical typecase invocations, we can heuristically es-
timate the complexity of each by using a weighted sum of
the costs of the individual clauses. The weight of the first
clause is higher because the type specified therein will be
always checked. Each type specifier thereafter will only be
checked if all the preceding checks fail. Thus the heuristic
weights assigned to subsequent checks is chosen successively
smaller as each subsequent check has a smaller probability
of being reached at run-time.

2.6 Reduction with automatic reordering
Now that we have a way to heuristically measure the com-

plexity of a given invocation of typecase we can therewith
compare two semantically equivalent invocations and choose
the better one. If the number of clauses is small enough, we
can visit all possible permutations. If the number of clauses
is large, we can sample the space randomly for some spec-
ified amount of time or specified number of samples, and
choose the best ordering we find.

We introduce the macro, auto-permute-typecase. It ac-
cepts the same arguments as typecase and expands to a
typecase form. It does so by transforming the specified types
into mutually disjoint types as explained in Section 2.4, then
iterating through all permutations of the clauses. For each
permutation of the clauses, it reduces the types, eliminating
redundant checks where possible using forward-substitution
as explained in Section 2.2, and assigns a cost heuristic to
each permutation as explained in Section 2.5. The auto-

permute-typecase macro then expands to the typecase form
with the clauses in the order which minimizes the heuristic
cost.

Example 9 shows an invocation and expansion of auto-

permute-typecase. In this example auto-permute-typecase

does a good job of eliminating redundant type checks.

Example 9 (Invocation and expansion of auto-permute-

typecase).

(auto-permute-typecase obj
((and unsigned-byte (not (eql 42)))
body-forms-1 ...)

((eql 42)
body-forms-2 ...)

((and number (not (eql 42)) (not fixnum))
body-forms-3 ...)

(fixnum
body-forms-4 ...))

(typecase obj
((eql 42) body-forms-2 ...)
(unsigned-byte body-forms-1 ...)
(fixnum body-forms-4 ...)
(number body-forms-3 ...))

As mentioned in Section 1, a particular optimization can
be made in the situation where the type checks in the type-

case are exhaustive; in particular the final type check may be
replaced with t/otherwise. Example 10 illustrates such an
expansion in the case that the types are exhaustive. Notice
that the final type test in the expansion is t.

Example 10 (Invocation and expansion of auto-permute-

typecase with exhaustive type checks).
(auto-permute-typecase OBJ

((or bignum unsigned-byte) body-forms-1 ...)
(string body-forms-2 ...)
(fixnum body-forms-3 ...)
((or (not string) (not number)) body-forms-4 ...))

(typecase obj
(string body-forms-2 ...)
((or bignum unsigned-byte) body-forms-1 ...)
(fixnum body-forms-3 ...)
(t body-forms-4 ...))

3. DECISION DIAGRAM APPROACH
In Section 2.6 we looked at a technique for reducing type-

case based solely on programmatic manipulation of type
specifiers. Now we explore a different technique based on
a data structure known as Reduced Ordered Binary Deci-
sion Diagram (ROBDD).

Example 7 illustrates that redundant type checks cannot
always be reduced via reordering. Example 11 is, however,
semantically equivalent to Example 7. Successfully mapping
the code from of a typecase to an ROBDD will guarantee
that redundant type checks are eliminated. In the following
sections we automate this code transformation.

Example 11 (Suggested expansion of Example 7).
(if (typep OBJ ’unsigned-byte)

(if (typep obj ’bignum)
nil
(progn body-forms-1 ...))

(if (typep obj ’bignum)
(progn body-forms-2 ...)
nil))

The code in Example 11 also illustrates a concern of code
size explosion. With the two type checks (typep OBJ ’unsigned-

byte) and (typep obj ’bignum), the code expands to 7 lines
of code. If this code transform be done näıvely, the risk is
that each if/then/else effectively doubles the code size. In
such an undesirable case, a typecase having N unique type
tests among its clauses, would expand to 2N+1 − 1 lines of
code, even if such code has many congruent code paths. The
use of ROBDD related techniques allows us to limit the code
size to something much more manageable. Some discussion
of this is presented in Section 4.

ROBDDs (Section 3.1) represent the semantics of Boolean
equations but do not maintain the original evaluation order
encoded in the actual code. In this sense the reordering
of the type checks, which is explicit and of combinatorical
complexity in the previous approach, is automatic in this
approach. A complication is that normally ROBDDs ex-
press Boolean functions, so the mapping from typecase to
ROBDD is not immediate, as a typecase may contain ar-
bitrary side-effecting expressions which are not restricted to
Boolean expressions. We employ an encapsulation technique
which allows the ROBDDs to operate opaquely on these
problematic expressions (Section 3.1). Finally, we are able
to serialize an arbitrary typecase invocation into an efficient
if/then/else tree (Section 3.3).

ROBDDs inherently eliminate duplicate checks. However,
ROBDDs cannot easily guarantee removing all unnecessary
checks as that would involve visiting every possible ordering
of the leaf level types involved.

3.1 An ROBDD compatible type specifier
An ROBDD is a data structure used for performing many

types of operations related to Boolean algebra. When we
use the term ROBDD we mean, as the name implies, a de-
cision diagram (directed cyclic graph, DAG) whose vertices
represent Boolean tests and whose branches represent the
consequence and alternative actions. An ROBDD has its
variables Ordered, meaning that there is some ordering of
the variables {v1, v2, ..., vN} such that whenever there is an
arrow from vi to vj then i < j. An ROBDD is determinis-
tically Reduced so that all common sub-graphs are shared
rather than duplicated. The reader is advised to read the
lecture nodes of Andersen [3] for a detailed understanding of
the reduction rules. It is worth noting that there is variation
in the terminology used by different authors. For example,
Knuth [18] uses the unadorned term BDD for what we are
calling an ROBDD.

A unique ROBDD is associated with a canonical form
representing a Boolean function, or otherwise stated, with
an equivalence class of expressions within the Boolean al-
gebra. In particular, intersection, union, and complement
operations as well as subset and equivalence calculations on
elements from the underlying space of sets or types can be
computed by straightforward algorithms. We omit detailed
explanations of those algorithms here, but instead we refer
the reader to work by Andersen [3] and Castagna [12].

We employ ROBDDs to convert a typecase into an if/-
then/else diagram as shown in Figure 2. In the figure, we
see a decision diagram which is similar to an ROBDD, at
least in all the internal nodes of the diagram. Green arrows
lead to the consequent if a specified type check succeeds.
Red arrows lead to the alternative. However, the leaf nodes
are not Boolean values as we expect for an ROBDD.

We want to transform the clauses of a typecase as shown
in Figure 1 into a binary decision diagram. To do so, we
associate a distinct satisfies type with each clause of the
typecase. Each such satisfies type has a unique function
associated with it, such as P1, P2, etc, allowing us to repre-
sent the diagram shown in Figure 2 as an actual ROBDD as
shown in Figure 3.

In order for certain Common Lisp functions to behave
properly (such as subtypep) the functions P1, P2, etc. must
be real functions, as opposed to place-holder functions types
as Baker[7] suggests, so that (satisfies P1) etc, have type

unsigned-byte

bignum bignum

⊥(progn body-forms-2...) (progn body-forms-1...)

Figure 2: Decision Diagram representing irreducible
typecase. This is similar to an ROBDD, but does not
fulfill the definition thereof, because the leaf nodes
are not simple Boolean values.

unsigned-byte

bignum bignum

⊥

(satisfies P2) (satisfies P1)

T

Figure 3: ROBDD with temporary valid satisfies

types

specifier semantics. P1, P2, etc, must be defined in a way
which preserves the semantics of the typecase.

Ideally we would like to create type specifiers such as the
following:

(satisfies (lambda (obj)
(typep obj ’(and (not unsigned-byte)

bignum))))

Unfortunately, the specification of satisfies explicitly for-
bids this, and requires that the operand of satisfies be a
symbol representing a globally callable function, even if the
type specifier is only used in a particular dynamic extent.
Because of this limitation in Common Lisp, we create the
type specifiers as follows. Given a type specifier, we create
such a functions at run-time using the technique shown in
the function define-type-predicate defined in Implementa-
tion 1, which programmatically defines function with seman-
tics similar to those shown in Example 12.

Implementation 1 (define-type-predicate).
(defun define-type-predicate (type-specifier)

(let ((function-name (gensym "P")))
(setf (symbol-function function-name)

#’(lambda (obj)
(typep obj type-specifier)))

function-name))

Example 12 (Semantics of satisfies predicates).
(defun P1 (obj)

(typep obj ’(and (not unsigned-byte) bignum)))
(defun P2 (obj)

(typep obj ’(and (not bignum) unsigned-byte)))

The define-type-predicate function returns the name of
a named closure which the calling function can use to con-
struct a type specifier. The name and function binding are
generated in a way which has dynamic extent and is thus
friendly with the garbage collector.

To generate the ROBDD shown in Figure 3 we must con-
struct a type specifier equivalent to the entire invocation
of typecase. From the code in Figure 1 we have to assem-
ble a type specifier such as in Example 13. This example
is provided simply to illustrate the pattern of such a type
specifier.

Example 13 (Type specifier equivalent to Figure 1).
(let ((P1 (define-type-predicate ’Type .1))

(P2 (define-type-predicate
’(and Type.2 (not Type .1))))

(P3 (define-type-predicate
’(and Type.3 (not (or Type.1 Type .2)))))

...
(Pn (define-type-predicate

’(and Type.n (not (or Type.1 Type.2
... Type.n-1))))))

‘(or (and Type.1
(satisfies ,P1))

(and Type.2
(not Type .1)
(satisfies ,P2))

(and Type.3
(not (or Type.1 Type .2))
(satisfies ,P3))

...
(and Type.n

(not (or Type.1 Type.2
... Type.n-1))

(satisfies ,Pn))))

3.2 BDD construction from type specifier
Functions which construct an ROBDD need to understand

a complete, deterministic ordering of the set of type speci-
fiers via a compare function. To maintain semantic correct-
ness the corresponding compare function must be determin-
istic. It would be ideal if the function were able to give high
priority to type specifiers which are likely to be seen at run
time. We might consider, for example, taking clues from the
order specified in the typecase clauses. We do not attempt
to implement such decision making. Rather we choose to
give high priority to type specifiers which are easy to check
at run-time, even if they are less likely to occur.

We use a heuristic similar to that mentioned in Section 2.5
except that type specifiers involving AND, OR, and NOT never
occur, rather such types correspond to algebraic operations
among the ROBDDs themselves such that only non-algebraic
types remain. More precisely, the heuristic we use is that
atomic types such as number are considered fast to check,
and satisfies types are considered slow. We recognize the
limitation that the user might have used deftype to define
a type whose name is an atom, but which is slow to type
check. Ideally, we should fully expand user defined types
into Common Lisp types. Unfortunately this is not possible
in a portable way, and we make no attempts to implement
such expansion in implementation specific ways. It is not
even clear whether the various Common Lisp implementa-
tions have public APIs for the operations necessary.

A crucial exception in our heuristic estimation algorithm
is that to maintain the correctness of our technique, we must
assure that the satisfies predicates emanating from define-

type-predicate have the lowest possible priority. I.e., as is
shown in Figure 3, we must avoid that any type check appear
below such a satisfies type in the ROBDD.

There are well known techniques for converting an ROBDD
which represents a pure Boolean expression into an if/-
then/else expression which evaluates to true or false. How-
ever, in our case we are interested in more than simply the
Boolean value. In particular, we require that the result-
ing expression evaluate to the same value as corresponding
typecase. In Figure 1, these are the values returned from
body-forms-1..., body-forms-2..., ... body-forms-n.... In
addition we want to assure that any side effects of those ex-
pressions are realized as well when appropriate, and never
realized more than once.

We introduce the macro bdd-typecase which expands to
a typecase form using the ROBDD technique. When the
macro invocation in Example 14 is expanded, the list of
typecase clauses is converted to a type specifier similar to
what is illustrated in Example 13. That type specifier is used
to create an ROBDD as illustrated in Figure 4. As shown in
the figure, temporary satisfies type predicates are created
corresponding to the potentially side-effecting expressions
body-forms-1, body-forms-2, body-forms-3, and body-forms-4.
In reality these temporary predicates are named by machine
generated symbols; however, in Figure 4 they are denoted
P1, P2, P3, and P4.

Example 14 (Invocation of bdd-typecase with intersecting
types).
(bdd-typecase obj

((and unsigned-byte (not (eql 42)))
body-forms-1 ...)

((eql 42)
body-forms-2 ...)

((and number (not (eql 42)) (not fixnum))

fixnum

unsigned-byte

number

(eql 42)

(satisfies P4)

unsigned-byte

nil

(satisfies P2)(satisfies P1)

T

(satisfies P3)

Figure 4: ROBDD generated from typecase clauses
in Example 14

body-forms-3 ...)
(fixnum
body-forms-4 ...))

3.3 Serializing the BDD into code
The macro bdd-typecase emits code as in Example 15, but

just as easily may output code as in Example 16 based on
tagbody/go. In both example expansions we have substituted
more readable labels such as L1 and block-1 rather than the
more cryptic machine generated uninterned symbols #:l1070

and #:|block1066|.

Example 15 (Macro expansion of Example 14 using la-

bels).
((lambda (obj-1)

(labels ((L1 () (if (typep obj-1 ’fixnum)
(L2)
(L7)))

(L2 () (if (typep obj-1 ’unsigned-byte)
(L3)
(L6)))

(L3 () (if (typep obj-1 ’(eql 42))
(L4)
(L5)))

(L4 () body-forms-2 ...)
(L5 () body-forms-1 ...)
(L6 () body-forms-4 ...)
(L7 () (if (typep obj-1 ’number)

(L8)
nil))

(L8 () (if (typep obj-1 ’unsigned-byte)
(L5)
(L9)))

(L9 () body-forms-3 ...))
(L1)))

obj)

The bdd-typecase macro walks the ROBDD, such as the
one illustrated in Figure 4, visiting each non-leaf node therein.
Each node corresponding to a named closure type predicate
is serialized as a tail call to the clauses from the typecase.
Each node corresponding to a normal type test is serialized
as left and right branches, either as a label and two calls to
go as in Example 16, or a local function definition with two
tail calls to other local functions as in Example 15.

Example 16 (Alternate expansion of Example 14 using tag-

body/go).
((lambda (obj-1)

(block block-1
(tagbody
L1 (if (typep obj-1 ’fixnum)

(go L2)
(go L7))

L2 (if (typep obj-1 ’unsigned-byte)
(go L3)
(go L6))

L3 (if (typep obj-1 ’(eql 42))
(go L4)
(go L5))

L4 (return-from block-1
(progn body-forms-2 ...))

L5 (return-from block-1
(progn body-forms-1 ...))

L6 (return-from block-1
(progn body-forms-4 ...))

L7 (if (typep obj-1 ’number)
(go L8)
(return-from block-1 nil))

L8 (if (typep obj-1 ’unsigned-byte)
(go L5)
(go L9))

L9 (return-from block-1
(progn body-forms-3 ...)))))

obj)

3.4 Emitting compiler warnings
The ROBDD, as shown in Figure 4, can be used to gen-

erate the Common Lisp code semantically equivalent to the
corresponding typecase as already explained in Section 3.3,
but we can do even better. There are two situations where
we might wish to emit warnings: (1) if certain code is un-
reachable, and (2) if the clauses are not exhaustive. Un-
fortunately, there is no standard way to incorporate these
warnings into the standard compiler output. One might
tempted to simply emit a warning of type style-warning as
is suggested by the typecase specification. However, this
would be undesirable since there is no guarantee that the
corresponding code was human-generated—ideally we would
only like to see such style warnings corresponding to human
generated code.

The list of unreachable clauses can be easily calculated as
a function of which of the P1, P2 ... predicates are missing
from the serialized output. As seen in Figure 4, each of
body-forms-1, body-forms-2, body-forms-3, and body-forms-

4 is represented as P1, P2, P3, and P4, so no such code is
unreachable in this case.

We also see in Figure 4 that there is a path from the root
node to the nil leaf node which does not pass through P1,
P2, P3, or P4. This means that the original typecase is not
exhaustive. The type of any such value can be calculated
as the particular path leading to nil. In the case of Fig-
ure 4, (and (not fixnum) (not number)), which corresponds
simply to (not number), is such a type. I.e., the original bdd-
typecase, shown in Example 14, does not have a clause for
non numbers.

4. RELATED WORK
This article references the functions make-bdd and bdd-cmp

whose implementation is not shown herein. The code is
available via GitLab from the EPITA/LRDE public web
page. https://gitlab.lrde.epita.fr/jnewton/regular-type-

expression.git. That repository contains several things.
Most interesting for the context of BDDs is the Common
Lisp package, LISP-TYPES.

As there are many individual styles of programming, and
each programmer of Common Lisp adopts his own style, it is
unknown how widespread the use of typecase is in practice,
and consequently whether optimizing it is effort well spent.
A casual look at the code in the current public Quicklisp6

repository reveals a rule of thumb. 1 out of 100 files, and
1 out of 1000 lines of code use or make reference to type-

case. When looking at the Common Lisp code of SBCL
itself, we found about 1.6 uses of typecase per 1000 lines
of code. We have made no attempt to determine which of
the occurrences are comments, trivial uses, or test cases,
and which ones are used in critical execution paths; how-
ever, we do loosely interpret these results to suggest that
an optimized typecase either built into the cl:typecase or
as an auxiliary macro may be of little use to most currently
maintained projects. On the contrary, we suggest that hav-
ing such an optimized typecase implementation, may serve
as motivation to some programmers to make use of it, at
least in machine generated code such as Newton et al. [20]
explain. Since generic function dispatch conceptually bases
branching choices on Boolean combinations of type checks,
one naturally wonders whether our optimizations might be
of useful within the implementation of CLOS[17].

Newton et al. [20] present a mechanism to characterize the
type of an arbitrary sequence in Common Lisp in terms of a
rational language of the types of the sequence elements. The
article explains how to build a finite state machine and from
that construct Common Lisp code for recognizing such a
sequence. The code associates the set of transitions existing
from each state as a typecase. The article notes that such
a machine generated typecase could greatly benefit from an
optimizing typecase.

The map-permutations function (Section 2.6) works well for
small lists, but requires a large amount of stack space to visit
all the permutations of large lists. Knuth[18] explores several
iterative (not recursive) algorithms using various techniques,
in particular by plain changes[18, Algorithm P, page 42],
by cyclic shifts[18, Algorithm C, page 56], and by Erlich
swaps[18, Algorithm E, page 57]. A survey of these three
algorithms can also be found in the Cadence SKILL Blog7

which discussions an implementation in SKILL[8], another
lisp dialect.

There is a large amount of literature about Binary Deci-
sion Diagrams of many varieties [9, 10, 2, 14, 3]. In par-
ticular Knuth [18, Section 7.1.4] discusses worst-case and
average sizes, which we alluded to in Section 3. Newton et
al. [21] discuss how the Reduced Ordered Binary Decision
Diagram (ROBDD) can be used to manipulate type speci-
fiers, especially in the presence of subtypes. Castagna [12]
discusses the use of ROBDDs (he calls them BDDs in that
article) to perform type algebra in type systems which treat
types as sets [16, 13, 4].

BDDs have been used in electronic circuit generation[15],
verification, symbolic model checking[11], and type system
models such as in XDuce [16]. None of these sources dis-
cusses how to extend the BDD representation to support
subtypes.

Common Lisp does not provide explicit pattern matching
[5] capabilities, although several systems have been proposed

6https://www.quicklisp.org/
7https://community.cadence.com/tags/Team-SKILL,
SKILL for the Skilled, Visiting all Permutations

such as Optima8 and Trivia9. Pierce [23, p. 341] explains
that the addition of a typecase-like facility (which he calls
typecase) to a typed λ-calculus permits arbitrary run-time
pattern matching.

Decision tree techniques are useful in the efficient com-
pilation of pattern matching constructs in functional lan-
guages[19]. An important concern in pattern matching com-
pilation is finding the best ordering of the variables which
is known to be NP-hard. However, when using BDDs to
represent type specifiers, we obtain representation (pointer)
equality, simply by using a consistent ordering; finding the
best ordering is not necessary for our application.

In Section 2.2 we mentioned the problem of symbolic al-
gebraic manipulation and simplification. Ableson et al. [1,
Section 2.4.3] discuss this with an implementation of ratio-
nal polynomials. Norvig [22, Chapter 8] discusses this in a
use case of a symbolic mathematics simplification program.
Both the Ableson and Norvig studies explicitly target a lisp-
literate audience.

5. CONCLUSION AND FUTURE WORK
As illustrated in Example 9, the exhaustive search ap-

proach used in the auto-permute-typecase (Section 2.6) can
often do a good job removing redundant type checks oc-
curring in a typecase invocation. Unfortunately, as shown
in Example 7, sometimes such optimization is algebraically
impossible because the particular type interdependencies. In
addition, an exhaustive search becomes unreasonable when
the number of clauses is large. In particular there are N !
ways to order N clauses. This means there are 7! = 5040
orderings of 7 clauses and 10! = 3, 628, 800 orderings of 10
clauses.

On the other hand, the bdd-typecase macro, using the
ROBDD approach (Section 3.2), is always able to remove
duplicate checks, guaranteeing that no type check is per-
formed twice. Nevertheless, it may fail to eliminate some
unnecessary checks which need not be performed at all.

It is known that the size and shape of a reduced BDD de-
pends on the ordering chosen for the variables [9]. Further-
more, it is known that finding the best ordering is NP-hard,
and in this article we do not address questions of choos-
ing or improving variable orderings. It would be feasible,
at least in some cases, to apply the exhaustive search ap-
proach with ROBDDs. I.e., we could visit all orders of the
type checks to find which gives the smallest ROBDD. In
situations where the number of different type tests is large,
the development described in Section 3.1 might very well be
improved employing some known techniques for improving
BDD size though variable ordering choices[6]. In particular,
we might attempt to use the order specified in the type-

case as input to the sorting function, attempting in at least
the simple cases to respect the user given order as much as
possible.

In Section 2.4, we presented an approach to approximat-
ing the cost a set of type tests and commented that the
heuristics are simplistic. We leave it as a matter for future
research as to how to construct good heuristics, which take
into account how compute intensive certain type specifiers
are to manipulate.

We believe this research may be useful for two target au-

8https://github.com/m2ym/optima
9https://github.com/guicho271828/trivia

diences: application programmers and compiler developers.
Even though the currently observed use frequency of type-

case seems low in the majority of currently supported appli-
cations, programmers may find the macros explained in this
article (auto-permute-typecase and bdd-typecase) to be use-
ful in rare optimization cases, but more often for their ability
to detect certain dubious code paths. There are, however,
limitations to the portable implementation, namely the lack
of a portable expander for user defined types, and an abil-
ity to distinguish between machine generated and human
generated code. These shortcomings may not be significant
limitations to the compiler implementer, in which case the
compiler may be able to better optimize user types, imple-
ment better heuristics regarding costs of certain type checks,
and emit useful warnings about unreachable code.

6. REFERENCES
[1] H. Abelson and G. J. Sussman. Structure and

Interpretation of Computer Programs. MIT Press,
Cambridge, MA, USA, 2nd edition, 1996.

[2] S. B. Akers. Binary decision diagrams. IEEE Trans.
Comput., 27(6):509–516, June 1978.

[3] H. R. Andersen. An introduction to binary decision
diagrams. Technical report, Course Notes on the
WWW, 1999.

[4] Ansi. American National Standard: Programming
Language – Common Lisp. ANSI X3.226:1994
(R1999), 1994.

[5] L. Augustsson. Compiling pattern matching. In Proc.
Of a Conference on Functional Programming
Languages and Computer Architecture, pages 368–381,
New York, NY, USA, 1985. Springer-Verlag New
York, Inc.

[6] A. Aziz, S. Taşiran, and R. K. Brayton. Bdd variable
ordering for interacting finite state machines. In
Proceedings of the 31st Annual Design Automation
Conference, DAC ’94, pages 283–288, New York, NY,
USA, 1994. ACM.

[7] H. G. Baker. A Decision Procedure for Common
Lisp’s SUBTYPEP Predicate. Lisp and Symbolic
Computation, 5(3):157–190, 1992.

[8] T. Barnes. SKILL: a CAD system extension language.
In Design Automation Conference, 1990. Proceedings.,
27th ACM/IEEE, pages 266–271, Jun 1990.

[9] R. E. Bryant. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Transactions on
Computers, 35:677–691, August 1986.

[10] R. E. Bryant. Symbolic boolean manipulation with
ordered binary-decision diagrams. ACM Comput.
Surv., 24(3):293–318, Sept. 1992.

[11] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and L. J. Hwang. Symbolic model checking: 1020
states and beyond. Inf. Comput., 98(2):142–170, June
1992.

[12] G. Castagna. Covariance and contravariance: a fresh
look at an old issue. Technical report, CNRS, 2016.

[13] G. Castagna and V. Lanvin. Gradual typing with
union and intersection types. Proc. ACM Program.
Lang., (1, ICFP ’17, Article 41), sep 2017.

[14] M. Colange. Symmetry Reduction and Symbolic Data
Structures for Model Checking of Distributed Systems.
Thèse de doctorat, Laboratoire de l’Informatique de

Paris VI, Université Pierre-et-Marie-Curie, France,
Dec. 2013.

[15] O. Coudert, C. Berthet, and J. C. Madre. Verification
of synchronous sequential machines based on symbolic
execution. In Proceedings of the International
Workshop on Automatic Verification Methods for
Finite State Systems, pages 365–373, London, UK,
UK, 1990. Springer-Verlag.

[16] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular
expression types for XML. ACM Trans. Program.
Lang. Syst., 27(1):46–90, Jan. 2005.

[17] G. J. Kiczales, J. des Rivières, and D. G. Bobrow. The
Art of the Metaobject Protocol. MIT Press,
Cambridge, MA, 1991.

[18] D. E. Knuth. The Art of Computer Programming,
Volume 4, Fascicle 1: Bitwise Tricks & Techniques;
Binary Decision Diagrams. Addison-Wesley
Professional, 12th edition, 2009.

[19] L. Maranget. Compiling pattern matching to good
decision trees. In Proceedings of the 2008 ACM
SIGPLAN Workshop on ML, ML ’08, pages 35–46,
New York, NY, USA, 2008. ACM.

[20] J. Newton, A. Demaille, and D. Verna. Type-Checking
of Heterogeneous Sequences in Common Lisp. In
European Lisp Symposium, Kraków, Poland, May
2016.

[21] J. Newton, D. Verna, and M. Colange. Programmatic
manipulation of Common Lisp type specifiers. In
European Lisp Symposium, Brussels, Belgium, Apr.
2017.

[22] P. Norvig. Paradigms of Artificial Intelligence
Programming: Case Studies in Common Lisp. Morgan
Kaufmann, 1992.

[23] B. C. Pierce. Types and Programming Languages. The
MIT Press, 1st edition, 2002.

