The FCM User Manual

The File Contents Manager, Version 1.0 beta 1

Didier Verna <didier@xemacs>

mailto:didier@xemacs

Copyright (©) 2011 Didier Verna

Permission is granted to make and distribute verbatim copies of this manual provided
the copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under
the conditions for verbatim copying, provided also that the section entitled “Copy-
ing” is included exactly as in the original.

Permission is granted to copy and distribute translations of this manual into an-
other language, under the above conditions for modified versions, except that this
permission notice may be translated as well.

Table of Contents

COPDY N . . 1
1 Introduction 3
2 Installation........ 5
2.1 DiIStribUbIONo e 5
2.2 Requirements.ooiiiiim e)
2.3 Getting Startedt 5
3 Buffer Qualification............. L 7
3.1 Qualification SOUTCESt e e e e 7
3.1.1 File Specific Behaviors.oo i 7

3.1.2 File Name Based Behaviors......... ..o i 7

3.1.3 Major Mode Based Behaviors........o 7

3.1.4 Default BEhaviorst e 7

3.2 Qualification Processt 8
3.3 Template Designators. e 8
4 Writing Template Files................... 9
Appendix A Indexes......... 11
AT COMCEPES - vttt ettt 11
A2 Variables 11
A3 BUNCHIONS . - oo e 11
A4 KeystrOKES. . oottt 11

Copying

Copying

FCM is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation;
either version 3 of the License, or (at your option) any later version.

FCM is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA.

Chapter 1: Introduction 3

1 Introduction

A great majority of the files that you open in a text editor such as XEmacs contain two kinds
of material: text that only you can write (source code, composed natural language etc.) and
markup that can largely be guessed, computed or automated (headers, footers, copyright notices,
timestamps etc.)

FCM, the File Contents Manager, is an XEmacs library designed to help you with the latter kind
of material. FCM works by associating the files you write with so-called templates. Templates
not only provide initial, possibly dynamic contents for new files but are also used to establish a
structural match with existing files, so that you can automatically update the templated contents
at different times such as loading, saving, or upon explicit request.

Template files mostly contain plain text. When FCM encounters plain text in a template, it
just copies it as-is to the file you're creating. Template files may also contain so-called template
variables which allow you to manage contents dynamically. This comes in handy for inserting
timestamps, copyright years, choosing a specific license etc. When FCM encounters a variable in
a template file, it evaluates it in order to produce the actual contents to insert; a process known
as variable expansion.

Template variables are said to be automatic when they expand to their value directly (as a
timestamp for instance). Another kind of variable is the interactive ones. Interactive variables
prompt you for some information everytime they need to be expanded (as a file tagline for
instance).

FCM comes with a set of predefined templates but you can also create and use your own.

While its most frequent use is probably to provide initial contents for newly created files, FCM
can act at other moments too. Apart from initialization, FCM will act at load time, save time
and update time, that is, upon explicit request. By using so-called variable modifiers, template
variables can be made to expand automatically at those different times, in addition to when a
file is created. Finally, you can also explicitely request re-expansion of any variable at any time,
hence dynamically updating the templated contents.

Chapter 2: Installation 5

2 Installation

2.1 Distribution

FCM is available as a standard XEmacs package. You can get it in four different ways:

e Install it from within XEmacs via the package user interface (accessible from the ‘Tools’
menu or via M-x list-packages).

e Download the ‘fcm-<version>-pkg.tar.gz’ tarball from the XEmacs package repository
and unpack it where you put the other packages.
ftp://ftp.xemacs.org/pub/xemacs/packages/

e Get the sources from the XEmacs CVS repository. The module name is ‘fcm’.
http://www.xemacs.org/Develop/cvsaccess.html

e Get the sources directly from my website. You will also find several inlined versions of this
documentation there.
http://www.lrde.epita.fr/"didier/software/xemacs.php

If you’re installing FCM for a whole site, like a company or a university, you might want to
customize the default templates in order to make them suitable to a format that all employees
should comply to (see Chapter 4 [Writing Template Files|, page 9). As we will see in the next
chapters, individual users may still use personal templates should they wish to do so.

2.2 Requirements

FCM currently works only with XEmacs 21.4 or later. I'm not sure it works with earlier versions
of XEmacs, but I’'m sure it does not work with GNU Emacs.

2.3 Getting Started

Once FCM is properly installed, you don’t need any special trickery in your ‘.emacs’ file to make
it work, because all entry points to the library are autoloaded. You may however add an optional
call to (fcm-install) in your ‘.emacs’. This will add a “Contents Management” submenu in
the “Edit” menu giving you GUI access to FCM. From there, you can start using FCM without
really knowing what’s going on under the hood.

Contents management by FCM operates through a minor mode called fcm-mode. By switching
this mode on and off, you can effectively toggle FCM on a per-file basis (FIXME: ref to force
argument). fcm-mode is an autoloaded function which also installs the “Contents Management”
submenu if needed. That is why the call to fcm-install in your ‘.emacs’ is optional.

FCM can also be set to activate automatically on all qualifying buffers (see Chapter 3 [Buffer
Qualification], page 7). This is done by switching on another minor mode called fcm-global-
mode. This mode is not buffer-local. You can activate it in your ‘.emacs’ but if you do, please
do so as late as possible. fcm-global-mode is an autoloaded function which also installs the
“Contents Management” submenu if needed. Consequently, there is no need for putting both a
call to (fcm-install) and to (fcm-global-mode) in your ‘.emacs’.

Finally, every customizable FCM option can be accessed through the fcm custom group.

ftp://ftp.xemacs.org/pub/xemacs/packages/
http://www.xemacs.org/Develop/cvsaccess.html
http://www.lrde.epita.fr/~didier/software/xemacs.php

Chapter 3: Buffer Qualification 7

3 Buffer Qualification

In order for FCM to operate on a file properly, it needs to know which template is associated
with the file and whether it should operate automatically at creation, load, or save time. The
process by which FCM gathers this information is called buffer qualification (“buffer” because FCM
obviously operates on file buffers). Whether FCM should operate at create, load, or save-time is
called a behavior.

We said in the introduction that template variables may be set to automatically expand at
those different times, so you may wonder why the additional information is required. In fact,
it is not really required, but there may be times where you would rather skip the expansion
process altogether, regardless of any template variable setting. In other words, the create, load,
or save behaviors act as global switches.

3.1 Qualification Sources

FCM looks for behavior specifications at different places and in sequential order (see Section 3.2
[Qualification Process], page 8).

3.1.1 File Specific Behaviors

You can specify a set of behaviors for one particular file by setting the variable fcm-behavior in
its local variables section. This variable’s value must be of the form ‘(:key value ...)’ where
the possible keys are :template, :1load and :save.

:load and :save must be booleans that determine FCM’s behavior at the corresponding time,
and :template must be a template file designator (see Section 3.3 [Template Designators],
page 8).

As a safety precaution, every template file provided in the FCM distribution contains such a
variable with a value of ‘(:template nil)’, effectively disqualifying the file for contents man-
agement altogether.

3.1.2 File Name Based Behaviors

You can specify behaviors on a file name regular expression match basis by customizing the
variable fcm-behavior-files. This variable must be a list of specifications of the form ‘ (regexp
:key value ...) . regexp is obviously a regular expression that will be use to match file names.
The available keys are the same as before (see Section 3.1.1 [File Specific Behaviors|, page 7)
with the addition of the :create key.!

By default, FCM disqualifies files located in /tmp/.
3.1.3 Major Mode Based Behaviors

You can specify behaviors on a major-mode basis by customizing the variable fcm-behavior-
modes. This variable must be a list of specifications of the form ‘(mode :key value ...)’. mode
is a symbol naming a major-mode (without the -mode) postfix. The available keys are the same
as before (see Section 3.1.2 [File Name Based Behaviors], page 7)

By default, FCM disqualifies text, ChangeLog, outline and fundamental files.
3.1.4 Default Behaviors

Finally, you can also specify default behaviors by customizing the variable fcm-
behavior=defaults. This variable must be of the form ‘(:key value ...)’ where the available
keys are the same as before.

By default, the template designator is "%m.fcm" (see Section 3.3 [Template Designators],
page 8) and FCM is set to perform at all times (create, load and save).

1 Specifying a create behavior cannot be done within the file itself. Otherwise, it would already exist. . .

8 The FCM User Manual

3.2 Qualification Process

When FCM needs to know the value for a particular behavior, it looks for a specification sequen-
tially in the local variable fcm-behavior, in fcm-behavior-files, in fcm-behavior-modes and
finally in fcm-behavior-defaults. FCM won’t stop looking until all qualification sources are
investigated. In particular, this means that when you provide only a partial qualification, the
seearch will continue.

For example, suppose you have provided the following entry in fcm-behavior-files:
("/home/joe/" :load nil). This qualification is only partial because not all behaviors are
specified. When FCM needs to figure out the save behavior for a file in your home tree, it won’t
stop there just because there is a filename match. The search will stop there in terms of filename
match, but will continue with major-modes and defaults until an explicit setting for the :save
key is found (or until all qualification sources are exhausted).

Because of the way this qualification process works, you also need to note that setting a
behavior to nil explicitely is different from not setting it at all.

3.3 Template Designators

Chapter 4: Writing Template Files

4 Writing Template Files

Appendix A: Indexes

Appendix A Indexes

A.1 Concepts

A

Automatic Template Variable
Automatic Variable

B

Behavior...........oo o
Buffer Qualification

C

Custom Group, fCm........ouiiiiiiieennnnn.

E

Expansion Time, of template variable...........
Expansion, of template variable

F

fem (custom group) ...
fem (minor mode) ..o
fcm-global (minor mode)

I

Interactive Template Variable
Interactive Variable

M

Minor Mode, fem. ...
Minor Mode, fcm-global.............ccoouuun...
Modeifier, of template variable

A.2 Variables

fcem-behavior........
fcm-behavior-defaults........................

A.3 Functions

fcm-global-mode i
fem-install ...l

A.4 Keystrokes

(Index is nonexistent)

11
P
Plain Text, in template file........................ 3
Q
Qualification Process............. L. 8
Qualification Source.............cooiiiiiiiiii 7
T
Template. ... 3
Template Designator 7
Template File.........oo o i 3
Template File, plain text in 3
Template Variable............................. ... 3
Template Variable Modifier........................ 3
Template Variable, automatic 3
Template Variable, expansion...................... 3
Template Variable, expansion time 7
Template Variable, interactive..................... 3
Template Variable, modifier 3
Template, plain text in.......... ..., 3
\%
Variable......... 3
Variable Modifier.........o 3
Variable, automatic oL 3
Variable, expansionoooeiiiiiiii... 3
Variable, expansion time 7
Variable, interactive................c i 3
Variable, modifiero 3
fcm-behavior-files......... ..., 7
fcm-behavior-modes i, 7
fem-mode 5

	Copying
	Introduction
	Installation
	Distribution
	Requirements
	Getting Started

	Buffer Qualification
	Qualification Sources
	File Specific Behaviors
	File Name Based Behaviors
	Major Mode Based Behaviors
	Default Behaviors

	Qualification Process
	Template Designators

	Writing Template Files
	Indexes
	Concepts
	Variables
	Functions
	Keystrokes

