# Introduction to Image Processing \#2/7 

Thierry Géraud

EPITA Research and Development Laboratory (LRDE)


2006

## Outline

(1) Image as a Graph

- From Image to Graph
- Sub-Graphs for the Binary Case


## Outline

(1) Image as a Graph

- From Image to Graph
- Sub-Graphs for the Binary Case
(2) When Trees Appear
- Connected Component Labeling
- Distance Map
- Trees from Image Values


## Outline

(1) Image as a Graph

- From Image to Graph
- Sub-Graphs for the Binary Case
(2) When Trees Appear
- Connected Component Labeling
- Distance Map
- Trees from Image Values
(3) Applications
- Filtering
- Segmentation
- Cutting Graphs


## Outline

(1) Image as a Graph

- From Image to Graph
- Sub-Graphs for the Binary Case
(2)

When Trees Appear

- Connected Component Labeling
- Distance Map
- Trees from Image Values
(3)

Applications

- Filtering
- Segmentation
- Cutting Graphs


## An Image (1/2)

Consider this tiny 2D gray-level image (left):


## An Image (2/2)

A pixel (abrev. for "picture element") is

- a tile in the 2D plane of an image and its associated gray value
- a couple (image, point)

The right figure:

- separates pixels with lines (cyan)
- highlights pixel centers with dots (green)


## About Graph (1/3)

- An undirected graph $G$ is an ordered pair $(V, E)$ such as:
- $V$ is a set of vertices-or nodes,
- $E$ is a set of edges, unordered pairs of vertices.
- We say that:
- an edge connects its pair of endvertices,
- two vertices are adjacent if an edge exists between them.
- Some curiosities:
- a loop is an edge whose endvertices are the same vertex,
- an edge is multiple if there is another edge with the same endvertices.
- A simple graph is a graph with no multiple edges or loops so $V$ and $E$ are not multisets.


## About Graph (2/3)

- The (open) neighborhood-or set of neighbors—of a vertex $v$ consists of all its adjacent vertices not including $v$.
- A path is a sequence of vertices such that from each of its vertices there is an edge to the successor vertex.
- A graph is connected if a path can be established from any vertex to any other vertex of a graph.
- A component of a graph is a maximally connected subgraph.
- The connectivity of a graph is the minimum number of vertices needed to disconnect this graph.


## About Graph (3/3)

- A walk is an alternating sequence of vertices and edges:
- it is closed if its first and last vertices are the same,
- it is simple if every vertex is incident to at most two edges,
- it is a cycle if it is both closed and simple.
- The Jordan curve theorem (topology) states that every non-self-intersecting closed curve in the plane divides the plane into an "inside" and an "outside".
- The distance between two vertices is the length of a shortest path between them.


## From Image to Graph

Sub-Graphs for the Binary Case

## Further Readings

- graph
http://en.wikipedia.org/wiki/Graph_(mathematics)
- grid
http://en.wikipedia.org/wiki/Grid_graph
- theory
http://en.wikipedia.org/wiki/Graph_theory
- topics
http://en.wikipedia.org/wiki/List_of_graph_theory_topics
- glossary
http://en.wikipedia.org/wiki/Glossary_of_graph_theory


## Turning an Image into a Graph

- Image points are natural candidate to be vertices.
- So we just need edges.
- In an image, pixels are adjacent (they touch each other) and a point has neighbors (the other points that are just around).
- Then let's go...


## 4-Connectivity

A pixel (red) has 4 neighbors (blue) and the graph is a square grid:


We have a 4-connectivity graph... except for border pixels!

## Dealing with Borders (1/2)

We extend our graph outside the image domain:


## Dealing with Borders (2/2)

- Only vertices from the original domain are considered as image points (green).
- And now those vertices have 4 neighbors (blue), yet outside the image domain.


## An Image as an Example

Values (gray-levels from image pixels) are associated with graph vertices.


From these values, we can derive some sub-graphs and then process the image.

## Outline

(1) Image as a Graph

- From Image to Graph
- Sub-Graphs for the Binary Case
(2)

When Trees Appear

- Connected Component Labeling
- Distance Map
- Trees from Image Values
(3)

Applications

- Filtering
- Segmentation
- Cutting Graphs


## Binary Image

A binary image contains only two values:

- true = white $=$ the object
- false = black $=$ the backgroung (not the object)


Is there one (thin) object in this image or several ones?

## Sub-Graphes

We have a couple of sub-graphes, one for the object (left) and one for the background (right):


How many components do these sub-graphes have?

## 8-Connectivity (1/2)

We move to 8-connectivity; now a pixel has 8 neighbors:


## 8-Connectivity (2/2)

Now the object sub-graph is connected-it thus has a single component:


Yet, this component contains a cycle (orange) and the Jordan theorem ("inside/ouside") do not apply!
just count the number of backgroung component given the 8 -connectivity...

## Solution

Always use a different connectivity for the object than for the background
either object=4 and background=8 or the contrary.


## An Issue that Really Matters

That issue is of prime importance for:

- algorithms that deal with several growing components at the same time
because a component is a well-defined region of an image
- cycles to have an inside and and ouside
because a cycle is a contour or a propagation front in an image


## Exercise 1

When the pixel is an hexagonal tile:

- what is the underlying graph?
- what is the connectivity?
- is there any problem with components and cycles?
- and what about the notion of distance?


## Exercise 2

If the image is 3D:

- what are the possible connectivities?
- and what connectivities are dual in the binary case?


## Exercise 3

Design an algorithm that extracts the inner 8-connectivity contour of object components.


## Foreword

The simplest structure that defines a raw binary 2 D image / is such as:

- $I$ is a 2D matrix so, given a point $p=(r, c)$,
- $I_{r, c}$ is a pixel value
- $I(p)$ is another notation for this value
- at any point $p$, we have $I(p) \in$ true, false
- a vertex $v$ of the object sub-graph $G$
- is represented by a point of the image
- verifies $I(v)=$ true
- if $G$ is not connected, the object has several components.

Image as a Graph When Trees Appear Applications Conclusion

## Outline



Image as a Graph

- From Image to Graph
- Sub-Graphs for the Binary Case
(2) When Trees Appear
- Connected Component Labeling
- Distance Map
- Trees from Image Values
(3)

Applications

- Filtering
- Segmentation
- Cutting Graphs

Image as a Graph When Trees Appear Applications Conclusion

## State of the Problem

Consider a binary image in which the object part represents screws and bolts (left):

we want an image where every component is assigned to a label

Image as a Graph When Trees Appear Applications Conclusion

## State of the Problem

- each component can be represented by a spanning tree
- this tree can be a rooted tree
- its root node is representative
- each tree has its own label
- so we have a disjoint-set data structure-or forest of trees
- last the background is processed in a specific way
http://en.wikipedia.org/wiki/Spanning_tree_(mathematics)
http://en.wikipedia.org/wiki/Disjoint-set_data_structure

Image as a Graph When Trees Appear

## Tarjan's Union-Find Algorithm (1/2)

## initialization

$I \leftarrow 0$ —CURRENT LABEL
for all $p$
$L(p) \leftarrow 0$-BACKGROUND
first pass
for all $p$ (in video scan) such as $I(p)=$ true parent $(p) \leftarrow p$ —MAKE A NEW (SINGLETON) SET/TREE for all ante-video neighbors $n$ of $p$ such as $I(n)=$ true do_union( $n, p$ )
second pass for all $p$ (in reverse video scan) such as $I(p)=$ true if parent $(p)=p$-ROOT POINT

```
I\leftarrowI+1
L(p)\leftarrowI -NEW LABEL
    else
    L(p)\leftarrowL(parent (p)) -LABEL PROPAGATION
```

Image as a Graph When Trees Appear Applications Conclusion

## Tarjan's Union-Find Algorithm (2/2)

Auxiliary functions: do_union $(n, p)\{$
$r \leftarrow$ find_root $(n)$
if $r \neq p$-TWO TREES SHOULD MERGE parent $(r) \leftarrow p$
\}
find_root( $x$ ) : point \{
if parent $(x)=x$-ROOT POINT
$\rightarrow x$
else -RECURSIVE CALL WITH TREE COMPRESSION $\rightarrow$ find_root(parent(x))
\}

Image as a Graph When Trees Appear

Applications Conclusion

## Demo

## < example of a run >

Image as a Graph When Trees Appear Applications Conclusion

Connected Component Labeling
Distance Map
Trees from Image Values
Further Readings

## Outline



Image as a Graph

- From Image to Graph
- Sub-Graphs for the Binary Case
(2) When Trees Appear
- Connected Component Labeling
- Distance Map
- Trees from Image Values
(3)

Applications

- Filtering
- Segmentation
- Cutting Graphs

Image as a Graph
When Trees Appear

## A Need for Distances

Distance-related information is useful in practice; for instance:

- obviously the distance between two points
- the distance of a point to an object
- and also the object which a point is the closest to
- some distances between a couple of objects
- etc.


## Distances (1/2)

A distance between 2 elements $x$ and $y$ of a set is a function to $\mathbb{R}$ which satisfies:

- $d(x, y) \geq 0$,
- $d(x, y)=0$ if and only if $x=y$,
- $d(x, y)=d(y, x)$ (symmetry),
- $d(x, z) \leq d(x, y)+d(y, z)$ (triangle inequality).

If the set is $\mathbb{R}^{n}$, elements are vectors: $x=\left(. ., x_{i}, ..\right)$ where $x_{i}$ is the $i^{\text {th }}$ coordinate of $x$.
The $p$-norm distance (Minkowsky distance of order $p$ ) is:

$$
L_{p}(x, y)=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}
$$

## Distances (2/2)

We have:
Manhattan distance $\quad L_{1}(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$
Euclidean distance $\quad L_{2}(x, y)=\sqrt{\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{2}}$
Chebyshev distance $L_{\infty}=\max _{i \in[1, n]_{\mathbb{N}}}\left|x_{i}-y_{i}\right|$
With 2D points, we can write:

$$
\begin{aligned}
& L_{1}\left(p, p^{\prime}\right)=\left|r-r^{\prime}\right|+\left|c-c^{\prime}\right| \\
& L_{2}\left(p, p^{\prime}\right)=\sqrt{\left(r-r^{\prime}\right)^{2}+\left(c-c^{\prime}\right)^{2}} \\
& L_{\infty}\left(p, p^{\prime}\right)=\max \left(\left|r-r^{\prime}\right|,\left|c-c^{\prime}\right|\right)
\end{aligned}
$$

4
http://en.wikipedia.org/wiki/Distance

Image as a Graph When Trees Appear Applications Conclusion

## Distances as Defined by Graphs (1/3)

Since we have graphs, we can directly use the notion of distance between vertices:

gives

$$
d=2 \text { in } 8-\mathrm{c}
$$

or

$$
d=\sqrt{2}+1
$$

with Euclidean weights
whereas we have $d_{\text {Euclidean }}=\sqrt{5}$

Image as a Graph When Trees Appear Applications Conclusion

## Distances as Defined by Graphs (2/3)

With the 4-connectivity, we have the Manhattan distance (also named city-block or taxi-cab).

Manhattan distance to a point
(black = the point; dark and light grays = resp. short and long distances)
http://en.wikipedia.org/wiki/Taxicab_geometrya

Image as a Graph When Trees Appear Applications Conclusion

## Distances as Defined by Graphs (3/3)

With the 8-connectivity, we have the chessboard distance.
chessboard distance to a point

Both the Manhattan and the chessboard distances are quite poor approximations of the Euclidean distance.

Image as a Graph When Trees Appear Applications Conclusion

## Distance Map

A distance map is an image $D$ whose any value $D(p)$ is the distance between $p$ and an object.

Below the screws and bolts binary image (left) and its distance map (right):


Image as a Graph When Trees Appear Applications Conclusion

## Computing a Distance Map (1/2)

The following algorithm computes a distance map with a chamfer propagation:
initialization
for all $p$
$D(p) \leftarrow 0$ if $I(p)=$ true, $\infty$ otherwise forward pass
for all $p=(r, c)$ taken in video scan

```
video scan means "for each row (from up to down), for each column (from left to right), do something"
    if }D(p)=
    D(p)\leftarrow\operatorname{min}(D(p),\mp@subsup{D}{r-1,c}{}+1,\mp@subsup{D}{r,c-1}{}+1)
```

backward pass
for all $p=(r, c)$ taken in reverse video scan
if $D(p) \neq 0$
$D(p) \leftarrow \min \left(D(p), D_{r+1, c}+1, D_{r, c+1}+1\right)$

Image as a Graph When Trees Appear Applications Conclusion

## Computing a Distance Map (2/3)

Remark that:

- its complexity is $O(N)$ with $N$ being the number of image pixels,
- the complexity constant factor is a multiple of the connectivity,
- this algorithm is sequential (contrary of parallel).

Image as a Graph When Trees Appear Applications Conclusion

## Computing a Distance Map (3/3)

## Left as an exercise:

## how to make this algorithm compute distances that are closer to Euclidean ones?

Image as a Graph When Trees Appear Applications Conclusion

## Computing Influence Zones (1/3)

## Example:

- we have a binary image representing several objects,
- so we perform connected component labeling (left),
- and we want to obtain their influence zones (right).


Image as a Graph When Trees Appear Applications Conclusion

## Computing Influence Zones (2/3)

With $L$ being the label image and $Z$ the expected result:
initialization
for all $p$

$$
\text { if } I(p)=\text { true } \quad D(p) \leftarrow 0, \quad Z(p) \leftarrow L(p) \quad \text { else } \quad D(p)=\infty
$$ forward pass

for all $p=(r, c)$ taken in video scan
if $D(p)=\infty$
$d \leftarrow D(p)$
if $D_{r-1, c}+1<d$ $d \leftarrow D_{r-1, c}, \quad I \leftarrow Z_{r-1, c}$
if $D_{r, c-1}+1<d$
$d \leftarrow D_{r, c-1}, \quad I \leftarrow Z_{r, c-1}$
if $d \neq \infty \quad D(p) \leftarrow d, \quad Z(p) \leftarrow 1$
backward pass
left as an exercice

Image as a Graph When Trees Appear Applications Conclusion

## Computing Influence Zones (3/3)

We want a map (image) so that at any point we are able to trace the shortest path towards the closest object.

- what data structure do we need for this map?
- how should we modify the previous algorithm?
- given a border point of an object, what is the underlying data structure?

Image as a Graph When Trees Appear Applications Conclusion

Trees from Image Values
Further Readings

## Outline



Image as a Graph

- From Image to Graph
- Sub-Graphs for the Binary Case
(2) When Trees Appear
- Connected Component Labeling
- Distance Map
- Trees from Image Values
(3)

Applications

- Filtering
- Segmentation
- Cutting Graphs


## Data (1/2)

Consider the following image whose values are 8-bit quantized:


It has foor different ordered values $v_{i}$ :

- black $\left(v_{1}=0\right)$, dark gray $\left(v_{2}=85\right)$, light gray $\left(v_{3}=170\right)$, and white ( $v_{4}=255$ ).
- for which we can derived the binary subgraphs $G_{i}$ whose vertices are $\left\{p, I(p)<v_{i}\right\}$.

Thierry Géraud

The components of every $G_{i}$ are depicted below (leftmost is $G_{1}$; rightmost is $G_{4}$ ):


- There is a natural inclusion: any component of $G_{i}$ is included in a component of $G_{i+1}$.
- So all these components can be structured by an inclusion tree.

Image as a Graph When Trees Appear

## Min-Tree

This tree whose leaf nodes are the image regional minima is called the image min-tree:


A regional minima is a flat component whose outer contour is higher.

Image as a Graph When Trees Appear Applications Conclusion

## Min/Max-Tree (1/2)




Tree representation


Filtered image


Filtered tree

Image as a Graph When Trees Appear Applications Conclusion

Connected Component Labeling Distance Map
Trees from Image Values
Further Readings

## Min/Max-Tree (2/2)



Image as a Graph When Trees Appear Applications Conclusion

## Further Readings (1/2)

- tree in graph theory
http://en.wikipedia.org/wiki/Tree_(graph_theory)
- tree data structure
http://en.wikipedia.org/wiki/Tree_data_structure
- tree traversal
http://en.wikipedia.org/wiki/Tree_traversal

Image as a Graph When Trees Appear Applications Conclusion

## Further Readings (2/2)

- depth-first search
- http://en.wikipedia.org/wiki/Depth-first_search
- http://en.wikipedia.org/wiki/Iterative_deepening_ depth-first_search
- http://en.wikipedia.org/wiki/Best-first_search
- breadth-first search
http://en.wikipedia.org/wiki/Breadth-first_search
- A* search algorithm
http://en.wikipedia.org/wiki/A*_search_algorithm

Filtering
Segmentation
Cutting Graphs

## Outline



Image as a Graph

- From Image to Greph
- Sub-Graphs for the Binary Case
(2) When Trees Appear
- Connected Component Labeling
- Distance Map
- Trees from Image Values
(3) Applications
- Filtering
- Segmentation
- Cutting Graphs

Image as a Graph When Trees Appear Applications Conclusion

Filtering
Segmentation
Cutting Graphs

## Removing Stars in Galaxy Images



Image as a Graph When Trees Appear Applications Conclusion

Filtering
Segmentation
Cutting Graphs

## Identifying Boxes in Comic Strips



## Remember!

when replacing the notion of pixels by the one of primitives, e.g., regions, we end up with high-level methods

## Outline



Image as a Graph

- From Image to Graph
- Sub-Graphs for the Binary Case
(2) When Trees Appear
- Connected Component Labeling
- Distance Map
- Trees from Image Values
(3) Applications
- Filtering
- Segmentation
- Cutting Graphs

Image as a Graph When Trees Appear

Applications
Conclusion

Filtering
Segmentation
Cutting Graphs

## Region Adjacency Graph (1/4)



Image as a Graph When Trees Appear Applications Conclusion

Filtering
Segmentation
Cutting Graphs

## Region Adjacency Graph (2/4)



Image as a Graph When Trees Appear Applications Conclusion

Filtering
Segmentation
Cutting Graphs

## Region Adjacency Graph (3/4)



Image as a Graph When Trees Appear

Applications Conclusion

Filtering
Segmentation
Cutting Graphs

## Region Adjacency Graph (4/4)



Image as a Graph When Trees Appear Applications Conclusion

Filtering

## Segmentation

Cutting Graphs

## Road Identification (1/4)



Image as a Graph When Trees Appear

## Applications

Conclusion

Filtering

## Segmentation

Cutting Graphs

## Road Identification (2/4)



Image as a Graph When Trees Appear Applications Conclusion

Filtering
Segmentation
Cutting Graphs

## Road Identification (3/4)



Image as a Graph
When Trees Appear
Applications
Conclusion

Filtering
Segmentation
Cutting Graphs

## Road Identification (4/4)



Image as a Graph When Trees Appear Applications Conclusion

Filtering
Segmentation
Cutting Graphs

## Text Recognition (1/8)

```
NN FACTURE: 1058250007
DATE DU DOCUMENT: 25.06.2001
NNO COMPTE FOURNISSEUR: 018792
FOLIO
01/01
RAISON SOCAALE ET ADRESSE DU CUENT
RENAULTT
SERVICE 0765 - PREFACTURATIOI
A'PI : SQY OVA 216
13-15 QUAI LE GALLO
92109 BOULOGNE BILLANCOURT CI
```



Image as a Graph When Trees Appear Applications Conclusion

Filtering
Segmentation
Cutting Graphs

## Text Recognition (2/8)



Image as a Graph
When Trees Appear
Applications
Conclusion

Filtering
Segmentation
Cutting Graphs

## Text Recognition (3/8)



Image as a Graph When Trees Appear Applications Conclusion

Filtering
Segmentation
Cutting Graphs

## Text Recognition (4/8)

```
No EACTURE : T058250000
DATE DE DOCDMENTE:
NNO COMETE BODRNISGEmR :
E0ula :
25.05.80口!
0147g2
01001
```


RENAULI
SERVICE DZ65 - PREFACTURAMIOI
API : SQY OVA 2 IE
13-115 QUAI LE GALDO
92ID日 BOULOGNE EMLLLANCOURT CI


Image as a Graph When Trees Appear Applications Conclusion

Filtering
Segmentation
Cutting Graphs

## Text Recognition (5/8)



Image as a Graph When Trees Appear Applications Conclusion

Filtering
Segmentation
Cutting Graphs

## Text Recognition (6/8)



Image as a Graph When Trees Appear Applications Conclusion

Filtering
Segmentation
Cutting Graphs

## Text Recognition (7/8)

```
N2FACTURE:
1058250007
DATEDODOCUMENT: [5.06.200]
NOCOMPTE FOURNISSEIJS: D18792
FOHIO :
01/0
```

RAISON SOCIALE ET ADRESSE DU CIENT
RENAULTI
SERVICE 0765 - PREFACTURATIOI
API : SQY OVA 216
13-15 QUAI LEE GALLO
92109 BOULOGNE BHLHANCOURT CI


Image as a Graph When Trees Appear Applications Conclusion

Filtering
Segmentation
Cutting Graphs

## Text Recognition (8/8)

|  |
| :---: |
| RASONSOCSBEE T? AORESSE DU CUIENY |
| RENAULT |
| SERVICE 0765 - PREFACTURATIOI |
| API : SQY OVA 216 |
| 13-15 QUAI LE GALLO |
| 92109 BOULOGNE BILLANCOURT CI |



## Outline



Image as a Graph

- From Image to Graph
- Sub-Graphs for the Binary Case
(2)

When Trees Appear

- Connected Component Labeling
- Distance Map
- Trees from Image Values
(3) Applications

Filtering

- Segmentation
- Cutting Graphs


## Definitions

- A cut is a partition of the vertices of a graph into two sets; a cut edge is an egde whose endvertices do not belong to the same set.
- The cut size is the number of its cut edges; in weighted graphs, the size is the sum of the cut edges' weights.
- A cut is a min-cut if the size of the cut is not larger than the size of any other cut.
- A cut is a max-cut if the size of the cut is not smaller than the size of any other cut.
http://en.wikipedia.org/wiki/Cut_(graph_theory)


## Properties

- Finding a min-cut can be solved by polynomial-time algorithms.
- Finding a max-cut is an NP-complete problem.
- The max-flow problem is the dual of the min-cut problem.

```
http://en.wikipedia.org/wiki/Complexity_classes_P_and_NP
```

Filtering
Segmentation
Cutting Graphs

## Results



Leo Grady et al., Siemens Corporate Research, Princeton,

## Conclusion

Having a structure (graph, tree, and so on) is often not enough!
We need another theoretical framework to put upon this structure to process images.

