
A Mop-Based Implementation for Method Combinations
Method Combinators Revisited

Didier Verna
EPITA, LRE

Le Kremlin-Bicêtre, France
didier@lrde.epita.fr

ABSTRACT
In traditional object-oriented languages, the dynamic dispatch algo-
rithm is hardwired to select and execute the most specific method
in a polymorphic call. In Clos, the Common Lisp Object System, an
abstraction known as method combinations allows the programmer
to define their own dispatch scheme. When Common Lisp was
standardized, method combinations were not mature enough to be
fully specified.

In 2018, using Sbcl as a research vehicle, we analyzed the un-
fortunate consequences of this under-specification and proposed
a layer on top of method combinations designed to both correct
a number of observed behavioral inconsistencies, and propose an
extension called “alternative combinators”. Following this work,
Sbcl underwent a number of internal changes that fixed the re-
ported inconsistencies, although in a way that hindered further
experimentation.

In this paper, we analyze Sbcl’s new method combinations im-
plementation and we propose an alternative design. Our solution is
standard-compliant so any Lisp implementation can potentially use
it. It is also based on the Mop, meaning that it is extensible, which
restores the opportunity for further experimentation. In particular,
we revisit our former “alternative combinators” extension, broken
after 2018, and demonstrate that provided with this new infrastruc-
ture, it can be re-implemented in a much simpler and non-intrusive
way.

CCS CONCEPTS
• Software and its engineering→ Object oriented languages;
Extensible languages; Polymorphism; Inheritance; Classes and
objects; Object oriented architectures; Abstraction, modeling and mod-
ularity .

KEYWORDS
Object-Oriented Programming, Common Lisp Object System, Meta-
Object Protocol, Generic Functions, Dynamic Dispatch, Polymor-
phism, Multi-Methods, Multiple Dispatch, Method Combinations,
Orthogonality
ACM Reference Format:
Didier Verna. 2023. AMop-Based Implementation for Method Combinations:
Method Combinators Revisited. In Proceedings of the 16th European Lisp

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’23, April 24–25 2023, Amsterdam, Netherlands
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-7-6.
https://doi.org/10.5281/zenodo.7818680

Symposium (ELS’23). ACM, New York, NY, USA, 10 pages. https://doi.org/
10.5281/zenodo.7818680

1 INTRODUCTION
Common Lisp was the first programming language equipped with
an object-oriented (OO) layer to be standardized [14]. Although
in the lineage of traditional class-based OO languages such as
Smalltalk and later C++ and Java, Clos, the Common Lisp Ob-
ject System [2, 5, 6, 8], departs from those in several important
ways.

First of all, Clos offers native support for multiple dispatch [3, 4].
The existence of multi-methods pushes the dynamic dispatch one
step further in the direction of separation of concerns: polymor-
phism and inheritance are clearly separated. Next, when imple-
mented on top of the Mop [9, 11], the very semantics of Clos itself
can be extended or modified, hence providing a form of homoge-
neous behavioral reflection [10, 12, 13].

Yet another improvement over classical OO lies in the concept
of method combination. In the traditional approach, the dynamic
dispatch algorithm is hardwired: every polymorphic call ends up
executing the most specific method available (applicable) and using
other, less specific ones requires explicit calls to them. In Clos
however, a generic function can be programmed to implicitly call
several applicable methods, not necessarily by order of specificity,
and combine their results in a particular way. Along with multiple
dispatch, method combinations constitute one more step towards
orthogonality [7, chapter 8]: a generic function can now be seen as
a 2D concept: 1. a set of methods and 2. a specific way of combin-
ing them. As usual with this language, method combinations are
also fully programmable, essentially turning the dynamic dispatch
algorithm into a user-level facility.

In a private conversation, Richard P. Gabriel reported that at
the time Common Lisp was standardized, the committee didn’t
believe that method combinations were mature enough to make
people implement them in one particular way (the only industrial-
strength implementation available back then was in Flavors on Lisp
Machines). Consequently, they intentionally under-specified them
in order to leave room for experimentation. At the time, the Mop
was not ready either, and only added later, sometimes with unclear
or contradictory protocols.

In 2018 [15], using Sbcl1 as a research vehicle, we analyzed the
unfortunate consequences of this under-specification and exhibited
a number of oddities in the design and behavior of method combina-
tions. In particular, it turned out that method combinations weren’t
required to have a global name-space, meaning that every generic
function could end up with its own method combination object,

1http://www.sbcl.org

https://orcid.org/0000-0002-6315-052X
https://doi.org/10.5281/zenodo.7818680
https://doi.org/10.5281/zenodo.7818680
https://doi.org/10.5281/zenodo.7818680
http://www.sbcl.org

ELS’23, April 24–25 2023, Amsterdam, Netherlands Didier Verna

completely disconnected from the original definition, and hence
unaffected by subsequent modifications to it. It is worth mentioning
that although counter-intuitive, this behavior does not contradict
the standard. We proposed an extension to method combinations,
called “method combinators”, designed, amongst other things to
establish proper dependencies between global method combination
definitions and the associated generic functions. Wewere able to im-
plement that extension in a non-intrusive, semi-portable way. This
means that no modifications to Sbcl’s internals were needed; only
a couple of calls to internal functions here and there. In addition
to that, method combinators allowed us to develop an additional
feature, alternative combinators, namely, the ability to call the same
generic function with different method combinations at the same
time, and at the minimum performance cost, that is, without the
need to reinitialize the function every single time.

After this work, Sbcl underwent a number of internal changes
that fixed the reported inconsistencies. In particular, in its current
state, the dependencies between generic functions and their method
combinations are handled in a more intuitive fashion: generic func-
tions are updated if their original method combination is redefined
globally. Unfortunately for us, the new dependency management
code is buried deep down into Sbcl’s internals and doesn’t go
through any of the official or even just suggested protocols. As a
consequence, those changes broke our implementation of alterna-
tive combinators, and made it impossible to re-implement them as
before, in a non-intrusive way.

In this paper, we propose yet another iteration over a possible
implementation of method combinations. The paper is organized
as follows. Section 2 provides an analysis of the current implemen-
tation in Sbcl, emphasizing on how the dependencies between
method combinations and generic functions are handled. Section 3
proposes an alternative, Mop-based implementation. This imple-
mentation conforms to the standard, so it could very well be used
not only by Sbcl but by all interested Lisp implementations. The
design we propose also focuses on extensibility and experimen-
tation, which was in fact the original motivation for leaving the
method combinations area under-specified in the standard. Sec-
tion 4 describes some additional refinements aimed at extensibility,
and illustrates the benefits with a couple of examples. In particu-
lar, we revisit our former alternative combinators extension, and
demonstrate that this time, it can be re-implemented in a much
simpler and non-intrusive way. Finally, Section 5 provides some
feedback on the performance of the proposed design.

2 METHOD COMBINATIONS IN SBCL
In this section, we analyze how post-2018 Sbcl implements method
combinations, and how it handles the dependencies between them
and the generic functions in the system.

2.1 Method Combinations Hierarchy
The Sbcl method combination classes hierarchy is depicted in Fig-
ure 1.

2.1.1 Description
The method-combination class is the only one mandated by the
standard. The existence of a sub-hierarchy is nevertheless also a
requirement, as the standard stipulates that method combination

metaobject

method-combination

standard-method-combination
type-name
options
%generic-functions

short-method-combination
operator
identity-with-one-argument

long-method-combination

function
args-lambda-list

Figure 1: Sbcl Method Combination Classes Hierarchy

objects be “indirect instances” of the method-combination class2;
something that the Mop itself confirms by saying that this class
should be “abstract”.

Although, again, the standard does not require it, there is a
standard-method-combination class, which is in fact a natural
thing to provide. Indeed, it aligns the design of method combi-
nations with the key components of Clos which do have such
a standardized equivalent: standard-class, standard-generic-
function, and standard-method notably.

Apart from the standard method combination, every other one
(that is, either built-in or user-defined) will be an instance of either
the short-method-combination, or long-method-combination
class.

2.1.2 Analysis
Already the case in 2018, a notable aspect of this implementation
is the mixture of define-time and use-time attributes to method
combinations.

The type-name, operator, identity-with-one-argument, and
args-lambda-list slots represent information passed to define-
method-combination. The options slot, on the other hand, holds
specific sets of options passed to the :method-combination option
in calls to defgeneric. As a consequence, different instances cre-
ated from the same original method combination will only differ
by their options slot.

One particular excerpt from the standard may explain this de-
sign, which is in fact that of Pcl [1] rather than of Sbcl itself.
The following sentence appears in the description of the method-
combination class3.

A method combination object contains information about both
the type of method combination and the arguments being used

with that type.

In Pcl, the ability for a method combination instance to access
information related to its original type is necessary anyway. Indeed,

2http://clhs.lisp.se/Body/t_meth_1.htm
3http://clhs.lisp.se/Body/t_meth_1.htm

http://clhs.lisp.se/Body/t_meth_1.htm
http://clhs.lisp.se/Body/t_meth_1.htm

A Mop-Based Implementation for Method Combinations ELS’23, April 24–25 2023, Amsterdam, Netherlands

method-combination-info
lambda-list
#’constructor
cache

(options . mcobject)
…
(options . mcobject)

Figure 2: Sbcl Method Combination Info Structure

that information is used by the code computing effective methods
when a generic function is called.

Note that even with this particular design, the information re-
lated to the method combination type is not exhaustive.The method
combination’s lambda-list is missing (it is in fact stored somewhere
else), and so is the potential :generic-function option’s value
for long method combinations.

Finally, let us also mention that the function slot of longmethod
combinations exists for historical reasons, but is not used any-
more in Sbcl. Instead, Sbcl uses a global hash table mapping
method combination names to such functions (stored in the *long-
method-combination-functions* global variable). The functions
in question are each method combination type’s specific version
of compute-effective-method, so there is indeed only one per
method combination type (they are parameterized by the contents
of the options slot).

2.1.3 Summary
From this analysis, it turns out that Sbcl’s method combinations
hierarchy, only slightly divergent from that of Pcl’s, contains a
mixture of information specific to every instance and information
related to a method combination definition (in which case that infor-
mation is duplicated). Two bits of information related to a method
combination definition are also stored elsewhere, outside this hi-
erarchy (the method combination’s lambda list and function), and
the long-method-combination class retains one obsolete, unused
slot.

2.2 Dependency Management
One notable change in post-2018 Sbcl is a more natural handling of
the dependencies between generic functions and method combina-
tions. More specifically, method combinations have regained global
name-space semantics, which means that should one of them be
redefined, the generic functions using it would be notified. We now
explain how this is done.

Each defined method combination is represented by an instance
of a structure called method-combination-info, which is depicted
in Figure 2. A global variable named **method-combinations**
maintains a hash table mapping method combination names to
such instances. The lambda-list slot stores the method combina-
tion’s lambda-list. It is the one that was noted as missing from the
hierarchy in Figure 1.

2.2.1 Instantiation
Every method combination info maintains a cache of method com-
bination objects. When a generic function is defined to use a specific
method combination with a specific set of options, the standard
Mop function find-method-combination is called. If a method

combination object associatedwith those particular options is found
in the cache, it is simply returned. Otherwise, a new method com-
bination object is created by calling the constructor function,
and the cache is populated accordingly. Depending on the context,
method combination objects will be instances of either the short-
or long-method-combination classes.

2.2.2 Redefinition
Note, in Figure 1, the existence of a new slot (added post-2018
to Sbcl) named %generic-functions in the standard-method-
combination class. This is how every method combination object
keeps track of the generic functions using it.

When a method combination is redefined (by calling define-
method-combination again), Sbcl updates the concerned info struc-
ture, and then traverses its cache, calling change-class on every
method combination object. Also, for each “client” generic func-
tion in each method combination object’s %generic-functions
slot, Sbcl flushes the effective method cache and reinitializes the
function by calling reinitialize-instance.

Note that this whole redefinition process is done in Sbcl’s inter-
nals, without going through any standard (there is, in fact, none)
or even just public protocols.

2.2.3 Updating
In a similar vein, when a generic function is created or updated, care
is taken to add or remove it, to or from the %generic-functions
slots in the concerned method combination objects. This time, the
updating is done through a public protocol, namely, [re]initial-
ize-instance.

2.2.4 Summary
Post-2018 Sbcl now handles the dependencies between method
combinations and generic functions in a more intuitive way. Unfor-
tunately, half of the dependency management code is buried in the
implementation, without going through public protocols.

Note also that with the addition of the method-combination-
info data structure, the global variable *long-method-combina-
tion-functions* has become superfluous. Indeed it could be re-
placed with an additional function slot in said structure, although
that slot would be unused for short method combinations.

3 METHOD COMBINATIONS REVISITED
The lack of dependency management was our biggest concern
in [15]. At the time, we were able to address it in a non-intrusive
and extensible way. Although Sbcl’s current solution works, it
is buried deep down into the internals and doesn’t go through
any well-defined or public protocols. As a consequence, it is now
impossible to continue experimenting with method combinations
or providing extensions on top of them, without having to modify
the language’s implementation.

In this section, we suggest an alternative implementation for
method combinations. In addition to proper dependency manage-
ment, our implementation has the following properties.

• It remains standard-compliant.
• It retains Pcl’s method combinations hierarchy (modulo
some variations in the classes definitions).

ELS’23, April 24–25 2023, Amsterdam, Netherlands Didier Verna

• It clearly separates define-time and use-time method combi-
nation properties.

• It is grounded into the Mop. This means that it remains
extensible and allows further experimentation, as was the
original intent behind their under-specification, and as is, in
general, the intent behind any Mop-based implementation
of Clos.

3.1 Overview
In the Pcl implementation, and with the exception of the standard
one, method combination objects are instances of one of the two
built-in classes short- or long-method-combination (Figure 1).
Yet, the standard consistently talks of method combination types45,
which seems to suggest that define-method-combination should
create new classes of method combinations.

In addition to that, recall that define-method-combination
comes in two forms, which means that there are in fact two types of
types of method combinations. And so have we naturally entered
the world of meta-objects.

The design we propose is thus as follows. We provide a hier-
archy of method combination types, to distinguish between short
and long ones. These are, in fact, meta-classes. define-method-
combination is made to create a new method combination class,
which is injected in Pcl’s method combinations hierarchy, and at
the same time implemented as either a short or long method com-
bination type. In other words, new method combination classes
are sub-classes of either short- or long-method-combination as
before, but are also instances of either short- or long-method-
combination-type.

Further details are provided in the following sections. In the new
hierarchies presented below, slots beginning with a percent sign
contain information that is required for implementation purposes
but are considered internal. Other slots are made publicly readable.

3.2 Method Combinations
Figure 3 depicts the updated method combinations hierarchy. It
departs from Pcl’s in a number of ways.

First of all, the standard-method-combination class will not
represent the built-in “standard method combination” anymore
(there is, in fact, an ambiguity in the term). Rather, it exists as
an intermediate implementation class similar to standard-class,
standard-generic-function, or standard-method.

Also, this updated hierarchy doesn’t hold any information re-
lated to the method combination type in use (information com-
mon to all instances). Instead, we only retain two slots: options
(the options passed to the :method-combination option in calls
to defgeneric), and %generic-functions (the cache of functions
using this particular method combination object). As a consequence,
the short- and long-method-combination classes are empty, and
still exist only for specialization purposes.

3.3 Method Combination Types
Figure 4 depicts the added method combination types hierarchy;
in other words, the hierarchy ofmethod combinationmeta-classes. It
4http://clhs.lisp.se/Body/m_defi_4.htm
5http://clhs.lisp.se/Body/m_defgen.htm

metaobject

method-combination

standard-method-combination
options
%generic-functions

short-method-combination long-method-combination

Figure 3: Method Combinations Hierarchy

standard-class

method-combination-type

standard-method-combination-type
type-name
lambda-list
%constructor
%cache

short-method-combination-type
operator
identity-with-one-argument

long-method-combination-type

%args-lambda-list
%function

Figure 4: Method Combination Types Hierarchy

essentially serves as a replacement for Sbcl’s method-combination-
info structure.

The standard-method-combination-type class holds the same
information as the former info structure, with the addition of the
method combination type’s name.The former contents of the short-
and long-method-combination classes, which was indeed com-
mon to all instances, is hence moved here, in the short- and long-
method-combination-type classes. Note that in this new imple-
mentation, the %function slot will actually be used.

3.4 Standard Method Combination
As a first example of how those two hierarchies work together, let
us now recreate the standard method combination. This is depicted
in Figure 5.

We don’t want to treat the standard method combination as an
“exception” of any kind, and as mentioned before, we also want to
remove any ambiguity around the term “standard” in this particular
context. Because of that, the standard method combination type

http://clhs.lisp.se/Body/m_defi_4.htm
http://clhs.lisp.se/Body/m_defgen.htm

A Mop-Based Implementation for Method Combinations ELS’23, April 24–25 2023, Amsterdam, Netherlands

standard-method-combination
options
%generic-functions

standard-standard-method-combination
type-name: standard
lambda-list: nil
%constructor
%cache: (nil .)

standard-method-combination-type
type-name
lambda-list
%constructor
%cache

«instanceof»

standard-method-combination

options: nil

«instanceof»

Figure 5: The Standard Method Combination

will be represented by a specific class (like any other method combi-
nation type). However, there will only ever be one standard method
combination object, so the class in question will be a singleton one.

The standard method combination type is hence materialized
by the singleton class standard-standard-method-combination.
Because it is neither short nor long, it is a direct subclass of standard-
method-combination, and it is directly implemented as a standard-
method-combination-type for which the type name is standard,
and the lambda-list is nil.

The standard method combination object (created by the %con-
structor function) is the only instance of that class, for which
the options are also nil. Sbcl also happens to store that object
in the global variable *standard-method-combination* for opti-
mization purposes.

Finally, the %cache of method combination objects associates
the options nil with the aforementioned single instance.

3.5 Built-In Method Combinations
Here we demonstrate how the built-in method combinations work
as a second example. In Pcl, the built-in method combinations types
are created using the short form of define-method-combination.
Note that the creation of long method combination types works in
exactly the same way. Figure 6 illustrates the effect of calling:
(define-method-combination progn

:identity-with-one-argument t)

A new subclass of short-method-combination is created and
implemented as a short-method-combination-type. The type
name is progn (so is the operator), the lambda list is that of short
method combinations and it falls back to identity with one argu-
ment, as specified in the call to define-method-combination.

Suppose now that two generic functions are created with:
(defgeneric gf1 (...)

(:method-combination progn))
(defgeneric gf2 (...)

(:method-combination progn :most-specific-last))

The %constructor function is called twice, resulting in the cre-
ation of two instances of the progn method combination type (mc1
and mc2), each with the corresponding options. The method com-
bination’s %cache is populated accordingly. Finally, each method

standard-method-combination
options
%generic-functions

short-method-combination

standard-method-combination-type
type-name
lambda-list
%constructor
%cache

short-method-combination-type
operator
identity-with-one-argument

anonymous
type-name: progn
lambda-list: (&optional (order :most-specific-first))
operator: progn
identity-with-one-argument: t
%constructor
%cache: (nil .) ((:most-specific-last) .)

«instanceof»

mc1

options: nil
%generic-functions:

«instanceof»

mc2

options: (:most-specific-last)
%generic-functions:

«instanceof»

gf1 gf2

Figure 6: The progn Method Combination

combination object registers the concerned generic function as one
if its “clients”.

The reader may wonder why the progn method combination
class is anonymous (especially since the standard method combina-
tion one isn’t). The reason is that those classes are created automat-
ically by the system, and as such, are not meant to be visible (even
less so manipulable) by the programmer. We don’t want them to
“pollute” the global class name-space either.The fact that we provide
a global name for standard-standard-method-combination is
merely to facilitate the implementation. Sbcl provides three special-
izations on compute-effective-method; one on short-method-
combination, one on long-method-combination, and one for the
standard method combination type. Each user-defined method com-
bination type will thus inherit automatically from one of the first
two such methods. In the case of the standard method combination
type, naming it explicitly (and statically) allows us to remain in the
Mop’s first layer (macro layer):
(defmethod compute-effective-method

((gf generic-function)
(mc standard-standard-method-combination)
applicable-methods)

...)

3.6 Implementation
We have implemented this approach in Sbcl. The resulting imple-
mentation is publicly available on Github, in a specific branch of
our own Sbcl fork6.

The implementation is in fact pretty straightforward, with the
exception of one difficulty related to the bootstrapping of Clos.
During that phase of the build, the Clos/Mop infrastructure is not

6https://github.com/didierverna/sbcl/tree/method-combination-types

https://github.com/didierverna/sbcl/tree/method-combination-types

ELS’23, April 24–25 2023, Amsterdam, Netherlands Didier Verna

standard-method-combination
options
%generic-functions

short-method-combination

early-short-method-combination
type-name
operator
identity-with-one-argument

early-standard-method-combination
type-name

Figure 7: Early Method Combination Classes

fully available, and Sbcl creates two “early” method combination
objects: the standard and the or one. The difficulty is that a lot of
the early Clos code relies on those objects having the characteristics
of the old infrastructure, which we have modified. In order to be
as little intrusive as possible in the bootstrap, we use the following
solution.

3.6.1 Bootstrap
We defer the creation of the method combination types hierarchy
until after bootstrap. On the other hand, the updated method combi-
nations hierarchy (Figure 3), which is available during bootstrap, is
extended with two additional classes created specifically for the two
initial method combination objects. These are early-standard-
method-combination and early-short-method-combination, as
depicted in Figure 7. As you can see, those two classes re-introduce
the old slots that we moved around. With the appropriate accessors
in place, the bootstrap code doesn’t see the difference, and thus
the required modifications are minimal: we just need to instantiate
those “early” classes instead of the regular ones.

3.6.2 Injection
After bootstrap, themethod combination types hierarchy is installed
and the standard and built-in short method combination types are
created. At that point, the complete new infrastructure is in place,
but it is empty: we still have the two early method combination
objects dangling around, and early generic functions using them.

These objects are in fact stored in two global variables named
standard-method-combination and *or-method-combina-
tion*. Thus, it is easy for us to update the system: we transfer
the generic function caches from these objects to the new ones,
we update the existing generic functions to point to the new
method combination objects, and we eventually re-assign the
global variables to these new objects as well.

3.6.3 Additions
With that infrastructure in place, a number of suggestions already
made in [15] can be re-implemented. In particular, we provide the
following function which accesses the global method combination
type name-space (analog to what find-class does).
find-method-combination-type

(name &optional (errorp t))
"Find a NAMEd method combination type.
If ERRORP (the default), throw an error if no such

method combination type is found.
Otherwise, return NIL."

Also previously noted ([15, Section 2.3.1]) is the confusing na-
ture of find-method-combination, which may be called with a
method combination name and options (2=3 and 3A3 arguments)
that do not correspond to the method combination actually in use
by the generic function (1BC argument). Since the generic function
argument to this protocol is in fact unused, it is easy to provide an
alternative convenience function as follows.

find-method-combination*
(name &optional options (errorp t))

"Find a method combination object for NAME and OPTIONS.
If ERRORP (the default), throw an error if no NAMEd
method combination type is found.
Otherwise, return NIL.

Note that when a NAMEd method combination type exists,
asking for a new set of (conformant) OPTIONS will
always instantiate the combination again, regardless
of the value of ERRORP."

4 EXTENSIBILITY
Establishing a clear distinction between the properties of method
combination types and those of method combination objects cer-
tainly is a good thing from a software engineering point of view.
On the other hand, it may seem overkill to introduce a meta-class
hierarchy to do so. Indeed, the existence of duplicated information
in the original hierarchy is not a critical problem; a simpler alterna-
tive to avoid duplication could have been the use of :allocation
:class slots, etc.

What the proposed design gives back, however, is something
quite valuable, especially in the general context of Clos and the
Mop, and that is extensibility. Recall that one of the original rea-
sons for the general fuzziness around method combinations in the
standard was to leave room for experimentation. The Clos Mop is
notoriously good at that when it provides (meta-)class hierarchies
to extend, and protocols to specialize.

With the proposed design, it becomes possible to push experi-
mentation with method combinations further, and in a less intrusive
way, by extending the method combination and/or method combi-
nation types hierarchies separately.

4.1 Protocol refinements
In addition to the hierarchies proposed in the previous section, a
number of refinements can be made to the current implementation
to ease experimentation.

4.1.1 Method Combination Types Redefinition
When a method combination type is redefined, the current im-
plementation in sb-pcl calls change-class on every concerned
instance, and then reinitializes every (dependent) generic function
listed in the instances caches. Here, we provide two small refine-
ments for extensibility.

A Mop-Based Implementation for Method Combinations ELS’23, April 24–25 2023, Amsterdam, Netherlands

First, the code dealing with generic function reinitialization is
installed in an :aftermethod on update-instance-for-differ-
ent-class. This allows potential extensions to get notified if a
method combination type has changed.

Next, the code in question is wrapped in a new protocol named
u-g-f-f-r-m-c7, a protocol that was already proposed in [15].
This, in turn, allows potential extensions to generic functions to be
notified when their method combination is updated.

4.1.2 Method Combination Types Definition
Finally, there is a simple way to allow extensions to seamlessly
plug sub-classes of method combination (types) into the system.
According to the Common Lisp standard (in particular Section
1.6 Language Extensions8), it is permissible to add new keyword
arguments to functions or macros, provided that “they do not al-
ter the behavior of conforming code and provided they are not
explicitly prohibited […]”. Consequently, we can extend define-
method-combination in the following manner (granted, this is just
a macro so it wouldn’t be difficult to provide a different one instead).

The short form is made to understand two additional options,
the meaning of which should be self-explanatory.
:method-combination-class name
:method-combination-type-class name

or
:method-combination-type-class (name initargs*)

Similarly, the long form is made to recognize those as well, pro-
vided that they appear in that order, and only after the :arguments
and :generic-function options when present.
(:method-combination-class name)
(:method-combination-type-class name initargs*)

Of course, care is taken to verify that when provided, the alterna-
tive classes make sense in the present context, and with each other
(e.g. only sub-classes of short-method-combination[-type] are
authorized in the short form, etc.).

We now provide two examples making use of this kind of exten-
sibility. The complete code is available on Github9 and requires the
aforementioned fork of Sbcl to work.

4.2 Medium Method Combinations
We want to define “medium” method combinations, that is, method
combinations behaving like short ones, but also equipped with
:before and :after methods, and which do not request the qual-
ification of primary methods. Of course, these may be defined
as regular long method combinations (all method combinations
can). However, we may want to keep the short-style operator and
identity-with-one-argument properties around, for information
purposes (e.g. specializing print-object or producing detailed ref-
erence manuals with Declt10).

We hence provide a new method combination type class, as
depicted in Figure 8. A new convenience macro could be used as
below:

7update-generic-function-for-redefined-method-combination
8http://clhs.lisp.se/Body/01_f.htm
9https://github.com/didierverna/ELS2023-method-combinations
10https://www.lrde.epita.fr/~didier/software/lisp/typesetting.php#Declt

standard-method-combination-type
type-name
lambda-list
%constructor
%cache

long-method-combination-type

%args-lambda-list
%function

medium-method-combination-type
operator
identity-with-one-argument

Figure 8: The Medium Method Combination Type Class

(define-medium-method-combination-type myprogn
:operator progn :identity-with-one-argument t)

which, in turn, will expand to this:

(define-method-combination myprogn
(&optional (order :most-specific-first))

((around (:around))
(before (:before))
(primary () :order order :required t)
(after (:after)))
(:method-combination-type-class

medium-method-combination-type
:operator progn :identity-with-one-argument t)

...)

Because this new method combination type is fully integrated into
the original hierarchy, nothing else is required for it to work. In
particular, Sbcl’s original specialization on compute-effective-
method for long method combinations remains applicable here.

4.3 Alternative Method Combinations
Alternative method combinations have been proposed and de-
scribed in [15, Section 6]. In short, the idea is to be able to call
the same generic function with different method combinations ef-
ficiently (meaning, without having to reinitialize it at every call),
simply by maintaining a cache of discriminating functions.

Just as a quick reminder of a potential use-case, assume that ac-
cess to alternative calls is provided through a reader-macro such as
this one: #!combination(func arg1 arg2 ...). It may be con-
venient, depending on the context, to vary the calls to a function at
minimal cost like this:

#!append(func arg1 arg2 ...)
#!nconc(func arg1 arg2 ...)

Given the new method combination architecture proposed in
Section 3, the implementation of this idea is not only straightfor-
ward, but also much simpler than that of 2018. In fact, we don’t even
need to extend the method combination type hierarchy anymore;
only the generic functions one.

http://clhs.lisp.se/Body/01_f.htm
https://github.com/didierverna/ELS2023-method-combinations
https://www.lrde.epita.fr/~didier/software/lisp/typesetting.php#Declt

ELS’23, April 24–25 2023, Amsterdam, Netherlands Didier Verna

standard-generic-function

generic-function!

%functions

Figure 9: Extended Generic Functions

method-combination-mixin
%alternative-generic-functions

short-method-combination long-method-combination

short-method-combination! long-method-combination!

Figure 10: Extended Method Combinations

4.3.1 Alternative Calls
We provide a new class of generic functions, as depicted in Fig-
ure 9.The %functions slot implements the discriminating functions
cache. It is a hash table mapping method combination objects to
discriminating functions. When a generic function is called with an
alternative method combination, it is reinitialized with that method
combination, called, and the resulting discriminating function is
cached. The function is then switched back to its original method
combination.

Note that we also arrange for the two method combination ob-
jects (the original and the alternative one) to reference the generic
function in their respective cache. This is why we don’t need to ex-
tend the method combinations hierarchy anymore, but this means
that the caches in question contain a mixture of generic functions
using the method combination as their “primary” one, and others
using it as an alternative one.

Another possible implementation would be to maintain separate
caches for primary and alternative generic functions, in which case
the method combinations hierarchy (not the method combination
types one) would need to be extended as depicted in Figure 10.

4.3.2 Generic Function Modification
New :after methods are installed on add-method and remove-
method to clear the discriminating functions cache in case the
generic function is modified.

4.3.3 Method Combination Change
An :around method on reinitialize-instance is installed in
order to intercept a method combination change to the generic
function. On top of the normal behavior, if the new method combi-
nation was previously used as an alternative one for this generic
function, both the generic function’s discriminating functions cache,
and the method combination’s generic functions cache are updated.

0

0.5

1

1.5

2

2.5

3

3.5

4

Short (10e7 iterations) Long (10e7 iterations)

(s
ec
on

ds
)

Original
Fork

1

13

3

6

6

1 1

3

36

6

Figure 11: compute-effective-method Performance

4.3.4 Method Combination Redefinition
Finally, a new method on u-g-f-f-r-m-c11, one of our newly pro-
posed protocols, is installed. This method simply detects the redef-
inition of a method combination that was used as an alternative
one, and invalidates the cached discriminating function associated
with it.

5 PERFORMANCE
In this section, we study the impact of our proposed architectural
changes on the performance of the system. We are not interested in
benchmarking the creation ormodification ofmethod combinations,
since that is bound to happen very rarely. Rather, the impact of
the method combinations implementation is likely to be visible
where they are used, that is, when effective methods are computed.
In other words, we are interested in the performance of compute-
effective-method.

In Sbcl, there are three different cases.
(1) The case of the standard method combination is completely

hardwired, so regardless of its implementation, the perfor-
mance will be exactly the same.

(2) The case of short method combinations is handled by a sin-
gle function, short-compute-effective-method, but this
function accesses properties specific to the method combi-
nation types every time it is called (type name, operator,
identity with one argument).

(3) Finally, the case of long method combinations is handled by
calling a function that is specific to eachmethod combination
type.

In order to roughly evaluate the consequences of our proposed
architecture in terms of performance, we timed the execution of
compute-effective-method (ten million calls in a row) on one
generic function using a short method combination, and another
one using a long method combination, each time with one, three,
and six applicable methods. Those tests were run on a regular
Sbcl as well as on our forked version. The code is available in the
aforementioned Github repository, and the results are presented in
11update-generic-function-for-redefined-method-combination

A Mop-Based Implementation for Method Combinations ELS’23, April 24–25 2023, Amsterdam, Netherlands

Figure 11. The number of applicable methods is indicated on top of
each bar.

5.1 Short Method Combinations
In the case of short method combinations, we observe a degradation
ranging from 50% to 22% (the degradation decreasing as the number
of applicable methods increases). This may be explained as follows.

In the original version of Sbcl, short-compute-effective-
method retrieves three method combination properties (type name,
operator, and identity with one argument) through regular acces-
sors to the slots depicted in Figure 1.

In our new architecture, those properties belong to the method
combination type rather than to the method combination object.
As visible in Figure 6, accessing those properties from a method
combination object hence requires an additional call to class-of.
In other words, we are comparing (accessor mc-object) with
(accessor (class-of mc-object)). Also, because the number
of such accesses remains constant (exactly three), it is not surprising
that the impact on performance decreases when the number of
applicable methods increases: it just means that it takes longer to
execute the function with more applicable methods.

Even though such a degradation may seem important, we still
don’t think it matters that much, in the sense that effective meth-
ods are not computed very frequently (thanks to caching); only
when the set of applicable methods varies. And if it does matter,
it is always possible to duplicate that information back into the
method combination objects themselves, without sacrificing the
new architecture.

5.2 Long Method Combinations
In the case of long method combinations on the other hand, we
observe an improvement ranging from 7% to 3% (also less important
as the number of applicable methods increases), which may or
may not be considered significant. Again, this may be explained as
follows.

In the original version of Sbcl, compute-effective-method
retrieves the method combination “function” (in charge of actually
computing the effective method in a way specific to that particular
method combination type) from a hash table (see Section 2.1.2).

In our new architecture (see Figure 4), that function is stored in
the method combination type itself, that is, in the implementation of
the method combination object. So here this time, we are comparing
a hash table lookup with (accessor (class-of mc-object)).

6 CONCLUSION AND PERSPECTIVES
Method combinations are an extremely powerful, yet somewhat
obscure part of Clos. The arguable complexity of define-method-
combination’s long form is a probable obstacle to a more wide-
spread use, and their under-specification doesn’t facilitate experi-
mentation, as there is almost no official protocol that Lisp imple-
mentations need to conform to.

In this paper, we have proposed a Mop-based implementation for
method combinations.We believe that this implementation presents
a number of advantages compared to vendor-specific solutions.
First, it reifies the notion of method combination type, which, in
fact, seems quite a natural thing to do upon careful reading of

the Common Lisp standard. It is also standard-compliant, which
gives us hope that it would trigger some general interest across the
existing Lisp implementations. It remains close to Pcl’s original
design, notably by maintaining a hierarchy distinguishing short and
long method combinations (it merely adds to it). Finally, and this
is probably the strongest point, it makes the method combination
infrastructure extensible, which really is the philosophy behind the
Mop and puts this area of Clos back in line with the rest of it. The
proposed architecture as been implemented in an Sbcl fork and is
publicly available.

In Section 4, we have presented several simple examples demon-
strating how we can benefit from an extensible design for further
experimentation. There are still a number of things that we plan
to work on. One of them is turning the :description option of
the long form’s method group specifiers into something useful for
documentation purposes (Declt would like very much to have that).
The Pcl implementation seems to ignore that option completely.
Arguably, this would not be done as an extension but rather in the
core of the architecture.

Another potential area of research is to extend method combi-
nations to forms that would be neither short, nor long. Provided
with an alternative to the define-method-combination macro
which can’t be used anymore, the proposed architecture makes it
easy to do so: one simply has to sub-class both standard-method-
combination and standard-method-combination-type, and pro-
vide additional methods on compute-effective-method.

Granted, every possible method combination type can be created
with the long form of define-method-combination, since it is
always possible to provide a single method group matching all
applicable methods (using * as the pattern), and do everything in
the method combination’s form. So the question is not whether it is
possible to do it, but rather how easy it is. We can already think of
several investigation routes to ease the creation of complex method
combinations: alternative semantics for the long form’s method
groups, such as the ability to re-use the same method in multiple
groups or to specify qualifier patterns with regular expressions.

More generally, every time a method combination type is neither
as simple as a short one nor as general as a long one (the “medium”
type from Section 4.2 falls into that category), there might be a gain
in defining it as an intermediate form, with a tailored method com-
bination function, leading eventually to improving the performance
of compute-effective-method.

REFERENCES
[1] Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik,

and Frank Zdybel. Commonloops:Merging lisp and object-oriented programming.
SIGPLAN Notices, 21(11):17–29, June 1986. ISSN 0362-1340. doi: 10.1145/960112.
28700. URL http://doi.acm.org/10.1145/960112.28700.

[2] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor
Kiczales, and David A. Moon. Common lisp object system specification. ACM
SIGPLAN Notices, 23(SI):1–142, 1988. ISSN 0362-1340.

[3] Giuseppe Castagna. Object-Oriented Programming, A Unified Foundation. Progress
in Theoretical Computer Science. Birkhäuser Boston, 2012. ISBN 9781461241386.

[4] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for over-
loaded functions with subtyping. SIGPLAN Lisp Pointers, 5(1):182–192, January
1992. ISSN 1045-3563. doi: 10.1145/141478.141537. URL http://doi.acm.org/10.
1145/141478.141537.

[5] Linda G. DeMichiel and Richard P. Gabriel. The common lisp object system:
An overview. In European Conference on Object Oriented Programming, pages
151–170, 1987.

http://doi.acm.org/10.1145/960112.28700
http://doi.acm.org/10.1145/141478.141537
http://doi.acm.org/10.1145/141478.141537

ELS’23, April 24–25 2023, Amsterdam, Netherlands Didier Verna

[6] Richard P. Gabriel, Jon L. White, and Daniel G. Bobrow. Clos: integrating object-
oriented and functional programming. Communications of the ACM, 34(9):29–38,
1991. ISSN 0001-0782.

[7] Andrew Hunt and David Thomas. The Pragmatic Programmer: From Journeyman
to Master. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.
ISBN 0-201-61622-X.

[8] Sonja E. Keene. Object-Oriented Programming in Common Lisp: a Programmer’s
Guide to Clos. Addison-Wesley, 1989. ISBN 0-20117-589-4.

[9] Gregor J. Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the Metaob-
ject Protocol. MIT Press, Cambridge, MA, 1991.

[10] Patty Maes. Concepts and experiments in computational reflection. In OOPSLA.
ACM, December 1987.

[11] Andreas Paepcke. User-level language crafting – introducing the Clos metaobject
protocol. In Andreas Paepcke, editor, Object-Oriented Programming: The CLOS
Perspective, chapter 3, pages 65–99. MIT Press, 1993. Downloadable version at
http://infolab.stanford.edu/~paepcke/shared-documents/mopintro.ps.

[12] Tim Sheard. Accomplishments and research challenges in meta-programming. In
Walid Taha, editor, Semantics, Applications, and Implementation of Program Gen-
eration, volume 2196 of Lecture Notes in Computer Science, pages 2–44. Springer
Berlin / Heidelberg, 2001. ISBN 978-3-540-42558-8.

[13] Brian C. Smith. Reflection and semantics in Lisp. In Symposium on Principles of
Programming Languages, pages 23–35. ACM, 1984.

[14] Ansi. American National Standard: Programming Language – Common Lisp.
ANSI X3.226:1994 (R1999), 1994.

[15] Didier Verna. Method combinators. In 11th European Lisp Symposium, pages
32–41, Marbella, Spain, April 2018. ISBN 9782955747421. doi: 10.5281/zenodo.
3247610.

http://infolab.stanford.edu/~paepcke/shared-documents/mopintro.ps

	Abstract
	1 Introduction
	2 Method Combinations in SBCL
	2.1 Method Combinations Hierarchy
	2.2 Dependency Management

	3 Method Combinations Revisited
	3.1 Overview
	3.2 Method Combinations
	3.3 Method Combination Types
	3.4 Standard Method Combination
	3.5 Built-In Method Combinations
	3.6 Implementation

	4 Extensibility
	4.1 Protocol refinements
	4.2 Medium Method Combinations
	4.3 Alternative Method Combinations

	5 Performance
	5.1 Short Method Combinations
	5.2 Long Method Combinations

	6 Conclusion and Perspectives
	References

