Introduction to Image Processing #1/7

Thierry Géraud

EPITA Research and Development Laboratory (LRDE)

2006

Thierry Géraud

Introduction to Image Processing #1/7

2006 1/49

Introduction to Image Processing #1/7

Introduction

About image processing

- A 3-Layer Domain
- An Easy Subject?
- Multiple Applications and Images

Images from Different Points of Views
 Running Example

Contexts

Conclusion

Introduction to Image Processing #1/7

Introduction

About image processing

- A 3-Layer Domain
- An Easy Subject?
- Multiple Applications and Images

Images from Different Points of Views

Running Example
Contexts

Conclusion

Introduction to Image Processing #1/7

Introduction

About image processing

- A 3-Layer Domain
- An Easy Subject?
- Multiple Applications and Images

Images from Different Points of Views
 Running Example
 Contexts

Conclusion

Introduction to Image Processing #1/7

Introduction

About image processing

- A 3-Layer Domain
- An Easy Subject?
- Multiple Applications and Images

Images from Different Points of Views Running Example

Contexts

Several objectives for this course:

- introduce you to techniques used in image processing
- give you an overview of several theoretical domains

Intents:

- make you realize that theories are effectively applied!
- picking the field of image processing is only a pretext
- reinforce your common engineering knowledge

Materials (electronic)

this lecture material is powered by Wikipedia

a selection of online courses

- http://homepages.inf.ed.ac.uk/rbf/HIPR2/
- http://www.ph.tn.tudelft.nl/Courses/FIP/noframes/fip.html
- http://www.icaen.uiowa.edu/~dip/LECTURE/lecture.html
- http:

//www.cs.bris.ac.uk/Teaching/Resources/COMS30121/slidesIP/

FIXME

Materials (book)

recommended book:

Image Processing : Analysis and Machine Vision by Milan Sonka, Vaclav Hlavac, Roger Boyle, Thomson Learning September 1998, 2nd edition, ISBN: 053495393X

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

theoretical domains:

functions and distributions

http://en.wikipedia.org/wiki/Distribution_(mathematics)

discrete topology

http://en.wikipedia.org/wiki/Discrete_topology

information theory

http://en.wikipedia.org/wiki/Information_theory

signal processing

http://en.wikipedia.org/wiki/Signal_processing

probability

http://en.wikipedia.org/wiki/Probability

theoretical domains:

statistical classification

http://en.wikipedia.org/wiki/Statistical_classification

information management

http://en.wikipedia.org/wiki/Information_management

alternative set theory

http://en.wikipedia.org/wiki/Alternative_set_theory

physical models

http://en.wikipedia.org/wiki/Model_(physical)

meta heuristics

http://en.wikipedia.org/wiki/Meta_heuristics

How-to (deal with this course)

- o during class:
 - listen
 - take notes
 - ask questions
- after class
 - re-read the slides
 - follow the hyper-links and read
- validation: a practical project

A 3-Layer Domain An Easy Subject? Multiple Applications and Images

Introduction to Image Processing #1/7

Introduction

About image processingA 3-Layer Domain

An Easy Subject?

Multiple Applications and Images

Images from Different Points of Views
 Running Example
 Contexts

Conclusion

(日) (四) (三) (三)

A 3-Layer Domain An Easy Subject? Multiple Applications and Images

From Low-Level to High-Level

- image processing—or image filtering
 - deals with pixels
 - Iow-level processing
 - http://en.wikipedia.org/wiki/Image_processing
- pattern recognition
 - deals with features—or primitives
 - http://en.wikipedia.org/wiki/Pattern_recognition
- computer vision—or image understanding
 - deals with a scene description
 - high-level processing
 - http://en.wikipedia.org/wiki/Computer_vision

http://computervision.wikia.com/wiki/Main_Page

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

A 3-Layer Domain An Easy Subject? Multiple Applications and Images

Data v. Semantics

- raw images:
 - are large buffers of data (so poorly structured)
 - with no semantics associated with theirs contents
- o primitives:
 - are objects (for instance, regions, contours, and so on)
 - have data (features) associated with them
- scenes:
 - have their contents described with high-level information so bear a high degree of semantics
 - are encoded by lightweight structures
 - and should lead to understanding

A 3-Layer Domain An Easy Subject? Multiple Applications and Images

Illustration

- data size is a very few Ko
- yet information weight is high
- indeed, you can recognize the picture!
- Ieft as exercise:
 - what is your description of this scene?
 - what is the nature of objects you use?

(ロ) (四) (三) (三)

• what kind of information do you associate with objects?

A 3-Layer Domain An Easy Subject? Multiple Applications and Images

Introduction to Image Processing #1/7

Introduction

About image processing

- A 3-Layer Domain
- An Easy Subject?
- Multiple Applications and Images

Images from Different Points of Views
 Running Example
 Contexts

Conclusion

(日) (四) (三) (三)

A 3-Layer Domain An Easy Subject? Multiple Applications and Images

About Artificial Intelligence

A few quotes from pioneers:

- "Machines will be capable of doing any work that a man can do." —Herbert Simon, Carnegie Mellon University, 1965.
- "Within a generation the problem of creating 'artificial intelligence' will be substantially solved." —Marvin Minsky, MIT, 1967.

http://en.wikipedia.org/wiki/Artificial_Intelligence

・ロ・・ (日・・ (日・・ (日・)

A 3-Layer Domain An Easy Subject? Multiple Applications and Images

Test

This is a simple image as known by a computer:

can you tell what is it?

< ロ > < 団 > < 豆 > < 豆 >

A 3-Layer Domain An Easy Subject? Multiple Applications and Images

Solution

Actually the image is this one:

- actually it is not so a difficult problem to recognize an eye
- however think about the distance existing between having raw data and taking a decision
- and remember...

never say too quickly: "that's easy"!

(日) (四) (三) (三)

A 3-Layer Domain An Easy Subject? Multiple Applications and Images

Introduction to Image Processing #1/7

Introduction

About image processing

- A 3-Layer Domain
- An Easy Subject?
- Multiple Applications and Images

Images from Different Points of Views
 Running Example
 Contexts

Conclusion

(日) (四) (三) (三)

A 3-Layer Domain An Easy Subject? Multiple Applications and Images

A Non Exhaustive List of Applications (1/2)

field	applications
photography	de-blurring
	de-noising
satellite imaging	world forest watching
	cultivation estimation
aerial imaging	map construction and update
medical imaging	tumor detection
	surgery planning
	tissue or fluid analysis
computer graphics	special effects
	artistic creation

Thierry Géraud

...

2006 19/49

A 3-Layer Domain An Easy Subject? Multiple Applications and Images

A Non Exhaustive List of Applications (2/2)

field	applications
video	traffic control
	area surveillance
	indexing and searching
culture	painting/movie restoration
	ancient ruins detection
industrial	mass production quality control
	paper mail processing

...

A 3-Layer Domain An Easy Subject? Multiple Applications and Images

Several Kinds of Image Construction Devices

for instance, in use in medical imaging:

photography

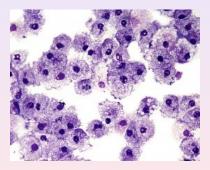
fluoroscopy

MRI

radiography

tomography

ultrasonography



A 3-Layer Domain An Easy Subject? Multiple Applications and Images

Photography

Thierry Géraud

Introduction to Image Processing #1/7

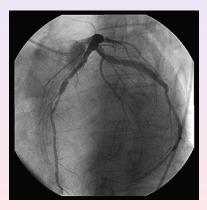
2006 22/49

(日)

A 3-Layer Domain An Easy Subject? Multiple Applications and Images

Radiography

Thierry Géraud


Introduction to Image Processing #1/7

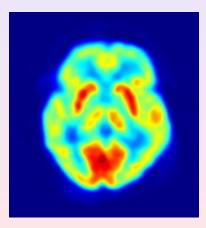
2006 23 / 49

(日)

A 3-Layer Domain An Easy Subject? Multiple Applications and Images

Fluoroscopy

Thierry Géraud


Introduction to Image Processing #1/7

2006 24/49

<ロ> <合> <合> <き> <き>

A 3-Layer Domain An Easy Subject? Multiple Applications and Images

Tomography

Thierry Géraud

Introduction to Image Processing #1/7

2006 25 / 49

A 3-Layer Domain An Easy Subject? Multiple Applications and Images

Magnetic Resonance Imaging

Thierry Géraud

Introduction to Image Processing #1/7

2006 26/49

A 3-Layer Domain An Easy Subject? Multiple Applications and Images

Ultrasonography

Thierry Géraud

Introduction to Image Processing #1/7

2006 27 / 49

A 3-Layer Domain An Easy Subject? Multiple Applications and Images

in all these images:

- noise is different
- objects to be recognized are different
- their context (scene) is different
- but we usually recourse to the same "tools / methods" provided by the context

(日)

Running Example Contexts

Introduction to Image Processing #1/7

About image processing

- A 3-Layer Domain
- An Easy Subject?
- Multiple Applications and Images

Images from Different Points of Views
 Running Example

Contexts

Conclusion

Running Example Contexts

A Classical Image (1/2)

Consider that we have a gray picture, an image *I*, taken with a digital camera:

- a point *p* is located at (*r*, *c*)
 - r and c respectively being the row and column index
 - we have *p* = (*r*, *c*)
 - let us denote by D the set of points; $D \subset \mathbb{N}^2$
- a gray-level value is associated with every point
 - such values are integers between 0 and 255
 - 0 and 255 resp. mean black and white; in-between values are grays
 - with $V = [0, 255] \cap \mathbb{N}$, we have $I(p) \in V$

Running Example Contexts

A Classical Image (2/2)

cont'd:

- the image represents a scene
 - the scene is composed of objects
 - the set of objects is $S = \{T, L, B, M\}$
 - respectively:
 - a table,
 - lines (painted on the table),
 - a ball (rolling on the table),
 - and miscellaneous objects (e.g., people around the table)

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Running Example Contexts

We want to:

- recognize the objects
- put differently, find the function $O(p) \in S$
- express this problem within a particular context
- use the tools provided by this context
- focus on the quadruplet "image / points / values / objects"

Running Example Contexts

Contexts \Rightarrow Lectures

Many contexts exist:

- by context we mean a theoretical background
- so we have to pick one
- then our problem falls within a well-known framework
- and we can use the many sound tools from this context

the lectures are about how to apply several theoretical backgrounds to image processing

In the following we focus on "what a point is"...

Running Example Contexts

Introduction to Image Processing #1/7

About image processing

- A 3-Layer Domain
- An Easy Subject?
- Multiple Applications and Images

3 Images from Different Points of Views Running Example Contexts

Conclusion

Running Example Contexts

An image is one observation of a random phenomenon.

Indeed:

- another photographer may not have taken exactly the same picture at the same time and that would globally be the same scene
- many physical aspects that lead to the image have a random flavor think of the butterfly, of the noise

See also: http://en.wikipedia.org/wiki/Probability

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Running Example Contexts

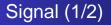
To recognize the ball, we can estimate:

 $P(I(p) \mid O(p) = B)$

that is, the probability of having a given gray-level at the point p, knowing that this point belongs to the ball

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

Running Example Contexts


Probability (3/3)

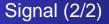
If we want to identify the object present at point p, we can take a Bayesian decision:

$$O(p) = \arg \max_{s \in S} P(O(r, c) = s | I)$$

meaning that we assign to each point the object having the higher likelihood, knowing the observation *I*

Running Example Contexts

An image is a *digital* signal representing an analog scene.


Indeed we have:

- both sampling and quantization image values are only known at discrete points and the set of possible values is limited
- but the real scene is continuous

See also:

http://en.wikipedia.org/wiki/Signal_(information_theory)

Running Example Contexts

the scene is the following function

$$i: \left\{ egin{array}{ccc} \mathbb{R}^2 & \mapsto & \mathbb{R} \\ (x,y) & o & i(x,y) \end{array}
ight.$$

when digitalized it becomes

$$I_{r,c} \in V$$
 for instance $I_{5,1} = 12$

that is, a discrete function from D to V.

Running Example Contexts

An image is finite grid *graph*—or square lattice, and its points are nodes.

Then add notions like:

- neighborhood
- cliques
- connected components

See also: http://en.wikipedia.org/wiki/Grid_graph

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

Running Example Contexts

Alternative Set Theory (1/2)

An image is a set of elements, so a point is an element.

So:

- the ball is the set *B* of image points (so $B \subset D$)
- more generally we search the partition of *D* into $T \cup L \cup B \cup M$
- the recognition process is to assign every point *p* to the proper sub-set (*B* or another one)

See also: http://en.wikipedia.org/wiki/Alternative_Set_Theory

Running Example Contexts

Alternative Set Theory (2/2)

So:

• put differently we want to know the indicator functions for instance:

$$1_B: \left\{ \begin{array}{ccc} D & \mapsto & \mathbb{B} \\ p & \rightarrow & true \text{ or false} \end{array} \right.$$

- however we cannot be so sure about the belonging of a given point to a particular set
- we have to deal with imprecision, vagueness, and uncertainty
- we do not want classical sets any more

Running Example Contexts

Information Management

Different solutions are disparate sources of information.

So:

- we have O_1 , O_2 , ..., O_n solutions
- we have to fuse those sources of information to take a final decision *O*
- we can have concordant information at the same time as discordant one
- we may want to be either severe or tolerant towards those sources; otherwise, we want to take a compromise

See also: http://en.wikipedia.org/wiki/Information_Management

Running Example Contexts

Statistical Classification

An image is a *population* of items.

So:

- a point is an individual item
- every item is known by a vector of features
- in feature space, items are grouped into clusters
- a cluster is homogeneous w.r.t. the item features a cluster is representative of the presence of an object in the scene
- thus we aim at identifying clusters

See also:

http://en.wikipedia.org/wiki/Statistical_classification

Running Example Contexts

Meta Heuristics

The expected solution can be expressed as the result of an *optimization* problem.

So:

- the image O to be found has \overline{D} points for instance consider a small image where $\overline{D} = 100^2$
- every point in O has a value in S so $\overline{S} = 4$
- so the search space contains 4^{100²} different potential solutions (they are about 10⁶⁰⁰⁰...)
- thus we need heuristics to avoid exploring the whole space

See also: http://en.wikipedia.org/wiki/Meta_heuristics

Running Example Contexts

Physical Models

A physical model is *applied* to image processing to drive a filter or a transform.

For instance:

- elastic deformation
- optical flow
- diffusion
- and so on...

See also: http://en.wikipedia.org/wiki/Model_(physical)

Recap

_

what a point is	context
node of a graph	topology
sample of a discrete function	signal
element	alternative set theory
site of a random variable	probability
subject of information sources	information management
part of a body or space location	physical model
item in a population	statistical classification
variable of a problem	meta heuristics

...

< □ > < □ > < □ > < □ > < □ >

And Also...

what a point is	context
 point of a landscape token	mathematical morphology grammar

Two Important Ideas

- replace "point" by "feature—or pattern" and you end up with higher-level methods
- all these contexts are of prime importance in computer science