
Patcher
Automatic maintenance of RCS-based projects from within XEmacs

Version 4.0

Didier Verna <didier@xemacs.org>

mailto:didier@xemacs.org

Copyright c© 2010, 2011, 2012 Didier Verna.
Copyright c© 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009 Didier Verna.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the sections entitled “Copying” and
“GNU General Public License” are included exactly as in the original, and provided that
the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

i

Table of Contents

Copying . 1

1 Introduction . 3

2 Installation . 5
2.1 Distribution . 5
2.2 Requirements . 5
2.3 Insinuation . 5

3 Quick Start . 7
3.1 Setting up Patcher . 7
3.2 Calling Patcher . 7
3.3 Filling the ChangeLogs . 8
3.4 Filling the message . 8
3.5 Committing the Patch . 8
3.6 Sending the Message . 9

4 User Manual . 11
4.1 Starting Up . 11

4.1.1 Project Descriptors . 11
4.1.1.1 Themes . 11
4.1.1.2 Project inheritance . 12
4.1.1.3 Fallbacks . 12
4.1.1.4 Retrieval . 13
4.1.1.5 Inheritance or theme? . 13

4.1.2 Entry Points . 14
4.1.2.1 Mail Creation . 14
4.1.2.2 Mail Adaptation . 14
4.1.2.3 Gnus Insinuation . 14

4.1.3 Project Relocation . 15
4.1.4 Subprojects . 15

4.1.4.1 Temporary Subprojects . 16
4.1.4.2 Permanent Subprojects . 16

4.1.5 Submodules . 17
4.1.6 Patcher Instances . 18

4.2 Message Generation . 18
4.2.1 Mail Methods . 18

4.2.1.1 Standard Mail Methods . 18
4.2.1.2 Fake Mail Method . 19
4.2.1.3 Other Mail Methods . 20

4.2.2 Message Customization . 20
4.3 Patch Generation . 21

ii Patcher

4.3.1 Diff Command . 21
4.3.2 Diff Headers . 22
4.3.3 Diff Line Filter . 22
4.3.4 Diff Prologue . 23

4.4 ChangeLogs Handling . 23
4.4.1 ChangeLogs Naming . 23
4.4.2 ChangeLogs Updating . 24

4.4.2.1 Automatic ChangeLogs . 24
4.4.2.2 Manual ChangeLogs . 25
4.4.2.3 No ChangeLogs . 25

4.4.3 ChangeLogs Navigation . 25
4.4.4 ChangeLogs Appearance . 25
4.4.5 ChangeLogs Prologue . 26
4.4.6 ChangeLogs Status . 27

4.5 Project Check In . 27
4.5.1 Commit Command . 28
4.5.2 Log Message Handling . 28

4.5.2.1 Log Message Elements . 28
4.5.2.2 Log Message Editing . 29

4.5.3 Commit Operation . 30
4.6 Mail Sending . 31

4.6.1 Before Sending . 31
4.6.2 After Sending . 31

4.7 More On Commands . 32
4.7.1 Prefixing Commands . 32
4.7.2 Error Handling . 32

Appendix A XEmacs Development 33

Appendix B Indexes . 35
B.1 Concepts . 35
B.2 Variables . 37
B.3 Functions . 38
B.4 Keystrokes . 39

Copying 1

Copying

Patcher is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License version 3, as published by the Software Foundation.

Patcher is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge,
MA 02139, USA.

Chapter 1: Introduction 3

1 Introduction

When a project becomes important in size, or when the development is performed cooper-
atively by several people across the Internet, it is a common practice to help maintaining
it by using a revision control system. Such tools (Git, Mercurial, Subversion, Darcs, CVS,
PRCS to name a few) usually work by maintaining a centralized or distributed project
archive (also called a repository) that keeps track of the history of the changes, lets you
develop different “branches” at the same time and perform operations like merges between
these different project branches.

In such “RCS-based” maintenance models, making the project evolve usually involves
repeatedly the same few steps, some of which can be tedious: you work on your local copy of
the project; once you’re satisfied with your changes, you create a patch by diffing your local
copy against the project’s archive; then (or progressively), you construct the ChangeLog
entries. Finally, you propose your changes by sending a mail to the developers list with your
patch and the ChangeLog entries included, hoping that your proposition will be accepted.
If you’re one of the maintainers, you will still probably send the message to the list, simply
announcing the modification, and immediately commit the patch with an informative log
message.

Patcher is an XEmacs package designed to automate this process. Patcher can’t work
on the project for you. However, as soon as you give it some basic knowledge on the project
structure and repository, it can automatically build a patch by comparing your local copy
with the repository, create ChangeLog entries, prepare a mail announcing the changes, and
even commit the patch for you with a informative log message. All of this is done in just
a few keystrokes. Additionally, Patcher can perform some sanity checks, like verifying that
your local copy is up-to-date, that you did not forget some ChangeLog entries, that the
commit operation went well and so on.

If you’re brave and impatient, and want to start using the basics of Patcher as soon as
possible, see Chapter 3 [Quick Start], page 7. It is recommended to read it anyway, since it
gives an overview of how Patcher works. If you know the basics and want a more detailed
guide, see Chapter 4 [User Manual], page 11.

Enjoy using Patcher!

Chapter 2: Installation 5

2 Installation

2.1 Distribution

Patcher is a standard XEmacs package. As such, you can download and install it directly
from a running XEmacs session. The packages interface is accessible from the ‘Tools’ menu
or via M-x list-packages). You may also manually download a tarball or use the Mercurial
repository. See http://www.xemacs.org/Develop/packages.html for more information.

Otherwise, Patcher is also distributed as a standalone package directly from my website
(a Git repository and tarballs are available), at http://www.lrde.epita.fr/~didier/

software/elisp/misc.php. You will also find different inlined versions of this documen-
tation at that place. For standalone installation instructions, please read the ‘INSTALL’ file
in the distribution.

2.2 Requirements

Patcher currently works with XEmacs 21.4 or later. Patcher might also have some other
requirements, depending on how you use it:

• If you let Patcher create ChangeLogs for you (see Section 4.4 [ChangeLogs Handling],
page 23), you will need the ‘add-log’ library from the ‘xemacs-base’ package, version
2.21 or later, installed on your system.

• If you want to send mails from Patcher (see Section 4.2.1 [Mail Methods], page 18),
you will need a mail user agent. Patcher currently supports ‘sendmail’, ‘message’
and ‘Gnus’ natively and through the ‘compose-mail’ interface. Other MUA might be
partly supported when used with compose-mail. Patcher will probably suffer from non
critical deficiencies in that case however (it will issue warnings).

2.3 Insinuation

With a proper installation of Patcher (either way), you don’t need any special trickery in
your ‘.emacs’ file because all entry points to the library should be autoloaded.

However, Patcher has the ability to hook into external libraries, but won’t do so unless
requested. Currently, Patcher has hooks for Gnus only. If you’re using Gnus as your MUA,
you might want to add the following line to your ‘gnusrc’ file:

(patcher-insinuate-gnus)

This will add some facilities described along the text.

http://www.xemacs.org/Develop/packages.html
http://www.lrde.epita.fr/~didier/software/elisp/misc.php
http://www.lrde.epita.fr/~didier/software/elisp/misc.php

Chapter 3: Quick Start 7

3 Quick Start

This chapter demonstrates the use of Patcher through a quick and basic setup. Adapt the
example as you wish. See also Appendix A [XEmacs Development], page 33 for an XEmacs
specific sample setup. Let’s make some assumptions first:

• You own a computer.

• You have the ‘add-log’ library from the ‘xemacs-base’ package, version 2.21 or later,
installed on your system.

• You’re working on a Git project called SuperProj.

• Your local clone of the Git repository is located in ‘/home/me/superproj’.

• You have commit access to this project.

• There is a mailing list for developers at superproj-devel@superproj.org.

• Your repository is up-to-date, but you’ve done some hacking in the sources that you’d
like to commit.

• Since you’re lazy, you didn’t write the ChangeLog entries yet.

3.1 Setting up Patcher

The first thing to do is to make patcher aware of your “SuperProj” project. Put this in
your ‘.emacs’ file:

(setq patcher-projects

’(("SuperProj" "/home/me/superproj"

:to-address "superproj-devel@superproj.org"

:commit-privilege t

:themes (git))))

As you can imagine, patcher-projects is a user option in which you store information
about the projects you want to manage with Patcher. It is actually a list of what’s called
project descriptors. Here’s the meaning of the only project descriptor we have in the example
above: we have a project named “SuperProj”, located in ‘/home/me/superproj’ and for
which emails should be sent to superproj-devel@superproj.org. In addition to that, this
project is handled by Git.

Note the particular syntax for specifying the mailing address. This is what’s called a
project option. Contrary to the project’s name and directory, which are mandatory and
always appear as the first and second elements of a project descriptor, project options are
optional and can appear in any order. Note also that we have used a :themes option for
specifying the revision control system in use. A “theme” is a set of options with particular
values. Patcher happens to come with some predefined themes, including one for Git.

3.2 Calling Patcher

Now you want to build a patch with your changes, and prepare a message to submit them.
The way Patcher works is currently to setup the message first, and then to control all
subsequent operations from there. In other words, to create a patch, you actually ask
Patcher to prepare a mail. Type this:

mailto:superproj-devel@superproj.org
mailto:superproj-devel@superproj.org

8 Patcher

M-x patcher-mail

First, you’re prompted (with completion) for a project name (the first element of each
project descriptor, remember?). We currently only have a “SuperProj” project, so hitting
TAB will directly fill the minibuffer in with this only choice. Then, you’re prompted for a
subject line that will be used in the mail. Say something sensible here.

Three operations are now executed in turn:

1. Patcher prepares a mail buffer. The message will be sent to the address you speci-
fied with the :to-address project option, and the subject line now reads “[PATCH]
something sensible here”.

2. Patcher now builds the patch. The command used to do this is specified in the Git
theme, but it is a project option so it can be changed. Upon successful completion of
this command (we assume that’s indeed the case), the patch is inserted into the mail
buffer. Some information about the patch is provided just above it (the command used,
the files affected and so on).

3. Finally, Patcher generates ChangeLog skeletons from what it understands of the patch.
This involves visiting the appropriate ChangeLog files, and creating initial entries.

3.3 Filling the ChangeLogs

Patcher has just created initial ChangeLog entries for you. You must now browse through
the ChangeLog file(s) and fill the entries as you see fit. From the mail buffer type C-c C-p n

(patcher-mail-first-change-log). This command will bring you to the first ChangeLog
file that you need to fill in. From a ChangeLog buffer, the same keyboard sequence will will
bring you to the next one, and so on (patcher-change-log-next).

Once you’re done, you can very well save the ChangeLog buffers. However, don’t kill
them! Don’t even think about it. Patcher still needs them. From any of the ChangeLog
buffers you just filled in, type C-c C-p m (patcher-change-log-mail). This will bring you
back to the mail buffer.

3.4 Filling the message

Now that you’re satisfied with your ChangeLog entries and you’ve returned to the mail
buffer, you want to write some explanation text in the message. I’ll let you do that. You
also want to insert the ChangeLog entries corresponding to your patch, since they are
usually much more readable than the patch itself.

Inserting your ChangeLog entries in the mail buffer is as simple as typing C-c C-p l

(patcher-mail-insert-change-logs). This command places them just above the patch,
with a short information line (per ChangeLog file) on top.

3.5 Committing the Patch

If you have commit access to your project, you should read this. Otherwise, you may
directly jump to Section 3.6 [Sending the Message], page 9.

Committing your changes involves three steps: preparing the commit command, prepar-
ing the commit log message, and actually committing the changes. Although Patcher can
do all of this in one shot, it gives you control each step by default.

Chapter 3: Quick Start 9

In order to start the commit process, simply type C-c C-p c (patcher-mail-commit).
Congratulations. You’ve just been transported to a new buffer, the “log message” buffer.
This buffer lets you edit the log message that will accompany your commit. Note that the
message is initialized with the subject line of your mail. This is also a project option.

Once you’re satisfied with the log message, type C-c C-p c or C-c C-c (patcher-logmsg-
commit). This command computes the commit command to use, and while you think that
you’re done this time, you’re not quite there yet. Indeed, patcher transports you to yet
another buffer called the “commit command” buffer. This buffer lets you modify, or at
least check the commit command to use.

The default commit command is specified in the Git theme, but it is of course a project
option so it can be changed. Note that Patcher stores the log message in a temporary
file and uses the ‘-F’ option of the Git ‘commit’ command. Finally, note that Patcher has
automatically appended the affected ChangeLog files to the commit command.

If the commit command suits you, type C-c C-p c or C-c C-c (patcher-cmtcmd-
commit). This time, you’re done. If you had not previously saved the ChangeLog files,
Patcher will do it for you just before committing.

As Patcher doesn’t do pushing (neither pulling) yet, you may now want to push your
changes to the remote repository by hand.

3.6 Sending the Message

Sending the message has actually nothing to do with Patcher. It depends on the method
you use for sending mails, but will usually be done via a C-c C-c command of some sort.
On thing to note however: if you’ve committed your changes via Patcher, the message has
been slightly modified: the subject line now reads “[COMMIT] something sensible here”
instead of “[PATCH] something sensible here”, and a short commit notice has been inserted
just at the beginning of the message’s body.

That’s it. That was easy. Congratulations on your first shot at Patcher, anyway! Of
course, Patcher is much more powerful and customizable than what has been described in
this chapter. For a complete documentation on how to use and customize Patcher, please
refer to Chapter 4 [User Manual], page 11.

Chapter 4: User Manual 11

4 User Manual

This chapter provides a step-by-step guide to using Patcher. Everything there is to know
about Patcher is here, though the features are introduced progressively.

All user options that are going to be presented in this manual can be found in the
patcher customization group, or a subgroup of it.

At any time, and in any buffer related to a Patcher project (mail, ChangeLog etc.), you
can query the current version of Patcher by calling the function patcher-version, bound
to C-c C-p v.

4.1 Starting Up

Starting up Patcher implies first defining a project, and then calling one of the entry point
functions. This section describes how to do that.

4.1.1 Project Descriptors

Projects specifications are stored in patcher-projects. This user option is actually a list
of project descriptors. Each project descriptor has the following form: ‘(NAME DIR :OPTION

VALUE ...)’

• NAME is a string naming your project.

• DIR is a string specifying the directory in which to find the project. It can also be set
to nil in which case Patcher will prompt you for the project’s location every time it is
needed (such projects are called “floating” projects). This feature may be useful when
you maintain several clones of the same repository but want to define it only once in
Patcher. Another potential use of this is when several independent projects happen to
share exactly the same set of options.

• The remainder of a project descriptor is a sequence of zero or more option/value pairs
that we call project options. All option names start with a colon. The type of a value
depends on the corresponding option. For example, there is a project option named
:to-address, whose value should be a string giving the email address to which you
want to send Patcher messages.

When Patcher needs the value for a particular project option, it looks for it directly in
the project descriptor, but also in other places. This process is described below.

4.1.1.1 Themes

If you have several projects sharing the same option set, you might want to setup a theme.
Themes are named collections of project options.

Themes are stored in the patcher-themes user option. This option is a list of themes.
Each theme has the following form: ‘(NAME :OPTION VALUE ...)’.

NAME is the theme’s name (a symbol). The remainder of the list is a sequence of zero
or more option/value pairs, just like in project descriptors.

In order to use a theme in a given project, a :themes project option is provided. It is a
list of theme names (symbols). Use this option in your project descriptor, and the project
will implicitly inherit all options from the corresponding theme.

12 Patcher

One important note: as :themes is a project option, it can appear in a theme. In other
words, themes can inherit from other themes. When Patcher tries to retrieve an option
from a theme (an that option is not directly available), the themes tree is traversed depth
first.

Because themes can contain themes, a bogus setting might lead to an infinite loop (a
cycle in a theme graph). To prevent this, the patcher-max-theme-depth user option is
provided. It represents the expected maximum theme nesting level and defaults to 8.

Patcher comes with a set of built-in themes for several revision control systems. These
are Git, Mercurial (Hg), Darcs, Subversion (Svn), CVS and PRCS. Look at the value
of patcher-built-in-themes to see what’s in them. Each of these themes have a -ws

counterpart which eliminates white-space differences in diff outputs. This comes in handy
if you are a committer (see Section 4.5 [Project Check In], page 27) and you perform some
kind of automatic white-space cleanup in the files you edit, especially when you let Patcher
generate the ChangeLog entries (see Section 4.4 [ChangeLogs Handling], page 23).

While you can’t modify the value of patcher-built-in-themes, you’re free to do what-
ever you want in patcher-themes, including creating a theme with the same name as a
built-in one. This new theme will take precedence over the other. Having this built-in vari-
able (a constant, actually) lets me modify its value from release to release without risking
to smash your own adjustments.

4.1.1.2 Project inheritance

When two projects are very similar, you might prefer to use the project inheritance mech-
anism described below over themes.

There is a special project option called :inheritance. This option must be a list of
project names (strings). The inheritance of a project defines a list of projects from which
to inherit options.

One important note: inherited projects might have their own :inheritance option set
to other projects in turn. In other words, the project inheritance can be more than one
level deep. Just as for themes traversal, when Patcher tries to retrieve an option and this
option is not available directly, the inheritance tree is traversed depth first.

Because inherited projects can inherit from projects, a bogus setting might lead to an
infinite loop (a cycle in a project graph). To prevent this, the patcher-max-inheritance-
depth user option is provided. It represents the expected maximum project inheritance
level and defaults to 8.

The :inheritance project option is somewhat special in the sense that it can’t appear
in a theme. We will encounter other exceptions later in this manual.

4.1.1.3 Fallbacks

For each existing project option, Patcher also has a fallback user option with a default value
that would be shared among all projects not setting the option explicitly. The name of the
fallback is obtained by replacing the colon in the project option’s name with the prefix
patcher-default-. For example, the fallback corresponding to the :to-address project
option is named patcher-default-to-address.

The :inheritance project option is also special in the sense that it doesn’t have a
corresponding fallback. We will encounter other exceptions later in this manual.

Chapter 4: User Manual 13

In the remainder of this manual, we will rarely mention the fallbacks again. When we
introduce a new project option, just remember that it always has a corresponding fallback
(well, not always, as you just discovered).

4.1.1.4 Retrieval

When Patcher needs the value of a particular project option, it looks for it in the following
manner:

• First, it looks directly in the project descriptor to see if the option is given.

• If that fails, it next tries the given themes, if any. This involves recursively traversing
the project’s themes tree. Options successfully retrieved in themes are said to be
themed.

• If that still fails, it then tries the inherited projects, if any. This involves recursively
traversing the project’s inheritance tree. Options successfully retrieved in inherited
projects are said to be inherited. Note that in turn, such options could have been
actually themed in the inherited project.

• If that fails again, it finally falls back to the value given in the corresponding fallback
(if it exists). In such a case, the option is said to be fallbacked.

Note that a value of nil for a project option is an actual value. It is not equivalent to
an option being unset. As a consequence, if Patcher finds a project option with a value of
nil somewhere, it will use it and stop the search, even if a non nil value could be retrieved
later from a theme, an inherited project or a fallback. This provides you with a way to
annihilate themed, inherited or fallbacked options.

The retrieval process is completely dynamic. In particular, this means that even if you
already have a running Patcher instance, you can still modify the project’s options, and
these modifications will be taken into account in your running instance. In fact, the only
thing you can’t do with a running Patcher instance is modify the project’s name.

Beware however that modifying an option while a corresponding project has been in-
stantiated is not very safe, and should be avoided as much as possible.

4.1.1.5 Inheritance or theme?

Let us summarize the four available ways to provide an option for a project: a direct setting
in the project descriptor, a global default value in the fallback user option, plus themes and
inherited projects.

At that point, you might be wondering why the themes and inheritance concepts were
both designed, since they actually perform very similar tasks. Good question. Here is a
good answer.

Projects might share options for different reasons. For example, my “XEmacs” (source)
and “XEmacs Packages” projects share many options (To: address, From: address, diff and
commit commands and so on) because they both relate to XEmacs. On the other hand I
have personal but totally unrelated projects that share the same commands because they
are all handled through a common system: Git.

In other words, you should rather use the inheritance mechanism when projects relate
to each other, and the theme mechanism for settings that are orthogonal the projects they
apply to.

14 Patcher

4.1.2 Entry Points

Patcher currently uses the mail buffers as “master” buffers for controlling all operations:
building a patch, creating the ChangeLog entries, committing. . . all is done from the
mail buffer. Note however that you don’t need to actually send mails to use Patcher (see
Section 4.2.1.2 [Fake Mail Method], page 19).

To use Patcher on a certain project, you start by preparing a (possibly fake) mail. There
are several ways to do so: you could start a brand new message, “adapt” a message already
in preparation to Patcher, or even compose some sort of a Patcher reply to another message.

At any time from a mail buffer, you may change your mind and decide that starting
Patcher was a mistake. You can then call the function patcher-mail-kill, bound to C-c

C-p k, and Patcher will “kill” the current project, cleaning up the place like Patcher had
never existed before.

4.1.2.1 Mail Creation

Creating a message is done with the following function.

[Function]patcher-mail
Start composing a brand new Patcher message. This function interactively prompts
you for the name of the project and for a (mail) subject line. It also performs a global
diff of your project.

4.1.2.2 Mail Adaptation

Assuming that you are already editing a message (with your usual MUA), you can adapt it
to Patcher. This might be useful if you want to reply to a normal message with a Patcher
mail and your MUA is unknown to Patcher (see Section 2.3 [Insinuation], page 5). Start
by creating the reply, and then adapt it to Patcher.

[Function]patcher-mail-adapt
Adapt an existing message to Patcher by prompting you for the name of a project
and possibly a new subject. This function also performs a global diff of your project.

When adapting a message to Patcher, you are always prompted for a new subject line,
although you can just hit Return to leave it empty. If there is indeed a subject change
(that is, if there is both an old subject and a new one), Patcher uses a project option called
:subject-rewrite-format to modify the subject line. The subject rewrite format is a
string in which a ‘%s’ is replaced with the new subject, while a ‘%S’ is replaced with the old
one.

By default, the subject rewrite format is ‘"%s (was: %S)"’. Note that the subject prefix
(see Section 4.2.2 [Message Customization], page 20) is added in front of the subject line
after the subject has been rewritten.

4.1.2.3 Gnus Insinuation

If you’re using Gnus to read mail and have properly insinuated it (see Section 2.3 [Insinu-
ation], page 5), Patcher offers different Gnus-like ways to answer mails and adapt them to
Patcher. All the functions below are available from both the Gnus Summary and Article
buffers.

Chapter 4: User Manual 15

[Function]patcher-gnus-summary-followup
Compose a followup to an article, and adapt it to Patcher. This function is bound to
C-c C-p f.

[Function]patcher-gnus-summary-followup-with-original
Idem, but also cite the original article. This function is bound to C-c C-p F.

[Function]patcher-gnus-summary-reply
Like patcher-gnus-summary-followup, but compose a reply. This function is bound
to C-c C-p r.

[Function]patcher-gnus-summary-reply-with-original
Idem, but also cite the original article. This function is bound to C-c C-p R.

4.1.3 Project Relocation

Earlier (see Section 4.1.1 [Project Descriptors], page 11), we talked about floating projects
(those having a null directory). There might also be times when you want to temporarily
relocate a non-floating project (for instance just this once, without modifying the project
descriptor). You can relocate a project by calling any of the entry point functions with a
prefix of 1 (C-u 1).

Since people have a tendency to keep clones under the same umbrella directory, it seems
convenient to start prompting you for the relocation directory under the parent of the
project’s original directory. Patcher does that.

As previously mentioned for floating projects (see Section 4.1.1 [Project Descriptors],
page 11), an interesting side effect of relocation is that it allows you to use one particular
project descriptor for another, completely independent project which would happen to use
exactly the same set of options.

4.1.4 Subprojects

As mentioned before (see Section 4.1.2 [Entry Points], page 14) the entry point functions
all perform a global diff of your project just after having prepared the mail buffer. There
might be times, however, when you want to work on a project subset only (a specific set of
files or directories), for instance in order to commit only a few of the current changes. This
concept is know to Patcher as working on a “subproject”.

A subproject is essentially defined by the project on which it is based, an optional
subdirectory in which the whole subproject resides and an optional set of specific files to
work on, in that subdirectory.

Warning: for technical reasons (and also because right now I don’t want to clutter
Patcher’s code too much with workarounds for deficient RCSes), it is not possible to define
Mercurial subprojects with a specific subdirectory. This problem will go away when issue
2726 is resolved (http://mercurial.selenic.com/bts/issue2726).

When you provide an explicit set of files to work on, it is not necessary (it is even
forbidden) to specify the ChangeLog files. Patcher will automatically find them for you. In
other words, only specify source files, not ChangeLog files.

Patcher offers to ways of working on subprojects: either temporarily or by defining them
in a permanent fashion.

http://mercurial.selenic.com/bts/issue2726

16 Patcher

4.1.4.1 Temporary Subprojects

In order to work on a temporary subproject, call any of the entry point functions (see
Section 4.1.2 [Entry Points], page 14) with a simple prefix argument (C-u). Patcher will
then prompt you for an optional subdirectory and for a specific set of files to work on, under
that particular subdirectory. There, you can in fact specify files as well as directories, use
wildcards, just as you would construct a shell command line diff.

Note that since the files you provide can in fact be directories, you can circumvent
the Mercurial limitation mentioned above by not providing a specific subdirectory, but
instead give it as a file at the second prompt. This workaround also applies to permanent
subprojects, as described in the next section.

4.1.4.2 Permanent Subprojects

If you happen to work more than once on the same project subset, it will quickly become
annoying to have to specify explicitly the same subdirectory and/or files over and over
again. Consequently, Patcher offers you a way to permanently define subprojects.

Defining Subprojects

The user option patcher-subprojects stores a list of subproject descriptors. A sub-
project descriptor is almost the same as a project descriptor, with a few exceptions:

• Instead of the project directory field (the second field in a project descriptor), you
rather specify the name of the project this subproject is based on.

• In addition to the standard project options we’ve already seen, two subproject options
are available:

:subdirectory

This lets you specify a subdirectory of the original project’s directory in
which the whole subproject resides. This subdirectory must be provided
relative to the original project’s directory.

:files This lets you specify a list of files or directories composing the subproject.
Each file specification may be provided relative to the subdirectory above, if
any, or to the original project’s directory. They may also contain wildcards.

Please note that these subproject options have no corresponding fallback (that would
be meaningless). They can’t appear in a theme either.

• Subprojects don’t have an :inheritance mechanism. Instead, they implicitly inherit
from their base project (which in turn can inherit from other projects).

Here are some important remarks about permanent subprojects:

• Permanent subprojects are accessible in exactly the same way as normal projects, that
is, via the entry point functions (see Section 4.1.2 [Entry Points], page 14). A subproject
is a project, after all. Because of that, projects and permanent subprojects can’t share
names. Patcher always looks for subprojects first, and then regular projects.

• A subproject with neither a :subdirectory nor a :files option is exactly the same as
the base project, apart from project options that you would override. This can hence
be seen as an elegant (or kludgy, depending on the viewpoint) way to define project
“variants”.

Chapter 4: User Manual 17

• Since Patcher doesn’t really make a distinction between projects and subprojects, it is
possible to work on a temporary subproject based itself on a subproject: simply call
one of the entry point functions with a simple prefix argument, and select a permanent
subproject when prompted. The effect is then to work on a subsubproject: you can
specify an optional subsubdirectory and override the set of files affected by the patch.

• Finally, note that it is even possible to both relocate a project and work on a temporary
subproject. In order to do that, use a prefix argument of -1 instead of just 1 (C-u -1).
And now, try to imagine the brain damage that is caused by using a prefix of -1 and
then select a permanent subproject as the base project. The effect is to work on a
sub-sub-relocated project. . . .

Project Naming

As you already know, Patcher distinguishes (sub)projects by their NAME field in the
patcher-projects and patcher-subprojects user options. This name is meant to be
explicit and convenient for the user to read. However, some RCSes like (the decidedly
weird) PRCS require the actual project name in their commands. It would then be difficult
to define project variants for the same directory but with different names.

To remedy this problem, patcher provides a :name project option. If set, it will be
used by diff and commit commands instead of the project’s name when necessary. See
Section 4.3.1 [Diff Command], page 21 for details on how to do that.

Command Directory

Most of the revision control systems out there can perform in any of the project’s subdi-
rectories. For that and other technical reasons, Patcher will normally execute all commands
in the specified (sub)directory of the specified (sub)project. This principle does not always
hold however. For example, PRCS (weird, did I mention it already?) can only work in the
project’s root directory.

If you want to define projects for which the revision control system can be executed in
only one directory, Patcher provides you with the :command-directory project option (a
string). This directory must be provided relative to the project’s directory (but note that
it must usually go upwards).

All commands (diff and commit ones) will be executed from there. Also, note that the
command directory does not change the way you might specify files. Patcher modifies all
needed paths automatically to handle the command directory properly. This means that
you should continue to specify files relatively to the (sub)project’s (sub)directory, regardless
of the existence of a command directory.

When needed, a command directory should always be specified in a project (in which
case it will most likely be the same as the project’s directory) and never in subprojects.
Otherwise, temporary subprojects would fail to get it.

4.1.5 Submodules

Related to the notion of subproject is that of “submodule” (or “subrepo”) as some RCSes
would put it. A submodule is a standalone project that appears under another project (so
it looks like a subproject, only it isn’t).

Normally, there is nothing special about submodules, in the sense that if you want to
handle them from Patcher, you would define them as regular projects. However, there are

18 Patcher

ways to detect submodules automatically, which can be very convenient if you have plenty
of them (this happens for XEmacs packages for instance).

Patcher currently knows how to detect submodules of Mercurial and Git projects. The
effect is to define new projects that inherit from the umbrella project automatically, with
their own name and directory, so that you don’t need to define them by hand.

Automatic detection of submodules is controlled via the :submodule-detection-

function project option. Its value is a symbol naming a function, or nil if you
don’t want autodetection. The built-in Git and Mercurial themes set this option to
patcher-hg-detect-submodules and patcher-git-detect-submodules respectively.

Submodules are detected automatically by scanning the value of patcher-projects the
first time you use Patcher in an XEmacs session. If you further modify this variable, it
may be needed to recompute the list of known submodules. You can do this by calling
patcher-detect-submodules interactively.

4.1.6 Patcher Instances

The concept of subproject brings up the question of having Patcher working on different
patches at the same time. It is possible under some conditions:

• You can have as many simultaneous Patcher instances as you want on projects that
don’t overlap.

• You can have as many simultaneous Patcher instances as you want on the same project,
as long as there is no overlapping between each subproject. This means that you can’t
have source files, or even ChangeLog files in common.

• It is also possible, to some extent, to work simultaneously on overlapping instances
of Patcher, although this is mostly uncharted territory. More precisely, Patcher keeps
track of which project(s) refer to specific source or ChangeLog files, and knows how
to associate a particular ChangeLog entry with a particular project. However, Patcher
does not support interactive selection of patches (à la Darcs or Git) yet, and if you
commit one of two overlapping projects, you will most likely need to rediff the other
one.

4.2 Message Generation

Patcher starts working on the project (by first creating the patch) after the message is
prepared. Because of this, we’ll start by reviewing the mail-related customizations you
might want to setup.

4.2.1 Mail Methods

Since there are different mail packages working in XEmacs, Patcher supports different meth-
ods for preparing messages. You can specify the method you prefer in the :mail-method

project option. The value must be a symbol.

4.2.1.1 Standard Mail Methods

Patcher currently supports ‘sendmail’, ‘message’ and ‘Gnus’ natively and through the
‘compose-mail’ interface. Other MUA might be partly supported when used with compose-

mail. Patcher will probably suffer from non critical deficiencies in that case however (it
will issue warnings).

Chapter 4: User Manual 19

compose-mail

This is the default. It is implemented via the function patcher-mail-compose-

mail which calls compose-mail to prepare the message. If you are not familiar
with ‘compose-mail’, you might also want to throw an eye to the user option
mail-user-agent. If your project does not specify an address to send the
message to (see Section 4.2.2 [Message Customization], page 20), it is prompted
for.

sendmail A direct interface to the mail function from the sendmail package. It is im-
plemented via the function patcher-mail-sendmail. If your project does not
specify an address to send the message to (see Section 4.2.2 [Message Cus-
tomization], page 20), it is prompted for.

message A direct interface to the message-mail function from the message library (it
is part of Gnus). It is implemented via the function patcher-mail-message. If
your project does not specify an address to send the message to (see Section 4.2.2
[Message Customization], page 20), it is prompted for.

gnus A direct interface to the gnus-post-news function from the Gnus package (it
can also send mails. . .). It is implemented via the function patcher-mail-

gnus. This mail method is interesting when you maintain a special mail group
for messages that you send with Patcher, most probably because they are sent
to some mailing-list, such as xemacs-patches@xemacs.org.

This method uses a Gnus group name and acts as if you had type ‘C-u a’ on that
group in the *Group* buffer, hence honoring the group parameters and posting-
styles. If your project does not specify a Gnus group name (see Section 4.2.2
[Message Customization], page 20), it is prompted for.

This last mail method is special in the sense that it requires a running Gnus session to
work. If that’s needed, Patcher can start Gnus for you in several ways, according to the
following user options:

patcher-mail-run-gnus

If nil, Patcher will never start Gnus and abort the operation instead. If t,
Patcher will always start Gnus when needed. If prompt, Patcher will ask you
what (you want) to do. This is the default behavior.

patcher-mail-run-gnus-other-frame

Used when Patcher has to start Gnus by itself. If nil, continue using the current
frame. If t, start Gnus in another frame (this is the default). If follow, start
Gnus in another frame, and use this new frame to prepare the Patcher mail.

4.2.1.2 Fake Mail Method

At that point, you might be wondering why the mail method is a project option and not
simply a user option, since you probably only use one mail agent at all. Right. But you
might one day work on projects for which you don’t need to send messages at all. This
could happen if you start using Patcher on a project of your own for instance. For that
reason, there is a fake mail method available. It is implemented via the patcher-mail-

fake function and calls no particular mail user agent. Once you type C-c C-c to virtually
send the fake message, it only performs some cleanup.

mailto:xemacs-patches@xemacs.org

20 Patcher

All right. But did we really need this fake method? I mean, one could use the usual
mail method, and simply not send the message in the end. Huh, yeah, ok. . . Actually, it is
very probable that in a future release of Patcher, the mail buffer won’t be the master buffer
anymore, and mail sending will be just another optional step in the process. In that case,
the mail method is likely to move away from project option to standard user option.

4.2.1.3 Other Mail Methods

If you’re not satisfied with the provided mail methods (want a vm one?), you can provide
your own, more or less (patches welcome if you do so). Here’s what to do: set your :mail-
method project option to, say, foo, and write your own function which must be named
patcher-mail-foo.

This function must take two arguments (a project descriptor and a string containing the
subject of the message), and prepare a mail buffer. If you want to do this, you should see
how it’s done for the built-in methods.

Note that the mail adaptation facility won’t be available for your custom method. For
that, you would have to hack the internals of Patcher.

4.2.2 Message Customization

When preparing a message, Patcher can fill some parts of it for you. Here’s a list of mail-
related project options.

:user-name

The name (your name) to use when composing the message. It will affect the
From: header. This option is used by all mail methods but fake. If not given,
user-full-name is used.

:user-mail

The mail (your mail) address to use when composing the message. It will affect
the From: header. This option is used by all mail methods but fake. If not
given, user-mail-address is used.

:to-address

The address to send messages to (a string). This option is used by all mail
methods but gnus and fake. If not given, it is prompted for when calling
patcher-mail.

:gnus-group

The Gnus group name to use for posting messages (a string). This option is
used only by the gnus mail method. If not given, it is prompted for when calling
patcher-mail.

Note that if you configured your name and mail in Gnus, for instance through
posting styles, these configurations take precedence over the corresponding
Patcher options.

:subject-prefix

A prefix for the subject line of messages. It can be nil or a string. By default,
“[PATCH]” is used. This part of subjects is never prompted for. The subject
prefix understands ‘%n’ and ‘%N’ substitutions. See Section 4.3.1 [Diff Com-
mand], page 21, and 〈undefined〉 [Project Naming], page 〈undefined〉 for more

Chapter 4: User Manual 21

information. Also, a space is inserted between the prefix and the remainder of
the subject, when appropriate.

:subject A default value for prompted subjects (a string). Please note that this is
used only to provide a default value for prompted subjects. Subjects are
always prompted for. The subject understands ‘%n’ and ‘%N’ substitutions.
See Section 4.3.1 [Diff Command], page 21, and 〈undefined〉 [Project Naming],
page 〈undefined〉 for more information.

:mail-prologue

A prologue to insert at the top of a message body (a string).

4.3 Patch Generation

Patcher creates patches by diffing your local copy of the project against the repository. This
is done automatically after preparing a message, so you shouldn’t normally bother to do it
manually. There are however situations in which you need to diff your project again, for
instance if an error occurred during the initial diff (see Section 4.7 [More On Commands],
page 32), or if you suddenly decided to further modify the source files.

The way to regenerate the patch manually is to call patcher-mail-diff from the mail
buffer. This function is bound to C-c C-p d in this buffer.

When possible, Patcher also tries to check that your project is up-to-date with respect
to the archive, and will inform you otherwise.

In the remainder of this section, we describe the different ways to customize the diff
process and the appearance of its output.

By the way, (re)generating the patch does not necessarily mean that it is directly in-
serted into the mail buffer. This also depends on the ChangeLogs behavior (see Section 4.4
[ChangeLogs Handling], page 23).

4.3.1 Diff Command

The diff command used to generate the patch is specified by the :diff-command project
option. You can also punctually change this command by calling patcher-mail-diff with
a prefix argument. Patcher will then prompt you for a new command and use it exclusively
for this particular patch.

By the way, don’t use the prefix argument of patcher-mail-diff as a way to specify
files (that is work on a subproject). It is not meant for that. It is meant only to modify the
diff command for this instance only, not the files to which it applies.

The diff command is in fact a template string that supports dynamic expansion for a set
of special constructs. The following ones are currently available.

%n A ‘%n’ will be replaced with the project’s name, that is, either the value of
the ‘:name’ option (see 〈undefined〉 [Project Naming], page 〈undefined〉) or the
name of the project descriptor. This may be useful in commands with weird
options syntax, like PRCS.

%N If you want to use the project descriptor’s name, regardless of the value of the
:name option, use %N instead of %n.

22 Patcher

%f A ‘%f’ will be replaced with explicitly diff’ed files and their accompanying
ChangeLog files if any, or will simply be discarded for a global diff.

%?f{STR} If there are explicitly diff’ed files, this construct will be replaced by ‘STR’.
Otherwise, it will simply be discarded.

%!f{STR} This is the opposite of the previous one: if there are explicitly diff’ed files, this
construct will be discarded. Otherwise, it will be replaced by ‘STR’.

Here is an example to clarify this: the default diff command for Git in the ‘git’ built-in
theme (see Section 4.1.1.1 [Themes], page 11) is the following:

‘git diff --no-prefix HEAD%?f{ -- }%f’

One important note: all diff commands in Patchermust have a ‘%f’ construct somewhere,
even if you always perform global diffs only (but in fact, you never really know that for
sure). The reason is that there are situations in which Patcher may need to diff specific
files, even for a global diff.

See also Section 4.7 [More On Commands], page 32 for cases where a diff command
would fail.

4.3.2 Diff Headers

When Patcher generates a diff, it needs to associate every hunk with the corresponding
source file (and possibly with the corresponding ChangeLog file as well). Unfortunately,
different revision control systems might generate different diff outputs, making this associ-
ation difficult to establish.

Patcher provides a :diff-header project option to help. Its value is of the form (REGEXP

NUMBER1 NUMBER2). REGEXP is used to match the beginning of a diff output while NUMBER1
and NUMBER2 are the parenthesized levels in which to find the corresponding old and new
file names.

When the change involves modifying a file’s contents, the old and new file names will
be the same. However, they can be different in several situations, like when a file is re-
named, created or deleted. In case of creation or deletion, some revision control systems
use “/dev/null” to denote a virtual old or new file.

If you want to see some examples, have a look at the built-in themes in patcher-

built-in-themes (see Section 4.1.1.1 [Themes], page 11). They contain presets for different
revision control systems, along with suitable :diff-header options.

Also, you should pay attention to the fact that the values of the :diff-header and
:diff-command options may depend on one another to work properly. For instance, the
diff output of Mercurial looks different when you use the --git option.

4.3.3 Diff Line Filter

When generating a global diff, that is, without specifying the files affected by the patch
explicitly, some uninformative lines might be present in the output. A typical example
occurs in CVS: it indicates files present in your local copy but otherwise unknown to the
server with a question mark in diff outputs.

Patcher has a project option named :diff-line-filter that lets filter out such un-
wanted lines. This must be a regular expression matching a whole line. Caution however:
do not put beginning or end of lines markers in your regexp. Patcher will do it for you.

Chapter 4: User Manual 23

4.3.4 Diff Prologue

Patcher can (and does) insert a special prologue just above a patch in the message in
preparation. This prologue gives information such as the diff command used, the files
affected and so on.

The function used to generate this prologue can be specified with the :diff-prologue-
function project option. A value of nil means don’t insert any prologue. By default, the
internal function patcher-default-diff-prologue is used. If you want to provide your
own, here’s how to do it.

Your function should take two mandatory arguments: name and kind. name is the name
of the project and kind is the kind of diff. Possible values for the kind argument are:

:sources indicates a source diff only,

:change-logs

indicates a ChangeLog diff only,

:mixed indicates a diff on both source and ChangeLog files.

Your function should also accept the following set of Common Lisp style keyword ar-
guments (take a look at the provided function if you don’t know how to do this). These
arguments will be bound when appropriate, according to the kind of diff being performed.

source-diff

the command used to create a source diff,

change-log-diff

the command used to create a ChangeLog diff,

source-files

sources files affected by the current patch,

change-log-files

ChangeLog files affected by the current patch.

In the case of a mixed diff, a nil value for change-log-diff indicates that the same
command was used for both the source and ChangeLog files.

Finally, your function should perform insertion at the current point in the current buffer.

4.4 ChangeLogs Handling

ChangeLogs management in Patcher involves two aspects: how ChangeLog entries are cre-
ated, and how they appear in the messages. Both aspects can be customized beyond your
craziest dreams.

It is possible to kill a project from a related ChangeLog file by using the same binding
as in the mail buffer: C-c C-p k (patcher-change-log-kill).

4.4.1 ChangeLogs Naming

By default, Patcher thinks that ChangeLog files are named “ChangeLog”. That is very
clever, but if for some obscure reason that is not the case in your project, you can change
this by setting the :change-log-file-name project option (a string).

24 Patcher

4.4.2 ChangeLogs Updating

The way Patcher deals with ChangeLogs is controlled via the :change-logs-updating

project option. Its value (a symbol) must be one of automatic (the default), manual or
nil.

4.4.2.1 Automatic ChangeLogs

Automatic ChangeLogs mode is the default. Each time you (re)generate a diff, Patcher
(re)creates ChangeLog skeletons in the appropriate ChangeLog files, by analyzing the gen-
erated diff. You then need to fill the entries manually.

Note that when Patcher creates skeletons for you, you should never kill the ChangeLog
buffers while a project is running. Otherwise, Patcher will loose track of what it has or has
not generated.

ChangeLog skeletons are not generated by Patcher directly, but rather by the function
patch-to-change-log from the add-log library, itself from the xemacs-base package. This
function supports only standard and CVS diff, in unified format.

For revision control systems that output something different, Patcher provides a :diff-

cleaner option. This option names a function that will be used to “cleanup” the diff (so
that it looks like a standard one, just before calling patch-to-change-log.

Patcher comes with a generic cleaner function named patcher-default-diff-cleaner

which is used by default and works correctly with Git, Mercurial, Darcs and PRCS, as long
as you use the corresponding built-in themes (see Section 4.1.1.1 [Themes], page 11), or in
fact, as long as the corresponding :diff-header option is correct (see Section 4.3.2 [Diff
Headers], page 22).

Patcher has two project options that give you some control on the generated ChangeLog
skeleton: :change-logs-user-name and :change-logs-user-mail. As you might expect,
these are strings defining your name and mail address for ChangeLog entries’headers. When
nil, Patcher falls back to (respectively) the :user-name and :user-mail project options.
If in turn set to nil, Patcher lets the function patch-to-change-log decide what to use
(most probably what the user options user-full-name and user-mail-address say).

Normally, you don’t modify source files when working with Patcher. However,
ChangeLog files need update and saving in automatic mode. Patcher provides two hooks
for plugging in additional processing on ChangeLog files.

• :link-change-log-hook This hook is run every time Patcher “links” a ChangeLog
file to a project. Linking a ChangeLog file in this context means figuring out that it is
involved in the current patch. Every function in this hook will be given the ChangeLog
file name (relative to the project’s directory) as argument. Also, it is guaranteed that
when this hook is run, the current directory (in whatever the current buffer is) is set
to the project’s directory.

• :after-save-change-log-hook This hook is run every time you save a ChangeLog
file. The functions in this hook are executed in the ChangeLog’s buffer. To be honest
with you, I didn’t invent anything here, and I must confess that this is not a real hook.
Instead, what you specify in this project option is simply added to the ChangeLog’s
local after-save-hook.

Chapter 4: User Manual 25

Now you’re wondering what you could possibly use these two options for (apart from
ringing the terminal bell I mean), and you’re right. In fact, their existence comes from my
desire to support Git projects by index.

If you look at patcher-built-in-themes, you will find two themes for Git (along with
their their whitespace-cleaning counterpart): git and git-index. The git-index one will
only work on what’s in the Git staging area. This is cool as long as ChangeLog files are
written by hand see Section 4.4.2.2 [Manual ChangeLogs], page 25. However, in automatic
mode, we need a way to add them to the index once the skeletons are filled in. This
is done by another built-in theme that you must add explicitly to your project, called
git-index-automatic-change-logs. This theme uses the two options described above to
automatically add ChangeLog entries to the staging area.

4.4.2.2 Manual ChangeLogs

In manual mode, Patcher assumes that you create ChangeLog entries manually, as you write
the code, so it won’t create ChangeLog skeletons. It is important to understand that in
this situation, ChangeLog entries must have been written before you call Patcher. Patcher
won’t let you write them in the process.

Even in manual mode, Patcher might still need to know the affected ChangeLog files (for
the commit process) and your exact ChangeLog entries in each of these files (for insertion in
the message). The ChangeLog files are automatically deduced from the patch. When that’s
required, however, you will be presented with each ChangeLog file in turn, and invited
to precise the number of ChangeLog entries concerning this patch. These entries must of
course appear at the top of the file.

4.4.2.3 No ChangeLogs

This mode is for projects that don’t do ChangeLogs. Patcher won’t try to create ChangeLog
entries, and won’t expect that you have written ChangeLog entries either.

Note that if you do have ChangeLog files in this mode, they will be regarded as ordinary
source files. As a consequence, this is a case where it is not forbidden to list them explicitly
as part of a subproject, although I don’t see why you would want to do that.

4.4.3 ChangeLogs Navigation

Patcher provides commands for navigating across ChangeLog and mail buffers, something
especially convenient when you need to fill them by hand after skeletons have been created.

Patcher sees a project’s mail and ChangeLog buffers as a circular chain that can be
walked forward and backward by typing C-c C-p n or C-c C-p p respectively (depending
on the buffer you’re in, this involves either patcher-change-log-next, patcher-change-
log-previous, patcher-mail-first-change-log or patcher-mail-last-change-log).

From a ChangeLog buffer, you can also shortcut the cycle and switch back to the mail
buffer directly by typing C-c C-p m (patcher-change-log-mail), or switch to the first /
last ChangeLog buffer respectively by typing C-c C-p P (patcher-change-log-first) /
C-c C-p N (patcher-change-log-last).

4.4.4 ChangeLogs Appearance

The appearance of ChangeLog entries in the message is controlled by the :change-logs-

appearance project option. Its value must be a symbol from the following:

26 Patcher

verbatim This is the default. ChangeLog entries appear just as text in the message,
above the patch. Most people prefer this kind of appearance since it is the
most readable.

pack ChangeLog entries appear as a patch (they are diff’ed against the archive). This
patch is however distinct from the source patch, and appears above it.

patch ChangeLog entries appear as a patch (they are diff’ed against the archive), and
this patch is integrated into the source patch. In other words, the message looks
like a global patch integrating both the sources and the ChangeLogs.

nil The ChangeLog entries don’t appear in the message at all.

When the ChangeLogs appearance is either pack or patch, the diff command used to
generate the patch is controlled by the :change-logs-diff-command project option. The
value can be nil, meaning that the same diff command is to be used as for the sources
(see Section 4.3.1 [Diff Command], page 21), or it can be a string specifying an alternate
command.

When diffing ChangeLog files, it is strongly recommended that you remove contexts from
the diff, because otherwise, ChangeLog patches often fail to apply correctly.

The :change-logs-diff-command project option supports the same substitution con-
structs as the :diff-command one (see Section 4.3.1 [Diff Command], page 21). For example,
here is the ChangeLogs diff command used in the git built-in theme (see Section 4.1.1.1
[Themes], page 11): ‘git diff -U0 --no-prefix HEAD%?f{ -- }%f’.

When ChangeLog entries are written in advance (see Section 4.4.2.2 [Manual ChangeL-
ogs], page 25), Patcher can (and does) insert them into the mail buffer automatically.
However, Patcher cannot tell when you’re done filling in skeletons (see Section 4.4.2.1 [Au-
tomatic ChangeLogs], page 24), so in such a case you need to insert the ChangeLog entries
explicitly. This is done by calling the function patcher-mail-insert-change-logs. It is
bound to C-c C-p l in the mail buffer.

With an additional prefix argument, or when your project is set to not normally include
ChangeLogs in mail buffers, you will also be prompted for an alternate appearance (for this
time only).

In fact, this function can also be used in all situations to reinsert the ChangeLog entries
into the mail buffer, whatever their appearance. This comes in handy if you decide to
further modify them after the initial insertion (it’s never too late to fix a typo).

One last note: the same binding is available in ChangeLog buffers as well. The effect is
to call patcher-change-log-insert-change-logs, which in essence switches to the mail
buffer and performs insertion in a row. This saves you one C-c C-p m keystroke.

4.4.5 ChangeLogs Prologue

ChangeLog prologues are small pieces of informative text that Patcher adds above each
ChangeLog insertion in the mail buffer.

When the ChangeLogs appearance is verbatim, Patcher inserts one prologue per
ChangeLog file. The prologue’s contents is controlled by the :change-logs-prologue

project option (a string). A ‘%f’ appearing in this string will be replaced with the
ChangeLog filename. The default value for patcher-default-change-logs-prologue is
"%f addition:".

Chapter 4: User Manual 27

When the ChangeLogs appearance is pack, Patcher inserts only one prologue for the
whole ChangeLogs patch. When patch, there is a single prologue for both the ChangeLogs
and the sources. For customizing the prologue in both of these cases, see Section 4.3.4 [Diff
Prologue], page 23.

4.4.6 ChangeLogs Status

Let’s face it. ChangeLogs are in fact an obsolete concept that dates back to the old days
when we used to work without revision control systems. Now the story is different: we have
commit log messages, git blame and what not, to the point that ChangeLog files are big
and not really useful anymore.

On the other hand, the ChangeLog file format is still convenient to describe modifi-
cations, for instance in the commit log message. So how nice would it be to continue
manipulating ChangeLog entries, as usual, but just not store them into files?

Patcher can do that. It has a project option named :change-logs-status which can
have two values (symbols). A value of persistent (the default) is in fact what we have
assumed so far: there are ChangeLog files and they are part of the project. This is the
traditional approach.

A value of ephemeral on the other hand means that your ChangeLog entries exist only
temporarily, to be used in the commit log message and/or inserted verbatim in the mail.
Patcher does this by creating a temporary ChangeLog file (named after the :change-log-
file-name project option) in the project’s base directory, and getting rid of it after the mail
is sent. As a result, everything works just as if the ChangeLog file was real: ChangeLog
entries can be generated automatically or written manually etc.

The only restriction is that you cannot diff the ephemeral ChangeLog entries because
they are not really part of the project, so their appearance can only be verbatim. Also,
when you use an ephemeral ChangeLog, beware to use a file name that doesn’t conflict with
existing files (old ChangeLog files may for example be renamed to ‘ChangeLog.dead’).

Because there’s only one, virtual, ephemeral ChangeLog file located at the project’s
base directory, the default value for the ChangeLogs prologue doesn’t work very well in the
ephemeral case. It doesn’t make sense to refer to the file itself, since it’s only temporary.
A simpler prologue like “ChangeLog entries:” would suffice. Patcher provides a built-in
theme called ‘ephemeral-change-logs’ that you can use to both set the ChangeLog status
to ‘ephemeral’ and modify the prologue at the same time.

One final note: if you use the git-index built-in theme with ephemeral ChangeLogs,
don’t use it in conjunction with git-index-automatic-change-logs, even if the ChangeL-
ogs entries are generated automatically by Patcher. Otherwise, they would be added to the
staging area, which is definitely not what you want.

4.5 Project Check In

If you have the privilege to commit your changes yourself, you might do so directly from
the mail buffer, as the last operation before actually sending the message. This is done by
calling the function patcher-mail-commit which is bound to C-c C-p c in the mail buffer.

Committing directly from Patcher has the advantage that both the commit log message
and command-line are constructed automatically. Of course, you still have an in-depth
control on the commit process.

28 Patcher

4.5.1 Commit Command

The command used to to commit a patch is specified by the :commit-command project option
(a string). You can also temporarily change the command in question by calling patcher-

mail-commit with a prefix argument. As usual, note that this prefix argument is not meant
to modify the affected files on the command-line. It’s meant only to punctually modify the
commit command itself. The affected files are computed automatically by Patcher.

The commit command supports the same dynamic expansion constructs as the diff com-
mand (see Section 4.3.1 [Diff Command], page 21), and also adds two of its own.

%s A %s occurring in the commit command string will be replaced with the name
of a file containing the commit log message (see Section 4.5.2 [Log Message
Handling], page 28). This file is a temporary file handled by Patcher.

%S A %S occurring in the commit command string will be replaced with the commit
log message itself (see Section 4.5.2 [Log Message Handling], page 28). Since
the intent here is to use the message as a command-line argument, it will be
automatically quoted against shell expansion.

Please note that exactly as for the diff command, a %f is required in your commit
commands, unless you know for sure that you will never ever work on a subproject. But
you never know that. Besides, you should always also provide either a %s or a %S, unless
your archival software does not support log messages. I’m not actually sure such a beast
exists.

As an example, here is the commit command for the Git built-in theme (see
Section 4.1.1.1 [Themes], page 11): ‘git commit %!f{-a }-F %s%?f{ -- }%f’

4.5.2 Log Message Handling

Most project management tools understand the concept of a log message: a short yet
informative message that accompany the commit operation, which is also stored in the
repository.

Before a commit operation, Patcher always builds an initial log message, based on certain
elements under your control. What happens next is controlled the :edit-log-message

project option: if t (the default), you will be able to manually edit the log message. If
nil, Patcher will proceed directly to the next step (see Section 4.5.3 [Commit Operation],
page 30).

Please note that Patcher stores log messages in temporary files that may be used later
by the commit command.

4.5.2.1 Log Message Elements

Patcher has the ability to initialize the log message with different elements. These elements
are specified with the :log-message-items project option. Its value is either nil, meaning
that you don’t want any initialization, or a list of symbols specifying the elements you
desire. The available items are:

subject The subject of the message. The subject’s prefix is automatically removed.

compressed-change-logs

The “compressed” ChangeLog entries. Only the most important part of the
ChangeLogs is preserved, so the entries appear in a more compact fashion.

Chapter 4: User Manual 29

change-logs

The raw ChangeLog entries.

By default, only the message’s subject is used. When using more than one item, they
appear in the order specified above. If anything appears before the raw ChangeLog entries,
a separator string is used. This string is specified by the :change-logs-separator project
option. By default the string looks like “— ChangeLog entries follow: —”.

Note that it only makes sense to set :log-message-items to nil if you also ask Patcher
to let you edit the message (see Section 4.5.2.2 [Log Message Editing], page 29). Otherwise,
your commit would end up with empty log messages.

4.5.2.2 Log Message Editing

If so required, Patcher lets you manually edit the log message after having initialized it.
Log message editing happens in a special buffer called *<project name> Patcher Project

Log Message*.

This buffer is governed by a major mode called patcher-logmsg-mode. This mode offers
a hook, patcher-logmsg-mode-hook, which you can use to plug additional behavior like
turning on font lock. If you do so, you might also want to have a look at patcher-logmsg-
font-lock-keywords, patcher-comment-face and patcher-reference-face which are
the built-in elements for log message fontification.

When the log message buffer is initialized, it starts with an informative comment header.
The actual log message starts at the first non blank line after this header.

While editing this buffer, commands to insert the items described in Section 4.5.2.1 [Log
Message Elements], page 28 are at your disposal. These commands perform insertion at
point:

patcher-logmsg-insert-subject

Bound to C-c C-p s. Insert the message’s subject (sans the prefix).

patcher-logmsg-insert-change-logs

Bound to C-c C-p l. Insert the ChangeLog entries. Use a prefix argument if
you also want the ChangeLogs separator string to be inserted.

patcher-logmsg-insert-compressed-change-logs

Bound to C-c C-p L. Insert the compressed ChangeLog entries. Use a prefix
argument if you also want the ChangeLogs separator string to be inserted.

In addition to these commands, you can also completely reinitialize the log message by
calling the function patcher-logmsg-init-message, bound to C-c C-p i. Caution: this
command first erases the buffer.

Once you’re happy with your log message, you proceed to the commit operation by
calling the function patcher-logmsg-commit, bound to either C-c C-p c as in mail buffers,
or directly to C-c C-c.

Finally, the log message offers two more commands in case you change your mind about
the commit:

patcher-logmsg-cancel

Bound to C-c C-z. Use this when you decide to cancel the commit operation
(but not the whole project). Patcher will simply bring you back to where you
came from; typically the mail buffer.

30 Patcher

patcher-logmsg-kill

Bound to C-c C-k. Use this to completely kill the project. Remember that you
can also do that from mail or ChangeLog buffers.

4.5.3 Commit Operation

The commit operation occurs after typing C-c C-p c from the mail buffer if you have not
required log message editing, or after typing C-c C-p c or C-c C-c from the log message
buffer otherwise.

At that point, Patcher has constructed a proper commit command. What happens
next depends on the value of the :edit-commit-command project option: if nil, Patcher
performs the commit operation directly. Otherwise (the default), you have the ability to
edit or at least confirm the commit command.

Commit command editing happens in a special buffer called *<project name> Patcher

Project Commit Command*.

This buffer is governed by a major mode called patcher-cmtcmd-mode. This mode offers
a hook, patcher-cmtcmd-mode-hook, which you can use to plug additional behavior like
turning on font lock. If you do so, you might also want to have a look at patcher-cmtcmd-
font-lock-keywords, patcher-comment-face and patcher-reference-face which are
the built-in elements for commit command fontification.

This buffer starts with an informative comment header. The actual commit command
consists in all non blank and non comment lines concatenated together.

Once you’re happy with your commit command, you finally perform the operation by
calling the function patcher-cmtcmd-commit, bound to both C-c C-p c as in mail buffers,
and to C-c C-c.

The commit command buffer offers two more commands in case you change your mind
about the commit:

patcher-cmtcmd-cancel

Bound to C-c C-z. Just as in log message buffers, use this when you decide to
cancel the commit operation (but not the whole project). Patcher will simply
bring you back to where you came from; typically the mail buffer or the log
message buffer.

patcher-cmtcmd-kill

Bound to C-c C-k. Just as in log message buffers, use this to completely kill the
project. Remember that you can also do that from mail or ChangeLog buffers
as well.

After the commit operation, Patcher changes some parts of the mail buffer in the fol-
lowing manner:

• The subject prefix is changed to that specified by the :subject-committed-prefix

project option (a string), unless it is nil. By default, “[COMMIT]” is used.

• A commit notice is added at the very beginning of the message’s body. This notice
is specified by the :committed-notice project option. It can be nil or a string. By
default, it reads “NOTE: this patch has been committed.”.

Chapter 4: User Manual 31

4.6 Mail Sending

Sending the message will most probably be done by typing ‘C-c C-c’ in the mail buffer.
This is also the case when you’re using the fake mail method, by the way.

4.6.1 Before Sending

There are circumstances in which Patcher will perform some checkings on your message
when you send it, just before it is actually sent:

• ChangeLogs insertion

In case of manual ChangeLog insertion (see Section 4.4.4 [ChangeLogs Appearance],
page 25), Patcher can check that you have indeed inserted the ChangeLog entries
before sending the message. This behavior is controlled by the :check-change-logs-
insertion project option. A value of nil means never check (the message will be
sent as-is). A value of t means check, and abort the sending if the ChangeLog entries
are missing. A value of ask (the default) means ask for your opinion on this terrible
matter.

• Commit Operation

Patcher has a :commit-privilege project option; a Boolean specifying whether you’re
likely to commit your changes by yourself.

In case of commit privilege, Patcher can check that you have indeed committed your
changes before sending the message. This behavior is controlled by the :check-commit
user option. A value of nil means never check (the message will be sent as-is). A
value of t means check, and abort the sending if the commit operation has not been
performed. A value of ask (the default) means ask for your opinion on this rather
unfortunate situation.

Two notes on these checkings:

• For uninteresting technical reasons, Patcher does not currently (and will probably
never) offer you an automatic ChangeLogs insertion or commit operation, at mail
sending time, but just abort the sending process in some circumstances. That’s not a
big deal though.

• For other uninteresting technical reasons, these checkings require a native knowledge of
your mail user agent. Patcher does not currently support all mail user agents on earth
(I’ll add them on demand however). If that’s the case, you will be warned and invited
to send me a message. Also, you can send me one on April 21st: it’s my birthday.

4.6.2 After Sending

After sending the message, Patcher also performs some cleanup operations, that you can
customize. The cleanup is controlled by the following project options. Each one is a Boolean
option which defaults to t.

:kill-sources-after-sending

Whether to kill source files after sending the message. If nil, the source files
will remain visited.

:kill-change-logs-after-sending

Whether to kill ChangeLog files after sending the message. If nil, the
ChangeLog files will remain visited.

32 Patcher

When Patcher is allowed to kill a source or ChangeLog file, it will only actually kill it if
it was responsible for loading it for this particular project in the first place. For instance,
if the file was already visited before Patcher was launched, or if another Patcher project is
also using the file, then it won’t be killed regardless of the value of these options.

4.7 More On Commands

This section deals with information that apply to all commands used by Patcher (diff and
commit operations).

4.7.1 Prefixing Commands

If you’re working on a distant archive and you’re behind a firewall, you might need to prefix
all your commands with something like runsocks. Of course, this can be done manually in
all your command settings, but Patcher offers you a simpler way to do it.

There is a project option named :pre-command which can be used for this kind of thing.
It must be a string that will be prepended to all operations performed by Patcher.

4.7.2 Error Handling

From time to time, commands may fail for different reasons. Patcher tracks command
failures and lets you know when that happens.

The first thing Patcher does is to check the external processes exit codes. A non-zero
exit code will normally trigger a Patcher error. There is however one notable exception: cvs
diff has this incredibly stupid idea of returning an exit code of 1 when the diff succeeds, and
is non-empty. Because of this, Patcher provides an option named :ignore-diff-status

that is set to t in the CVS theme. There should be no reason to use it in any other context.

Next, Patcher looks for specific strings in process output. The :failed-command-regexp
project option lets you specify a regular expression to match with the output of an aborted
command. In the CVS built-in theme for example (see Section 4.1.1.1 [Themes], page 11),
the value is ‘"^cvs \\[[^]]* aborted\\]"’.

Appendix A: XEmacs Development 33

Appendix A XEmacs Development

XEmacs development occurs on a Mercurial repository. Patches are advertised on
xemacs-patches@xemacs.org. We assume that you are a committer and have a clone of
the main repository located at ‘/usr/local/src/xemacs/21.5’. Your ‘hgrc’ file should
look like this (replace my identity with yours):� �
[ui]

username = Didier Verna <didier@xemacs.org>

[paths]

default = ssh://hg@bitbucket.org/xemacs/xemacs
 	
The following project settings will do nicely for hacking XEmacs:� �

’("XEmacs 21.5" "/usr/local/src/xemacs/21.5"

:to-address "xemacs-patches@xemacs.org"

:change-logs-user-mail "didier@xemacs.org"

:commit-privilege t

:log-message-items (subject change-logs)

:themes (mercurial))
 	
If you want to also work on the packages, you may clone the big umbrella repository.

Let’s assume you do so in ‘/usr/local/share/emacs-lisp/source/xemacs-packages’.
Your ‘hgrc’ file should look like this:� �
[ui]

username = Didier Verna <didier@xemacs.org>

[paths]

default = ssh://hg@bitbucket.org/xemacs/xemacs-packages
 	
The following project settings will do nicely for hacking the packages (all settings are in

fact inherited from the main XEmacs 21.5 project):� �
’("XEmacs Packages" "/usr/local/share/emacs-lisp/source/xemacs-packages"

:inheritance ("XEmacs 21.5"))
 	
However, note that you shouldn’t work on this project directly. Every package is in fact

stored under this project as a Mercurial submodule. Patcher detects every such submodule
automatically and creates a corresponding project for you (submodule projects are named
‘XEmacs Packages (<submodule>)’. Because those really are independent projects, you
should probably also update every ‘hgrc’ file with your identity.

mailto:xemacs-patches@xemacs.org

Appendix B: Indexes 35

Appendix B Indexes

B.1 Concepts

:
:after-save-change-log-hook (project option)

. 24
:change-log-file-name (project option) . . . 23, 27
:change-logs-appearance (project option) 25
:change-logs-diff-command (project option) . . 26
:change-logs-prologue (project option) 26
:change-logs-separator (project option) 29
:change-logs-updating (project option) 24
:change-logs-user-mail (project option) 24
:change-logs-user-name (project option) 24
:check-change-logs-insertion (project option)

. 31
:check-commit (project option) 31
:command-directory (project option) 17
:commit-command (project option) 28
:commit-privilege (project option) 31
:committed-notice (project option) 30
:default-change-logs-status (project option)

. 27
:diff-cleaner (project option) 24
:diff-command (project option) 21, 26
:diff-header (project option) 22
:diff-line-filter (project option) 22
:diff-prologue-function (project option) 23,

26
:edit-commit-command (project option) 30
:edit-log-message (project option) 28
:failed-command-regexp (project option) 32
:files (subproject option) . 16
:gnus-group (project option) 19, 20
:ignore-diff-status (project option) 32
:inheritance (project option) 12, 13, 16
:kill-change-logs-after-sending (project

option) . 31
:kill-sources-after-sending (project option)

. 31
:link-change-log-hook (project option) 24
:log-message-items (project option) 28
:mail-method (project option) 18, 20
:name (project option) . 17, 21
:pre-command (project option) 32
:subdirectory (subproject option) 16
:subject (project option) . 21
:subject-committed-prefix (project option) . . 30
:subject-prefix (project option) 20
:subject-rewrite-format (project option) 14
:submodule-detection-function (project option)

. 18
:themes (project option) 11, 13
:to-address (project option) 8, 11, 12, 20

:user-mail (project option) 20, 24
:user-name (project option) 20, 24

B
Built-in Theme . 12
Built-in Theme, cvs . 12, 32
Built-in Theme, cvs-ws . 12, 32
Built-in Theme, darcs . 12, 24
Built-in Theme, darcs-ws 12, 24
Built-in Theme, ephemeral-change-logs 27
Built-in Theme, git 12, 18, 22, 24, 25, 26, 28
Built-in Theme, git-index 25, 27
Built-in Theme,

git-index-automatic-change-logs . . . 25, 27
Built-in Theme, git-index-ws 25, 27
Built-in Theme, git-ws . . 12, 18, 22, 24, 25, 26, 28
Built-in Theme, hg . 12, 18, 24
Built-in Theme, hg-ws 12, 18, 24
Built-in Theme, prcs . 12, 24
Built-in Theme, prcs-ws 12, 24
Built-in Theme, svn . 12
Built-in Theme, svn-ws . 12

C
cvs (built-in theme) . 12, 32
cvs-ws (built-in theme) . 12, 32

D
darcs (built-in theme) . 12, 24
darcs-ws (built-in theme) 12, 24
Descriptor, Project . 7, 11
Descriptor, Subproject . 16

E
ephemeral-change-logs (built-in theme) 27

F
Fallback . 12

G
git (built-in theme) 12, 18, 22, 24, 25, 26, 28
git-index (built-in theme) 25, 27
git-index-automatic-change-logs (built-in

theme) . 25, 27

36 Patcher

git-index-ws (built-in theme) 25, 27
git-ws (built-in theme) . . 12, 18, 22, 24, 25, 26, 28

H
hg (built-in theme) . 12, 18, 24
hg-ws (built-in theme) 12, 18, 24

P
Permanent Subproject . 16
prcs (built-in theme) . 12, 24
prcs-ws (built-in theme) 12, 24
Project Descriptor . 7, 11
Project Inheritance . 12
Project Option . 7, 11
Project Option, :after-save-change-log-hook

. 24
Project Option, :change-log-file-name . . . 23, 27
Project Option, :change-logs-appearance 25
Project Option, :change-logs-diff-command . . 26
Project Option, :change-logs-prologue 26
Project Option, :change-logs-separator 29
Project Option, :change-logs-updating 24
Project Option, :change-logs-user-mail 24
Project Option, :change-logs-user-name 24
Project Option, :check-change-logs-insertion

. 31
Project Option, :check-commit 31
Project Option, :command-directory 17
Project Option, :commit-command 28
Project Option, :commit-privilege 31
Project Option, :committed-notice 30
Project Option, :default-change-logs-status

. 27
Project Option, :diff-cleaner 24
Project Option, :diff-command 21, 26
Project Option, :diff-header 22
Project Option, :diff-line-filter 22
Project Option, :diff-prologue-function 23,

26
Project Option, :edit-commit-command 30
Project Option, :edit-log-message 28
Project Option, :failed-command-regexp 32
Project Option, :gnus-group 19, 20
Project Option, :ignore-diff-status 32
Project Option, :inheritance 12, 13, 16
Project Option,

:kill-change-logs-after-sending 31
Project Option, :kill-sources-after-sending

. 31

Project Option, :link-change-log-hook 24
Project Option, :log-message-items 28
Project Option, :mail-method 18, 20
Project Option, :name . 17, 21
Project Option, :pre-command 32
Project Option, :subject . 21
Project Option, :subject-committed-prefix . . 30
Project Option, :subject-prefix 20
Project Option, :subject-rewrite-format 14
Project Option, :submodule-detection-function

. 18
Project Option, :themes 11, 13
Project Option, :to-address 8, 11, 12, 20
Project Option, :user-mail 20, 24
Project Option, :user-name 20, 24

S
Submodule . 17
Subproject . 15
Subproject Descriptor . 16
Subproject Option . 16
Subproject Option, :files . 16
Subproject Option, :subdirectory 16
Subproject, Permanent . 16
Subproject, Temporary . 16
svn (built-in theme) . 12
svn-ws (built-in theme) . 12

T
Temporary Subproject . 16
Theme . 7, 11
Theme, Built-in . 12
Theme, Built-in, cvs . 12, 32
Theme, Built-in, cvs-ws 12, 32
Theme, Built-in, darcs . 12, 24
Theme, Built-in, darcs-ws 12, 24
Theme, Built-in, ephemeral-change-logs 27
Theme, Built-in, git 12, 18, 22, 24, 25, 26, 28
Theme, Built-in, git-index 25, 27
Theme, Built-in,

git-index-automatic-change-logs . . . 25, 27
Theme, Built-in, git-index-ws 25, 27
Theme, Built-in, git-ws . . 12, 18, 22, 24, 25, 26, 28
Theme, Built-in, hg . 12, 18, 24
Theme, Built-in, hg-ws 12, 18, 24
Theme, Built-in, prcs . 12, 24
Theme, Built-in, prcs-ws 12, 24
Theme, Built-in, svn . 12
Theme, Built-in, svn-ws . 12

Appendix B: Indexes 37

B.2 Variables

M
mail-user-agent . 19

P
patcher-built-in-themes 12, 22, 25
patcher-cmtcmd-font-lock-keywords 30
patcher-cmtcmd-mode-hook 30
patcher-comment-face . 29, 30
patcher-default-after-save-change-log-hook

. 24
patcher-default-change-log-file-name . . 23, 27
patcher-default-change-logs-appearance . . . 25
patcher-default-change-logs-diff-command

. 26
patcher-default-change-logs-prologue 26
patcher-default-change-logs-separator 29
patcher-default-change-logs-updating 24
patcher-default-change-logs-user-mail 24
patcher-default-change-logs-user-name 24
patcher-default-check-change-logs-insertion

. 31
patcher-default-check-commit 31
patcher-default-command-directory 17
patcher-default-commit-command 28
patcher-default-commit-privilege 31
patcher-default-committed-notice 30
patcher-default-default-change-logs-status

. 27
patcher-default-diff-cleaner 24
patcher-default-diff-command 21, 26
patcher-default-diff-header 22
patcher-default-diff-line-filter 22
patcher-default-diff-prologue-function . . . 23,

26
patcher-default-edit-commit-command 30
patcher-default-edit-log-message 28
patcher-default-failed-command-regexp 32

patcher-default-gnus-group 19, 20
patcher-default-ignore-diff-status 32
patcher-default-kill-change-logs-after-

sending . 31
patcher-default-kill-sources-after-sending

. 31
patcher-default-link-change-log-hook 24
patcher-default-log-message-items 28
patcher-default-mail-method 18, 20
patcher-default-name . 17, 21
patcher-default-pre-command 32
patcher-default-subject . 21
patcher-default-subject-committed-prefix

. 30
patcher-default-subject-prefix 20
patcher-default-subject-rewrite-format . . . 14
patcher-default-submodule-detection-

function . 18
patcher-default-themes 11, 13
patcher-default-to-address 8, 11, 12, 20
patcher-default-user-mail 20, 24
patcher-default-user-name 20, 24
patcher-logmsg-font-lock-keywords 29
patcher-logmsg-mode-hook 29
patcher-mail-run-gnus . 19
patcher-mail-run-gnus-other-frame 19
patcher-max-inheritance-depth 12
patcher-max-theme-depth . 12
patcher-projects . 7, 11, 17
patcher-reference-face 29, 30
patcher-subprojects . 16, 17
patcher-themes . 11, 13
pather-themes . 12

U
user-full-name . 24
user-mail-address . 24

38 Patcher

B.3 Functions

C
compose-mail . 19

G
gnus-post-news . 19

M
mail . 19
message-mail . 19

P
patch-to-change-log . 24
patcher-change-log-first 25
patcher-change-log-kill . 23
patcher-change-log-last . 25
patcher-change-log-mail 8, 25
patcher-change-log-next 8, 25
patcher-change-log-previous 25
patcher-change-logs-insert-change-logs . . . 26
patcher-cmtcmd commit . 9
patcher-cmtcmd-cancel . 30
patcher-cmtcmd-commit . 30
patcher-cmtcmd-kill . 30
patcher-cmtcmd-mode . 30
patcher-default-diff-cleaner 24
patcher-default-diff-prologue 23, 26
patcher-detect-submodules 18
patcher-git-detect-submodules 18

patcher-gnus-summary-followup 15
patcher-gnus-summary-followup-with-original

. 15
patcher-gnus-summary-reply 15
patcher-gnus-summary-reply-with-original

. 15
patcher-hg-detect-submodules 18
patcher-logmsg-cancel . 29
patcher-logmsg-commit . 9, 29
patcher-logmsg-init-message 29
patcher-logmsg-insert-change-logs 29
patcher-logmsg-insert-compressed-change-

logs . 29
patcher-logmsg-insert-subject 29
patcher-logmsg-kill . 30
patcher-logmsg-mode . 29
patcher-mail . 8, 14, 21
patcher-mail-adapt . 14
patcher-mail-commit 8, 27, 28
patcher-mail-compose-mail 19
patcher-mail-diff . 21
patcher-mail-fake . 19
patcher-mail-first-change-log 25
patcher-mail-gnus . 19
patcher-mail-insert-change-logs 8, 26
patcher-mail-kill . 14
patcher-mail-message . 19
patcher-mail-next-change-log 8
patcher-mail-previous-change-log 25
patcher-mail-sendmail . 19
patcher-version . 11

Appendix B: Indexes 39

B.4 Keystrokes

C-c C-c . 9, 29, 30
C-c C-k . 30
C-c C-p c . 8, 9, 27, 29, 30
C-c C-p d . 21
C-c C-p f . 15
C-c C-p F . 15
C-c C-p i . 29
C-c C-p k . 14, 23
C-c C-p l . 8, 26, 29
C-c C-p L . 29

C-c C-p m . 8, 25
C-c C-p n . 8, 25
C-c C-p N . 25
C-c C-p p . 25
C-c C-p P . 25
C-c C-p r . 15
C-c C-p R . 15
C-c C-p s . 29
C-c C-p v . 11
C-c C-z . 29, 30

	Copying
	Introduction
	Installation
	Distribution
	Requirements
	Insinuation

	Quick Start
	Setting up Patcher
	Calling Patcher
	Filling the ChangeLogs
	Filling the message
	Committing the Patch
	Sending the Message

	User Manual
	Starting Up
	Project Descriptors
	Themes
	Project inheritance
	Fallbacks
	Retrieval
	Inheritance or theme?

	Entry Points
	Mail Creation
	Mail Adaptation
	Gnus Insinuation

	Project Relocation
	Subprojects
	Temporary Subprojects
	Permanent Subprojects

	Submodules
	Patcher Instances

	Message Generation
	Mail Methods
	Standard Mail Methods
	Fake Mail Method
	Other Mail Methods

	Message Customization

	Patch Generation
	Diff Command
	Diff Headers
	Diff Line Filter
	Diff Prologue

	ChangeLogs Handling
	ChangeLogs Naming
	ChangeLogs Updating
	Automatic ChangeLogs
	Manual ChangeLogs
	No ChangeLogs

	ChangeLogs Navigation
	ChangeLogs Appearance
	ChangeLogs Prologue
	ChangeLogs Status

	Project Check In
	Commit Command
	Log Message Handling
	Log Message Elements
	Log Message Editing

	Commit Operation

	Mail Sending
	Before Sending
	After Sending

	More On Commands
	Prefixing Commands
	Error Handling

	XEmacs Development
	Indexes
	Concepts
	Variables
	Functions
	Keystrokes

