
TUGboat, Volume 0 (9999), No. 0 draft: July 25, 2023 10:00 901

Interactive and real-time typesetting for
demonstration and experimentation: ETAP

Didier Verna

Abstract
We present ETAP, a platform designed to support
both demonstration of, and experimentation with
digital typesetting, interactively, and in real-time.

ETAP provides a GUI which currently focuses
on all aspects involved in paragraph formatting. A
number of pre-processing features can be switched
on or off (hyphenation, kerning, ligaturing, etc.). A
specific paragraph formatting scheme may be selected
from a pool of ready-made algorithms, and adding
new algorithms to that pool is easy. Each algorithm
comes with its own set of configuration parameters,
and the GUI allows you to tweak those parameters
and observe the effects in real-time.

ETAP may also be used without, or in paral-
lel with the GUI. While the application is running,
the whole programmatic infrastructure is manipula-
ble from a command-line interface. This allows in-
spection of the various typesetting objects normally
displayed by the GUI, and also to perform compu-
tations with them, for example, data collection and
statistical measurements.

1 Introduction
The world of digital typesetting is a fascinating one.
As an application domain, it combines a strong focus
on aesthetics with many interesting technical chal-
lenges, thus making it an Art as much as a Science.
The motivation for the project described in this pa-
per is twofold: experimentation (the Science) and
demonstration (the Art).
Experimentation Suppose you want to try out
a new ideas for paragraph justification. Experimen-
tation (including rapid prototyping and debugging)
would be made a lot easier with a direct visualiza-
tion of the results on a sample text (actual contents
not necessarily important), and with the ability to
interactively tweak such or such parameter from a
GUI (Graphical User Interface), while observing the
effects in real time.
Demonstration In terms of demonstration, my
personal experience (in particular when trying to
raise students’ awareness of the beauty and the sub-
tlety of high quality typesetting) is that showing off
static pages of text simply doesn’t cut it. On the
other hand, there is nothing like having the ability
to switch kerning on and off, and immediately see
the result, to strike people’s minds. The same goes
for ligaturing, with no characters actually displayed,

but only their bounding boxes which, all of a sudden,
go from two or three to just one.

By now, the reader has noticed that whether it is
for experimentation or demonstration purposes, the
system(s) we are talking about share two common
traits: they need to be interactive, and work in real-
time. It turns out that, if given those two properties,
there is no reason why a single such system couldn’t
fulfill both objectives. The purpose of this paper is
precisely to exhibit one such possible system.

In general, typesetting experimentation is not a
very practical thing to do. WYSIWYG (What You
See is What You Get) systems are very reactive (for
example, you can see the paragraphs being formatted
as you type them) but provide neither the highest
rendering quality, nor the highest degree of configura-
bility, let alone extensibility. TEX [8, 9], on the other
hand, is renowned for the quality of its rendering, but
works more like a non-interactive programming lan-
guage, with its separate development / compilation
/ visualization phases.

Granted, there are several attempts at bridging
the gap. Overleaf, BaKoMa, LyX, and TEXworks
provide WYSIWYG environments to TEX, increasing
the interactive “feel”. Batch Commander [3] was an
attempt at providing a GUI for TEX configuration.
LuaTEX provides some level of access to TEX’s inter-
nals. However, none of these systems would let you
fundamentally change the way TEX works (they are
not meant to).

We must also mention TeXmacs, a very inter-
esting project not in fact based on TEX, but still
providing high-quality typesetting from within a
WYSIWYG environment. TeXmacs is written in C++

and embeds a Guile interpreter (a dialect of Scheme,
from the Lisp family) as an extension language. This
makes the project very close to LuaTEX, at least in
spirit. This also makes it share the same character-
istics: it is a heterogeneous platform, and the C++

core is neither interactive, nor easily modifiable.
As a matter of fact, most available systems today

would fail the experimentation goal for a simple
reason: they are production systems.

We present ETAP (Experimental1 Typesetting
Algorithms Platform), a tool written to ease type-
setting experimentation and demonstration. ETAP
currently focuses on paragraph formatting, and pro-
vides an extensible list of configurable algorithms.
ETAP also features switchable kerning, ligaturing,
and hyphenation. The source text is editable, and

1 Whether the “experimental” part refers to typesetting,
algorithms, platform, or a combination of them is left to the
discretion of the user…

Interactive and real-time typesetting for demonstration and experimentation: ETAP



902 draft: July 25, 2023 10:00 TUGboat, Volume 0 (9999), No. 0

Figure 1: The ETAP GUI

the resulting paragraph is (re)displayed in real-time,
along with many switchable visual hints, such as para-
graph, character, and line boxes, baselines, over/un-
derfull boxes, hyphenation clues, etc. All these
parameters, along with the desired paragraph width,
are adjustable interactively through the GUI.

But ETAP can also be used without, or in par-
allel with, the GUI, as a scriptable application. This
comes directly from its homogeneous design: the ap-
plication is written entirely in one industrial-strength
programming language, Common Lisp [1], which is
multi-paradigm, dynamic, and interactive. In partic-
ular, fully reflexive access to the various internal data
structures, and in fact, to the whole program while it
is running, allows for considerable experimentation
opportunities, such as batch-formatting in various
environmental conditions, and data collection for
empirical evaluation and statistical measurements.

Section 2 provides a description of the appli-
cation’s most important features, focusing on inter-
active manipulation through the GUI. Section 3

discusses some software engineering aspects of its
implementation. Finally, Section 4 describes the
programmatic (interactive, yet non-graphical) capa-
bilities of ETAP for experimentation.

2 The platform
Note: for the interested reader, another, slightly dif-
ferent description of the platform is available in [16].

A screenshot of ETAP’s GUI is provided in Fig-
ure 1. For as much as an interactive and real-time
application can be described on paper, the picture
should at least give the reader a general feeling of
what is available.

The Knuth-Plass algorithm [10] has been se-
lected, along with the default values for all its param-
eters. The source text for the paragraph is typeset
accordingly, in justified disposition, and with kern-
ing, ligatures (although there are none here), and
hyphenation.

A number of visual clues have been activated as
well and can be observed in the paragraph rendering

Didier Verna



TUGboat, Volume 0 (9999), No. 0 draft: July 25, 2023 10:00 903

area (the bottom half of the window). In addition to
the characters themselves, the paragraph’s bounding
box is drawn. The small arrows pointing upward
between characters represent the hyphenation points
at which the algorithm has decided not to break lines.
Finally, the unfilled triangle to the right of line 2
indicates an intentionally overstretched line. This
means that the algorithm has decided on a scaling (of
glue) ratio which exceeds 1. Indeed, the Knuth-Plass
algorithm ran twice here, using a tolerance threshold
of 200 the second time. One can also observe that
the third line had to be hyphenated, which confirms
this is not the result of pass 1 of the algorithm.

Finally, one can see a small popup window near
the bottom-right corner of the typeset paragraph.
This is actually a “properties tooltip” which pops up
when the mouse is moved over a line, and provides
feedback on the line in question. In this particular
case, it indicates that the line is 280pt wide (the para-
graph’s width, as the line is properly justified), and is
stretched by a scaling factor of approximately 0.475.
Also, because the selected algorithm is the Knuth-
Plass one, the tooltip reports the line’s fitness class,
badness, and local demerits. If we were to move the
mouse over the paragraph’s left margin, the tooltips
would advertise a number of global paragraph prop-
erties, such as the total demerits, the algorithm’s
pass number, and the number of remaining active
nodes at the end of execution.

Since we are talking about the Knuth-Plass
algorithm, note that this project does not aim at
providing an exact replica of it, nor of any other
currently available line-breaking algorithms (notably
Barnett [2] and Duncan [6]), nor of any future ones.
In fact, it is our opinion that what is called the
“Knuth-Plass algorithm” is actually not an algorithm
per se, but rather the combination of a typical short-
est path finding algorithm with a particular cost
function having the suitable properties for dynamic
programming optimization, all of this written in a
relatively low-level imperative language with perfor-
mance concerns of that time (the 1980s) in mind.

On the other hand, what we are interested in is
providing an exact replica of the algorithm’s logic.
Common Lisp is a much higher-level programming
language, and most performance concerns of the
time have long been obsoleted by the continuously
increasing computing power at hand (besides, perfor-
mance is rarely a top priority for an experimentation
platform). Consequently, our design and choice of
precise data structures diverge from the original. For
example, we actually provide two different implemen-
tations of the Knuth-Plass algorithm: one, close to
the original, equipped with the same dynamic pro-

gramming optimization, and another one based on
the exploration of a complete graph of solutions (not
the brute force and exhaustive 2n one, though!).

Another example where we differ from the origi-
nal is, again, motivated by demonstration and experi-
mentation. In the original Knuth-Plass, pass 1 of the
algorithm works on a non-hyphenated text (hyphen-
ation was considered too costly at the time). Only
if that fails does TEX hyphenate the text and try a
second pass (also with a different tolerance thresh-
old). In our case, we want to be able to display the
hyphenation clues every time, if so requested. Con-
sequently, the hyphenation process is implemented
as a global option (independent of the selected type-
setting algorithm), and pass 1 of the Knuth-Plass
algorithm may consequently run on an already hy-
phenated text, in which case it simply disregards the
hyphenation points as potential break points.

3 Software engineering
In the context where TEX is still one of the best
typesetting systems out there, but also one of the
oldest, we deem it important to say a word about
software engineering. It is a well-known fact that
the science of programming languages and paradigms
has evolved considerably over the years. Some people
have written about the virtues of a purely functional
approach to paragraph breaking in the past [4, 13].
We, on the other hand, favor a more pragmatic than
theoretical approach. In particular, instead of having
a single paradigm (e.g., functional programming)
imposed on us, we prefer the freedom and flexibility
provided by a multi-paradigm language [15].

Virtually any programming paradigm aims at in-
creasing both the code’s clarity and concision at the
same time. Table 1 provides a rough estimate of the
project’s size in LoC (Lines of Code), and clearly illus-
trates the benefits of being multi-paradigm for con-
cision. Liang’s hyphenation algorithm [11] amounts
to 150 LoC. The 500 lines of “lineup” correspond
to the pre-processing of the source text, including
hyphenation, kerning, ligaturing, and glueing. The
currently available paragraph formatting algorithms
comprise between 150 and 450 LoC (each variant

Table 1: Rough estimate of ETAP’s size
LoC

GUI 800
Hyphenation 150
Lineup 500
Algorithms 150–450
Knuth-Plass 350 per variant

Interactive and real-time typesetting for demonstration and experimentation: ETAP



904 draft: July 25, 2023 10:00 TUGboat, Volume 0 (9999), No. 0

kp-mixin
pass-number
demerits

paragraph
width
disposition
lines

graph-par
layouts-number

kp-graph-parkp-dyn-par
nodes-number

Figure 2: The paragraph classes

of Knuth-Plass takes 350 lines). We believe this
makes the whole platform rather small, considering
the functionality offered. In fact, the whole thing
currently remains below 5000 LoC, exclusive of large
data blocks: an additional 5000 lines is the “lispifi-
cation” of Adobe’s glyph list, and another 5000 lines
for English hyphenation patterns.

Let us now illustrate why being multi-paradigm
is beneficial for the project, via some examples.

3.1 Object orientation
Traditional, class-based object orientation revolves
around two fundamental concepts: inheritance (or-
ganization of the data) for code reuse, and polymor-
phism (manipulation of the data) for genericity.

Figure 2 depicts the paragraph class hierarchy
in a UML fashion. Every subclass incorporates the
contents of its superclass(es), thus avoiding duplica-
tion. The presence of multiple inheritance (not avail-
able in all object-oriented languages) ensures max-
imum sharing of code: the kp-dyn-par class repre-
sents paragraphs typeset with the dynamic program-
ming variant of the Knuth-Plass algorithm. Such a
paragraph is a regular paragraph before anything
else, but it also is a kp-mixin one, which means that
it remembers its pass number and total demerits.
Finally, this class also has one additional property of
its own: the number of remaining active nodes when
the algorithm terminates.

The GUI is passed a paragraph object which,
most of the time, is an instance of one of the sub-
classes (for example, a kp-dyn-par). But the visual
rendering function is interested only in the contents
of the base class (it needs to know only the para-
graph’s width, disposition and lines to perform the
formatting) so it is in fact unaware of the object’s ex-
act class. On the other hand, the properties tooltip

;; Duncan
(make-graph lineup width)

;; Knuth-Plass, graph variant
(make-graph lineup width

;; alternative "next boundaries" function...
:next-boundaries #'kp-next-boundaries
;; ... plus some specific arguments.
:threshold pre-tolerance)

Figure 3: The make-graph higher order function

popup is implemented via a polymorphic generic
function with different implementations for every
paragraph class. That is why, in a single function
call, it can still advertise the nodes-number proper-
ties when available, and simply doesn’t otherwise.

3.2 First class functions
The second example is that of functional program-
ming, although not in the “purely functional” sense
mentioned earlier, but rather in Christopher Stra-
chey’s sense [5, 14]. Functions in a programming
language are said to be “first class”, or “first order”,
or even “higher order” if they behave like any other
kind of object: they can be created dynamically,
passed as arguments to other functions, provided as
return values, etc.

Figure 3 provides an illustration of how func-
tional programming contributes to concision as much
as object orientation, only in a different way. ETAP
has a function called make-graph which accepts a
lineup and a paragraph width as arguments, and
returns a graph of all possible break point solutions.
By default, starting at a specific position in the
lineup, the next possible break points would be those
involving a scaling of at most 1 in absolute value.
There is a function called next-boundaries which
computes the list of such break points.

On the other hand, some algorithms may have
a different view on what the next possible break
points actually are. For instance, the Knuth-Plass
algorithm does not look at the scaling alone, but
considers hyphenation and uses a pre-tolerance or a
tolerance threshold, depending on the pass number.
Creating a Knuth-Plass graph thus only differs from
a regular one in the way the next possible break
points are computed. It would be unsatisfactory to
write a specific version of make-graph just because of
that small divergence from the default behavior. In
fact, most of the code would actually be redundant
with the regular version.

Didier Verna



TUGboat, Volume 0 (9999), No. 0 draft: July 25, 2023 10:00 905

What we do instead, is parameterize the “next
boundaries” function. The Knuth-Plass implemen-
tation comes with an alternative function called kp-
next-boundaries. As you can see in Figure 3, make-
graph is in fact a higher order function, accepting
a “next boundaries” function as argument. This en-
sures that the skeleton of make-graph does not need
to be duplicated.

4 Experimentation
The last critical software engineering aspect which
we want to emphasize is the dynamic and interactive
nature of Common Lisp, ETAP’s implementation
language. Just like the more mainstream scripting
languages such as Ruby, Python, or Perl, Lisp pro-
vides a REPL (Read Eval Print Loop) from which
the programmer can interact with the program while
the program is running. In fact, both the REPL and
the GUI may be used at the same time to interact
with the system, and the homoiconic [7, 12] nature
of the language makes it trivial to introspect the live
objects, or even destructively modify them.

A typical experimentation scenario is as follows.
The programmer runs a typesetting experiment via
the GUI in various conditions, and observes a surpris-
ing (or suspicious) situation. The programmer then
switches to the REPL and from there, has the ability
to inspect (or debug) the complete program state,
without leaving the program. It is even possible to
hot-modify the typesetting code, for example to fix
a bug and switch back to the GUI in order to trigger
a redisplay.

Let us now illustrate the benefits of interactivity
with two examples, the second being a recent and
true anecdote.

4.1 Statistics
ETAP provides a short (around 200 LoC) generic
infrastructure for data collection and statistical mea-
surements of all sorts. For example, there is a func-
tion called scalar-statistics that loops over all
available algorithms and paragraph widths, and each
time collects a scalar value computed by a function
passed as an argument (another case of functional
programming at work).

This function can be used to generate compara-
tive charts for any criterion one may think of. For
example, with the two function calls below, we are
able to generate the charts presented in Figures 4
and 5.
(scalar-statistics #'collect-scales-mean)
(scalar-statistics #'collect-scales-variance)

Those charts are primarily meant to be visualized
on (large) screens, so they will appear somewhat

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

150 200 250 300 350 400 450 500 550 600

Li
ne

sc
al

in
g

m
ea

ns

Paragraph width (pt)

Best-Fit
Barnett
Duncan

Knuth-Plass/Graph
Knuth-Plass/Dynamic

Figure 4: Scales mean

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

150 200 250 300 350 400 450 500 550 600

Li
ne

sc
al

in
g

va
ria

nc
e

Paragraph width (pt)

Best-Fit
Barnett
Duncan

Knuth-Plass/Graph
Knuth-Plass/Dynamic

Figure 5: Scales variance

cluttered in a PDF. Their actual content is not so
important here, as the point is merely to illustrate
the current capabilities of the platform.

The first one shows the average line scaling for
every algorithm and paragraph width. It is immedi-
ately visible on this chart that except for very narrow
paragraphs, the Barnett algorithm has a tendency
to compress a lot. On the other hand, the second
chart also shows that Barnett has a higher scaling
variance than the other algorithms. In TEX’s terms,
this means that the adjacent demerits would prob-
ably be off the charts (and that would be easy to
confirm too).

These two charts are just examples. Other ready-
made data collection functions allow you to compute
the graph sizes, the number of possible solutions, the
number of under/overfull lines, etc., usually in less
than 15 LoC.

4.2 The anecdote
The final example we want to provide here takes the
form of an anecdote, and we think it illustrates pretty

Interactive and real-time typesetting for demonstration and experimentation: ETAP



906 draft: July 25, 2023 10:00 TUGboat, Volume 0 (9999), No. 0

100

1000

10000

100000

1× 106

1× 107

1× 108

150 200 250 300 350 400 450 500 550 600

Te
X

’s
D

em
er

its

Paragraph width (pt)

Best-Fit
Barnett
Duncan

Knuth-Plass/Graph
Knuth-Plass/Dynamic

Figure 6: TEX’s view of the competition

well why having such a platform for experimentation
is convenient.

At some point, we were curious to get an idea
of TEX’s view of the competition. In other words,
the question was: given a paragraph formatted by
an algorithm other than Knuth-Plass, what is this
paragraph’s number of total demerits?

We thus wrote a 50-line function to compute
the chart presented in Figure 6. Of course, the
expected general result is that when there is a valid
paragraph breaking solution, TEX should find itself
better than the competition, because again, it does
find optimal solution according to its own quality
criteria. Figure 6 does confirm this, although if you
look closely, you will spot a curious area, near the
440pt paragraph width, where the Best Fit algorithm
seems to perform better.

At first, we thought there was a bug somewhere
in the implementation of one algorithm or the other,
but in fact the code was correct. Visualizing the
resulting paragraphs made it apparent that the Best
Fit solution contained hyphens, and the Knuth-Plass
one didn’t. Recall that TEX will stop at pass 1 of the
algorithm if it finds a valid solution without hyphens.

The next hypothesis, then, was that there would
be cases in which a hyphenated paragraph would
amount to fewer demerits than its non-hyphenated
counterpart. Once you come to think of it, this
hypothesis is in fact very plausible, given that by de-
fault, hyphen penalties are quite small (50) compared
to, say, adjacency penalties (10000).

We were able to confirm that hypothesis in lit-
erally one line of code. Indeed, generating the chart
presented in Figure 7 took only one function call.
This chart plots the demerits for all paragraph widths
with or without pass 1 of the Knuth-Plass algorithm.
Recall that short-circuiting pass 1 is done by setting

100

1000

10000

100000

1× 106

150 200 250 300 350 400 450 500 550 600

Te
X

’s
D

em
er

its

Paragraph width (pt)

1/2/3
2/3

Figure 7: With or without pre-tolerance

the pre-tolerance parameter to −1 (which is what
LATEX does, by the way).

On this chart, some areas are clearly visible
where pass 2 of the algorithm performs better (in
terms of total demerits) than pass 1. It is a bit
surprising that after 25 years of using LATEX, we only
recently realized that. But the important point, here
is how ETAP made the experimentation, hypothesis
formulation, and confirmation simple.

5 Conclusion and perspectives
As we hope to have demonstrated in this paper, ETAP
has now reached a state where it is suitable for both
demonstration and experimentation. The project
is available on GitHub (github.com/didierverna/
etap), and as a matter of fact, we were quite happy
that after the presentation at TUG 2023, half a dozen
attendees immediately expressed some interest in
using it. Consequently, we immediately updated the
installation instructions so that everyone may now
use it, without any prior knowledge of Lisp.

The existing list of planned improvements is
already quite large. For example, more flexibility
in font selection is a high priority. In general, our
plans for the future will follow three complementary
directions.

Bibliography We plan on studying more line-
breaking literature and port existing ideas or al-
gorithms we find to ETAP. By the way, here is a
small plea for help: our Duncan [6] and Barnett [2]
implementations are based only on the descriptions
that are given in the Knuth-Plass paper. We couldn’t
recover the original publications, and hence would
love it if anyone could contribute them.

Research One of our top priorities in the research
area is working on river detection. We also plan on

Didier Verna

https://github.com/didierverna/etap
https://github.com/didierverna/etap


TUGboat, Volume 0 (9999), No. 0 draft: July 25, 2023 10:00 907

looking into microtype extensions, and perhaps a
number of smaller or simpler issues.

One such issue is what we call “character lad-
ders”. In the same way TEX has this notion of “double
hyphen demerits” for hyphenation ladders, it is usu-
ally undesirable that consecutive lines begin or end
with the same characters or short words. Taking
this into account is in fact very simple, and can even
be implemented as an extension to the Knuth-Plass
algorithm by adding a new kind of demerits.

Speaking of Knuth-Plass extensions, the ability
to have a graph-based implementation as well as the
original dynamic programming optimization opens
the door to a number of interesting research ques-
tions. For example, the way TEX addresses adjacency
problems is rather coarse. It only has four fitness
categories because in order for its cost function to
remain dynamically optimizable, the number of ac-
tive nodes to keep around depends on the number of
fitness classes (which needs to be discrete!). This is
in fact sub-optimal because if two consecutive lines
belong to different classes, the adjacency cost will
be the same, whether or not those lines are close to
each other in terms of scaling. On the other hand,
if one maintains a full graph of possible breaking
solutions, the adjacency demerits can be turned into
a continuous, hence much more accurate function. It
would be interesting to see how much of a difference
this makes in practice.
Development Finally, there are also some more
technical aspects that we want to address, one of
them being a tighter integration between the GUI
and the platform’s core. The current design offers
a number of features that are not yet accessible to
the GUI. For example, every possible break point
in the lineup has a local penalty value that can be
changed programmatically. The GUI only allows
global changes to the default initial value (TEX’s
hyphen penalty for example), but it would be nice
if we could, say, right click on hyphenation points,
and get a slider to change said penalty, having the
paragraph reformatted immediately. Indeed, this
would be an extremely convenient feature to have in
a production system as well.

References
[1] ANSI. American National Standard: Programming

Language — Common Lisp. ANSI X3.226:1994
(R1999), 1994.

[2] M.P. Barnett. Computer Typesetting: Experiments
and Prospects. MIT Press, Jan. 2000.

[3] K. Bazargan. Batch commander: a graphical user
interface for TEX. TUGboat 26(1):74–80, 2005.
tug.org/TUGboat/tb26-1/bazargan.pdf

[4] R.S. Bird. Transformational programming
and the paragraph problem. Science of
Computer Programming 6(2):159–189, 1986.
doi.org/10.1016/0167-6423(86)90023-7

[5] R. Burstall. Christopher Strachey — Understanding
programming languages. Higher Order Symbolic
Computation 13(1–2):51–55, 2000.

[6] C. Duncan, J. Eve, et al. Computer typesetting:
an evaluation of the problems. Printing Technology
7:133–151, 1963.

[7] A.C. Kay. The Reactive Engine. Ph.D. thesis,
University of Utah, 1969.

[8] D.E. Knuth. The TEXbook. Addison-Wesley, 1984.
[9] D.E. Knuth. TEX: The Program, vol. B of

Computers & Typesetting. Addison-Wesley, Jan.
1986.

[10] D.E. Knuth, M.F. Plass. Breaking paragraphs
into lines. Software: Practice and Experience
11(11):1119–1184, 1981. doi.org/10.1002/spe.
4380111102

[11] F.M. Liang. Word Hy-phen-a-tion by Com-put-er
(Hyphenation, Computer). Ph.D. thesis,
Stanford University, 1983. tug.org/docs/liang

[12] M.D. McIlroy. Macro instruction extensions of
compiler languages. Communications of the ACM
3:214–220, Apr. 1960. doi.org/10.1145/367177.
367223

[13] O. de Moor, J. Gibbons. Bridging the
algorithm gap: a linear-time functional
program for paragraph formatting. Science
of Computer Programming 35(1):3–27, 1999.
doi.org/10.1016/S0167-6423(99)00005-2

[14] J. Stoy, C. Strachey. OS6 — An experimental
operating system for a small computer. Part 2:
Input/output and filing system. The Computer
Journal 15(3):195–203, 1972.

[15] D. Verna. Star TEX: the next generation.
TUGboat 33(2):199–208, 2012.
tug.org/TUGboat/tb33-2/tb104verna.pdf

[16] D. Verna. ETAP: Experimental typesetting
algorithms platform. In 15th European Lisp
Symposium, pp. 48–52, Porto, Portugal, Mar. 2022.
doi.org/10.5281/zenodo.6334248

� Didier Verna
EPITA Research Lab
14–16, rue Voltaire
94270 Le Kremlin-Bicêtre
France
didier (at) lrde.epita.fr
https://www.lrde.epita.fr/~didier/
ORCID 0000-0002-6315-052X

Interactive and real-time typesetting for demonstration and experimentation: ETAP

https://tug.org/TUGboat/tb26-1/bazargan.pdf
https://doi.org/10.1016/0167-6423(86)90023-7
https://doi.org/10.1002/spe.4380111102
https://doi.org/10.1002/spe.4380111102
https://tug.org/docs/liang
https://doi.org/10.1145/367177.367223
https://doi.org/10.1145/367177.367223
https://doi.org/10.1016/S0167-6423(99)00005-2
https://tug.org/TUGboat/tb33-2/tb104verna.pdf
https://doi.org/10.5281/zenodo.6334248

	Introduction
	The platform
	Software engineering
	Object orientation
	First class functions

	Experimentation
	Statistics
	The anecdote

	Conclusion and perspectives

