Introduction to Image Processing \#4/7

Thierry Géraud

EPITA Research and Development Laboratory (LRDE)

2006

Outline

(1) Introduction

Outline

(1) Introduction
(2) Problems (Exercises) Have Solutions

- Sudoku
- Peppers in Images

Outline

(1) Introduction
(2) Problems (Exercises) Have Solutions

- Sudoku
- Peppers in Images
(3) Probability, Part II
- Markovian Tools
- Some Models
- Some Definitions and Distributions
- Estimation

Outline

(1) Introduction
(2) Problems (Exercises) Have Solutions

- Sudoku
- Peppers in Images
(3) Probability, Part II
- Markovian Tools
- Some Models
- Some Definitions and Distributions
- Estimation
(4) Statistics
- Another Way of Thinking About Image and Pixels
- Histogram
- Classification Methods

Outline

(1) Introduction
(2) Problems (Exercises) Have Solutions

- Sudoku
- Peppers in Images
(3) Probability, Part II
- Markovian Tools
- Some Models
- Some Definitions and Distributions
- Estimation
(4) Statistics
- Another Way of Thinking About Image and Pixels
- Histogram
- Classification Methods
(5) Putting Things Altogether
- Finding Objects / Classes
- Bayes and Markov
- Some Results

Graph Clique (1/2)

A clique of an undirected graph is a set of vertices where every couple of vertices are connected.

We have:

- the size \bar{k} of a clique k is its number of vertices,
- in a graph finding a clique whose size is given is an NP-complete problem.

Graph Clique (2/2)

When the graph is a regular grid:

connectivity

4
8
samples
sizes
from 1 to 3
from 1 to 4

Outline

Introduction

(2) Problems (Exercises) Have Solutions

- Sudoku
- Peppers in Images

Probability, Part II

- Markovian Tools
- Some Mode's
- Some Definitions and Distributions
- EstimationStatistics
- Another Way of Thinking About Image and Pixels
- Histogram
- Classification Methods
(5)

Putting Things Altogether

- Finding Objects / Classes
- Bayes and Markov
- Some Results

Putting Things Altogether

Please Think Different! (1/3)

Have you ever think that the Sudoku was a probabilistic problem? Why?

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

You stick to a binary position:

- there is one solution so every other configuration is impossible ;
- there is no way / reason to consider / handle an "intermediate" realization...

Please Think Different! (2/3)

Yet you are able to rank the three last lines below:

So: smallskip

- you consider that some configurations are better (more acceptable) than other ones ;
- yet you cannot state that the last one, $x_{2, *}^{(3)}$, is such as $x^{(3)}$ is the solution of the global problem.

Please Think Different! (3/3)

- When you have filled the grid,
- however the nature of its contents is,
- if do not look at the whole grid,
- then you can adopt a probabilistic point of view.
- When you consider the global grid-filling problem,
- it actually is a collection of local problems (lines, columns, blocks),
- which are definitely not independant,
- but evaluating if they are likely close to the solution is very easy to express.
- Yeh, we know how to solve such a problem!

A Probabilistic Model of the Soduku Problem (1/5)

When we have a blank, we have a random variable $X_{i, j}$.

For instance, the second line is modeled as:

$$
\begin{array}{|lll|lll|lll|}
\hline \mathbf{6} & X_{2,2} & X_{2,3} & \mathbf{1} & \mathbf{9} & \mathbf{5} & X_{2,7} & X_{2,8} & X_{2,9} \\
\hline
\end{array}
$$

and the two first top blocks are:

$\mathbf{5}$	$\mathbf{3}$	$X_{1,3}$	$X_{1,4}$	$\mathbf{7}$	$X_{1,6}$
$\mathbf{6}$	$X_{2,2}$	$X_{2,3}$	$\mathbf{1}$	$\mathbf{9}$	$\mathbf{5}$
$X_{3,1}$	$\mathbf{9}$	$\mathbf{8}$	$X_{3,4}$	$X_{3,5}$	$X_{3,6}$

A Probabilistic Model of the Soduku Problem (2/5)

One way to reduce the search space is to restrict the set of values taken by random variables to the only unknown values in each block.

In our example,

- the realizations of $X_{1,3}, X_{2,2}, X_{2,3}$, and $X_{3,1}$ belong to the set $\{1,2,4,7\}$;
- and a partial realization for the grid is depicted below.

5	$\mathbf{3}$	7	6	$\mathbf{7}$	3	\ldots
6	1	4	$\mathbf{1}$	$\mathbf{9}$	5	\ldots
2	9	8	8	2	4	\ldots
	\cdots			\ldots		

Putting Things Altogether

A Probabilistic Model of the Soduku Problem (3/5)

With x being a grid realization, let us define for each row i and each possible value $v \in[1,9]$:

$$
h_{i, v}^{r}(x)=\sum_{j=1}^{9} \delta\left(x_{i, j}, v\right)
$$

where δ is the Kronecker symbol $(\delta(a, b)$ is equal to 1 if $a=b, 0$ otherwise).

Similarly, for each colum j :

$$
h_{j, v}^{c}(x)=\sum_{i=1}^{9} \delta\left(x_{i, j}, v\right)
$$

Putting Things Altogether

A Probabilistic Model of the Soduku Problem (4/5)

x is the expected solution when we have for every value v :

$$
\forall i, h_{i, v}^{r}(x)=1 \text { and } \forall j, h_{j, v}^{c}(x)=1
$$

We can derive from h^{r} and h^{c} an energy:

$$
U(x)=\sum_{v}\left(\sum_{i}\left|h_{i, v}^{r}(x)-1\right|+\sum_{j}\left|h_{j, v}^{c}(x)-1\right|\right)
$$

which has the following properties:

$$
\begin{aligned}
& U(x) \geq 0 \quad \forall x, \\
& U(x)=0 \text { iffxis a grid solution. }
\end{aligned}
$$

A Probabilistic Model of the Soduku Problem (5/5)

At iteration t, we shall try to change the realization x^{t} into a realization $x^{t+1} \neq x^{t}$:

- for that, we randomly pick a couple of blank cells of a block, also randomly chosen;
- the candidate new realization corresponds to swapping the cell respective values; for instance:

$\mathbf{5}$	$\mathbf{3}$	7
$\mathbf{6}$	1	4
2	$\mathbf{9}$	$\mathbf{8}$

\rightarrow| 5 | 3 | 7 | |
| :--- | :--- | :--- | :--- |
| | $\mathbf{6}$ | 2 | 4 |
| | 1 | 9 | 8 |

Putting Things Altogether

Sudoku

Peppers in Images

Soduku Solver (1/2)

Consider that the couple of values that may swap are located at (i, j) and $\left(i^{\prime}, j^{\prime}\right)$; they are $v=x_{i, j}^{t}$ and $v^{\prime}=x_{i^{\prime}, j^{\prime}}^{t}$.
We then use the straightforward formula:

$$
\begin{aligned}
& \Delta U\left(x^{t} \rightarrow x^{\prime}\right)=\left(1-\delta\left(i^{\prime}, i\right)\right)\left(\quad \epsilon^{h_{i, v}^{\prime},\left(x^{t}\right)=1}+\epsilon^{h_{i}^{\prime}, v^{\prime}}\left(x^{t}\right)=1\right. \\
& \left.+\epsilon^{\left.h_{i, v}^{r}, x^{t}\right) \geq 1}+\epsilon^{h_{i, v^{\prime}}^{r_{1}^{\prime}}\left(x^{t}\right) \geq 1}\right) \\
& +\left(1-\delta\left(j, j^{\prime}\right)\right)(\\
& +\epsilon^{h_{p_{1}^{\prime}, ~}^{c}\left(x^{t}\right) \geq 1} \\
& +\epsilon_{j^{\prime}, v^{\prime}}^{c^{\prime}\left(x^{t}\right)}=1
\end{aligned}
$$

where $\epsilon^{a}=1$ if a is true, -1 otherwise.

Soduku Solver (2/2)

the temperature T (black) is decreasing through iterations (x-axis) while the energy (red) converges to 0

Outline

Introduction

(2) Problems (Exercises) Have Solutions

- Sudoku
- Peppers in Images

Probability, Part II

- Markovian Tools
- Some Models
- Some Definitions and Distributions
- EstimationStatisties
- Another Way of Thinking About Image and Pixels
- Histogram
- Classification MethodsPutting Things Altogether
- Finding Objects / Classes
- Bayes and Markov
- Some Results

The Questions were... (1/2)

- Can we have a pixel of red pepper in the middle of green pepper pixels?
- Can we have a red pixel in the middle of a green pepper? pixels?
- What is the color of a pixel of a green pepper?

The Questions were... (2/2)

Translation:

- "red pepper" is a possible value of a pixel in the result image X; this value is a label identifying an object;
- "color red" is a possible value of a pixel in the input image Y.

Guess what?
Answers were not expected to be simple-binary-but given with a probabilistic point of view.

The Answers are...

Can we have a pixel of red pepper in the middle of green pepper pixels?
yes but $P\left(X_{i}=\right.$ "red pepper" $\mid X_{\nu_{i}}=\{$ "green pepper" $\left.\}\right)$ is low

Can we have a red pixel in the middle of a green pepper? pixels? yes but $P\left(Y_{i}=r e d \mid X_{\nu_{i}}=\{\right.$ "green pepper" $\left.\}\right)$ is low

What is the color of a pixel of a green pepper?
it is the probability function / distribution
$P\left(Y_{i}=y_{i} \mid X_{i}=\{\right.$ "green pepper" $\left.\}\right)$

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Markovian Tools

Some Models
Some Definitions and Distributions
Estimation

Outline

Introduction

Problems (Exercises) Have Solutions

- Sudoku
- Peppers in Images
(3) Probability, Part II
- Markovian Tools
- Some Models
- Some Definitions and Distributions
- Estimation

Statistics

- Another Way of Thinking About Image and Pixels
- Histogram
- Classification Methods

Putting Things Altogether

- Finding Objects / Classes
- Bayes and Markov
- Some Results

Stochastic Process

A discrete stochastic process is a random function the domain of which is discrete.

- The domain can be for instance the time space (index t).
- The process can be seen as a collection of random variables $\left\{X_{t}\right\}$.
- A particular process is defined by expressing the joint probabilities of the various random variables.

Markov Property

A stochastic process has the Markov property if the conditional probability of future states of the process, given the present state, depends only of the current state.

Put in formula:
$\forall h>0$,
$P\left(X_{t+h}=x_{t+h} \mid\left\{X_{s}=x_{s}, s \leq t\right\}\right)=P\left(X_{t+h}=x_{t+h} \mid X_{t}=x_{t}\right)$.

Markov Chain

A Markov chain is a discrete-time stochastic process with the Markov property.

Such a chain can be characterized by:

$$
\begin{aligned}
& P\left(X_{0}=x_{0}\right) \\
\text { and } \quad & P\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}\right) .
\end{aligned}
$$

That conditional probability is called the transition probability of the process.

Introduction

Monte Carlo

Monte Carlo methods are a class of computational algorithms for simulating a physical or mathematical system.

The key ideas are:

- first to consider that a deterministic problem can be turned into a probabilistic analog,
- then to recourse to statistical sampling to solve the problem.

The classical use of Monte Carlo is solving numerical problems such as integral calculi, simulations, optimizations.

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Markov Chain Monte Carlo (MCMC)

Monte Carlo Markov Chain (MCMC) methods are a class of algorithms for sampling from probability distributions based on constructing a Markov chain that has the desired distribution as its stationary distribution.

A few remarks follow.

- Random walk methods, where the walk follows a Markov chain, are a kind of MCMC methods.
- Solving some problems often require that an ensemble of walkers (so more than one) are computed which move around randomly.
- The Metropolis algorithm and the Gibbs sampling are MCMC random walk methods!

Gibbs State

A Gibbs state is an equilibrium probability distribution which remains invariant under future evolution of the system.

For example, a stationary or steady-state distribution of a Markov chain, such as achieved by running a MCMC iteration for a sufficiently long time.

Bayesian Network (1/3)

A Bayesian Network is a directed acyclic graph where vertices and edges respectively represent variables and the dependence relations between variables.

A variable can be:

- not only a random variable,
- but also an observation,
- or an hypothesis.

Bayesian Network (2/3)

A Bayesian network is a form of probabilistic graphical model.

We have:

- parenthood to represent conditional probabilities $P\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$,
- a graphic to understand and work on systems.

Introduction

Markovian Tools

Some Models

Some Definitions and Distributions Estimation

Bayesian Network (3/3)

A very simple one:

See also:

http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html

Markov Network (1/6)

Let us consider:

- an undirected graph G and its cliques,
- the notation $x_{(k)}$ to designate the realization of the set of random variables associated with k
that is shorter than $\left\{x^{\prime} \mid x^{\prime} \in k\right\}$
- a set of functions ϕ_{k}
- with k a kind of clique of G
- and with $\phi_{k}\left(x_{(k)}\right) \in \mathbb{R}^{+}$

Introduction

Putting Things Altogether

Markov Network (2/6)

A Markov Network is such as:

$$
P(X=x)=\frac{\Pi_{k} \phi_{k}\left(x_{(k)}\right)}{Z}
$$

where Z is a normalizing constant.
Now:

- let us assume that we cannot have $\phi_{k}\left(x_{(k)}\right)=0$
put differently: "nothing is impossible"
- so let us rewrite $\phi_{k}\left(x_{(k)}\right)=e^{-U_{k}\left(x_{(k)}\right)}$

We have:

$$
P(X=x)=\frac{e^{-\sum_{k} U_{k}\left(x_{(k)}\right)}}{Z}
$$

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Markov Network (3/6)

About notations and their meaning.

- X a markov network ; actually it is :
- the multivariate random variable associated with what we are looking for
- a probabilistic view of our unknown output image
- the mathematical function that describes or governs our search space
- and just remember that we can walk within that space to find a solution
- X_{i} the random variable associated with the $i^{\text {th }}$ point/vertex of X

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Markov Network (4/6)

About notations and their meaning (cont'd).

- let ν_{i} denotes the neighborhood of this vertex
- then let us introduce $X^{i}=X / X_{i}$
- where '/' means "except" or "minus"
- so it is the conterpart of X_{i}
- the random network without the $i^{\text {th }}$ variable
- and $X_{\nu_{i}}$
- $X_{\nu_{i}}=\left\{X_{j}\right.$, the $j^{\text {th }}$ point is a neighbor of the $i^{\text {th }}$ point $\}$
- so it means what is around X_{i}
- the random network around the $i^{\text {th }}$ variable

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Markov Network (5/6)

So we have a Gibbs random field for we have:

$$
P(X=x)=e^{-U(x)} / Z \text { here with } U(x)=\sum_{k} U_{k}\left(x_{(k)}\right) .
$$

and a very convenient local (Markovian) property:

$$
P\left(X_{i}=x_{i} \mid X^{i}=x^{i}\right)=P\left(X_{i}=x_{i} \mid X_{\nu_{i}}=x_{\nu_{i}}\right) .
$$

So:

- A markov network with no null probability is a Gibbs field.
- You can either handle probabilities or energies.
- When we focus on point i, we only have to consider this point and its neighborhood.

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Markov Network (6/6)

That is really great because:

- in actual problems, assuming that nothing is impossible alows to find solutions!
- remind the Sudoku solving problem...
- we can express-or model-global problems while taking only local considerations
- some hard problems can then be solved
- thinking in terms of energies is equivalent to thinking in terms of probabilities
- and it is often easier!

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

URLs (1/2)

- Stochastic process
http://en.wikipedia.org/wiki/Stochastic_process
- Monte Carlo
http://en.wikipedia.org/wiki/Monte_Carlo_method
- Bayesian inference
http://en.wikipedia.org/wiki/Bayesian_inference
- Bayesian network
http://en.wikipedia.org/wiki/Bayesian_network
- Gibbs mesure
http://en.wikipedia.org/wiki/Gibbs_mesure

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

URLs (2/2)

- Markov property
http://en.wikipedia.org/wiki/Markov_property
- Markov process
http://en.wikipedia.org/wiki/Markov_process
- Markov chain
http://en.wikipedia.org/wiki/Markov_chain
- MCMC
http://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
- Markov network
http://en.wikipedia.org/wiki/Markov_network

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Markovian Tools

Some Models
Some Definitions and Distributions
Estimation

Outline

Introduction
Problems (Exercises) Have SolutionsSudoku

- Peppers in Images
(3)

Probability, Part II

- Markovian Tools
- Some Models
- Some Definitions and Distributions
- Estimation

Statistics

- Another Way of Thinking About Image and Pixels
- Histogram
- Classification Methods
(5)

Putting Things Altogether

- Finding Objects / Classes
- Bayes and Markov
- Some Results

Ising Model (1/2)

The Ising model:

- belongs to statistical mechaniscs;
- is such that every vertex of a graph represents a spin;
- states that each pair of neighbors interacts
- where parallel spins are favored (energy -J),
- and antiparallel spins are discouraged (energy $+J$);
- is such that the probability of a configuration x of the graph at temperature T follows $e^{-U(x) / T}$.

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Markovian Tools

Some Models

Some Definitions and Distributions
Estimation

Ising Model (2/2)

Potts Model

The Potts model:

- is a generalization of the Ising model where a realization at site i is no more a spin-binary value-but an n-ary one;
- uses $\sum_{k=(i, j)} J_{k} \delta\left(s_{i}, s_{j}\right)$.

L^{1}
 + TV (1/2)

The $L^{1}+$ TV model is used in function regularization-denoising:

- x should stay close to input data y and the distance between x et y is measured with L^{1};
- x should be regularized so the total variation of x should be low; this variation is evaluated through the gradient of x.

For 1D continuous functions:

$$
U(x)=\int|x(t)-y(t)| d t+\beta \int|\nabla x(t)| d t
$$

$L^{1}+T V(2 / 2)$

An equivalent formula for 2D discrete functions is:

$$
U(x)=\sum_{i}\left|x_{i}-y_{i}\right|+\beta \sum_{i} \sum_{x_{j} \in \nu_{i}}\left|x_{i}-x_{j}\right| .
$$

β allows for tuning the respective effects of L^{1} and TV.

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

URLs

- Ising model
http://en.wikipedia.org/wiki/Ising_model
- Potts model
http://en.wikipedia.org/wiki/Potts_model

Outline

Introduction

```
Problems (Exercises) Have Solutions
- Sudoku
- Peppers in Images
```

Probability, Part II

- Markovian Tools
- Some Models
- Some Definitions and Distributions
- Estimation

Statistics

- Another Way of Thinking About Image and Pixels
- Histogram
- Classification Methods

Putting Things Altogether

- Finding Objects / Classes
- Bayes and Markov
- Some Results

Probability Distribution

When V is defined over \mathbb{R} :

- V can be defined by a distribution (a function) f_{V};
- this distribution assigns to every interval of \mathbb{R} a probability
- f_{V} is a probability distribution-probability density.

We have:

$$
P(a \leq V \leq b)=\int_{a}^{b} f_{V}(v) d v
$$

Expected Value (1/3)

With V random variable, the expected value of V is:

$$
E(V)=\int V d P
$$

We have:

$$
E(V)=\int_{-\infty}^{\infty} v f_{v}(v) d v .
$$

Properties:

- it is linear;
- $E(E(V))=E\left(V^{2}\right)-E(V)^{2}$
- $E(V \mid W=w)=\sum_{v} P(V=v \mid W=w) v$

Expected Value (2/3)

If V is a discrete random variable which takes some values v :

$$
E(V)=\sum_{v} P(V=v) v
$$

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Markovian Tools

Some Definitions and Distributions

Expected Value (3/3)

The variance of V is:

$$
\operatorname{var}(V)=E(E(V))=E\left(V^{2}\right)-E(V)^{2}
$$

and the standard deviation is:

$$
\sigma_{V}=\sqrt{\operatorname{var}(V)}
$$

Putting Things Altogether

Covariance (1/3)

The covariance-or cross-covariance-of a couple of real-valued random variables V and W is:

$$
\begin{aligned}
\operatorname{cov}(V, W) & =E((V-E(V))(W-E(W))) \\
& =E(V W)-E(V) E(W) \\
& =\operatorname{cov}(W, V) .
\end{aligned}
$$

If V and W are independent, $E(V W)=E(V) E(W)$ so $\operatorname{cov}(V, W)=0$.
We have $\operatorname{cov}(V, V)=E\left(V^{2}\right)-E(V)^{2}=\operatorname{var}(V)=\sigma_{V}^{2}$.

Correlation

The correlation between two random variables V and W is:

$$
\rho_{V, W}=\frac{\operatorname{cov}(V, W)}{\sigma_{V} \sigma_{W}}
$$

Covariance (2/2)

When V and W are multivariate random variables-vector-valued, the covariance is the matrix:

$$
\begin{aligned}
& \quad \operatorname{cov}(V, W)=E\left((V-E(V))(W-E(W))^{T}\right) \text {, } \\
& \text { and } \operatorname{cov}(W, V)=\operatorname{cov}(V, W)^{T} \text {. }
\end{aligned}
$$

Covariance (3/3)

We (simply) say that $\operatorname{cov}(V, V)$ is the covariance matrix of V.
With $V=\left(V_{1}, . ., V_{N}\right)^{T}$ and $W=\left(W_{1}, . ., W_{N}\right)^{T}$, we have

$$
\operatorname{cov}(V, V)_{i, j}=\operatorname{cov}\left(V_{i}, V_{j}\right)
$$

and the diagonal of the cross-covariance matrix contains the random variables variances:

$$
\operatorname{cov}(V, V)_{i, i}=\operatorname{var}\left(V_{i}\right)
$$

Some Definitions and Distributions

Normal Distribution

A random variable V follows a normal distribution if:

$$
P(V=v)=\mathcal{N}\left(\mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(v-\mu)^{2}}{2 \sigma^{2}}}
$$

where μ and σ respectively are the mean and standard deviation.

Some Definitions and Distributions

Multivariate Normal Distribution

A random vector $V=\left(V_{1}, . ., V_{N}\right)$ follows a multivariate normal distribution if every linear combination of V_{j} follows a normal distribution.

We have:

$$
f_{V}(v)=\frac{1}{(2 \pi)^{N / 2}|\Sigma|^{1 / 2}} e^{-\frac{1}{2}(v-\mu)^{t} \Sigma^{-1}(v-\mu)}
$$

where μ is a vector (size N), Σ a positive definite covariance matrix (size $N \times N$), $|\Sigma|$ the determinant of Σ.

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Some Definitions and Distributions Estimation

URLs (1/2)

- Probability density function
http://en.wikipedia.org/wiki/Probability_density_function
- Gaussian function
http://en.wikipedia.org/wiki/Gaussian_function
- Normal distribution
http://en.wikipedia.org/wiki/Normal_distribution
- Multivariate normal distribution
http:
//en.wikipedia.org/wiki/Multivariate_normal_distribution

Introduction

Markovian Tools

Some Definitions and Distributions Estimation

URLs (2/2)

- Expected value
http://en.wikipedia.org/wiki/Expected_value
- Covariance
http://en.wikipedia.org/wiki/Covariance
- Correlation
http://en.wikipedia.org/wiki/Correlation
- Covariance matrix
http://en.wikipedia.org/wiki/Covariance_matrix

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Markovian Tools
Some Models
Some Definitions and Distributions
Estimation

Outline

Introduction

Problems (Exercises) Have Solutions

- Sudoku
- Peppers in Images
(3)

Probability, Part II

- Markovian Tools
- Some Models
- Some Definitions and Distributions
- Estimation

Statistics

- Another Way of Thinking About Image and Pixels
- Histogram
- Classification Methods

Putting Things Altogether

- Finding Objects / Classes
- Bayes and Markov
- Some Results

Something Rather Different (1/2)

Now for something quite different:

- assume that we do not know about the probability distribution of a random phenomenon;
- but we have samples-or observations or realizations-of that phenomenon;
- we can assume that the phenomenon follows a given parametric distribution...
- and the estimate the parameters.

Something Rather Different (2/2)

For instance, state that the distribution is normal $(\mathcal{N}(\mu, \sigma))$ so estimate μ and σ.
Please do not misunderstand:

- the actual distribution of the phenomenon may not be the chosen parametric distribution!
- we just have chosen a model to be able to work with!!!

Estimating a Normal Distribution

Consider n samples $v^{(j)} \in \mathbb{R}$ of a random variable V.
When the parametric model is the normal distribution, we can compute:

$$
\begin{aligned}
& \mu=E(V)=\frac{1}{n} \sum_{j=1}^{n} v^{(j)} \\
& \sigma^{2}=E\left((V-\mu)^{2}\right)=\left(\frac{1}{n} \sum_{j=1}^{n}\left(v^{(j)}\right)^{2}\right)-\mu^{2} .
\end{aligned}
$$

Thus we assume that:

- $P(V=v)=\mathcal{N}(\mu, \sigma)(v)$,
- the samples $v^{(j)}$ is a set of observations which is representative enough of V.

Estimating a Multivariate Normal Distribution

Assuming a multivariate normal distribution, with samples $v^{(j)}$ being vectors, proceed likewise:

$$
\begin{aligned}
\mu & =\frac{1}{n} \sum_{j=1}^{n} v^{(j)} \\
\Sigma & \left.=\left(\frac{1}{n-1} \sum_{j=1}^{n} v^{(j)} v^{(j)}\right)^{T}\right)-\mu^{2} .
\end{aligned}
$$

with μ vector and Σ the (unbiased) sample covariance matrix. 4
http://en.wikipedia.org/wiki/Estimation_of_covariance_matrices

Mahalanobis Distance (1/2)

The Mahalanobis distance is the distance between a vector and a group of vectors with mean μ and covariance matrix Σ :

$$
d\left(v,\left\{v^{(j)}\right\}\right)=\sqrt{(v-\mu)^{T} \Sigma^{-1}(v-\mu)} .
$$

With two samples v and v^{\prime} of the same distribution with covariance matrix Σ, this distance is a dissimilarity measure:

$$
d\left(v, v^{\prime}\right)=\sqrt{\left(v-v^{\prime}\right)^{T} \Sigma^{-1}\left(v-v^{\prime}\right)} .
$$

Introduction

Putting Things Altogether

Mahalanobis Distance (1/2)

If the covariance matrix is diagonal, we have a normalized Euclidean distance:

$$
d\left(v, v^{\prime}\right)=\sqrt{\sum_{i=1}^{N} \frac{\left(v_{i}-v_{i}^{\prime}\right)^{2}}{\sigma_{i}^{2}}} .
$$

5
http://en.wikipedia.org/wiki/Mahalanobis_distance

Discrete Unparameterized Distribution (1/2)

Now imagine that you do not want a parameterized model for a distribution of n samples but a discrete distribution.

- A window \mathcal{W}_{s} centered on the discrete realization v_{s} contains a given number of samples: n_{s}; we have:

$$
\begin{aligned}
& \quad n_{s}=\sum_{j} \delta_{v^{(j)} \in \mathcal{W}_{s}} \\
&
\end{aligned}
$$

- An approximate value of the probability density function at this discrete realization is: P_{s}.
- If $\overline{\mathcal{W}}$ is the size of every window \mathcal{W}_{s},
- We have $P_{s}=P\left(V=v_{s}\right)=\frac{n_{s}}{n \times \overline{\mathcal{W}}}$.

Introduction

Discrete Unparameterized Distribution (2/2)

Yet

- the window size should be large enough to contain many samples so that couting them is representative of the distribution;
- the window size should be small enough so that we really get a density value.

So:

- these two constraints are opposite!
- that method only works when the population is very dense, that is, when we have a lot of (a huge number of) samples...

Parzen Window Method

The idea of the Parzen window method is simple:
the probability density function is estimated thru an extrapolation from a normal elementary contribution of every sample (vector of features).

We have $P(V=v)=\frac{1}{n} \sum_{j} \mathcal{N}\left(v^{(j)}, \sigma_{\text {parzen }}\right)$.

Another Way of Thinking About Image and Pixels Histogram
Classification Methods

Outline

(1)

Introduction

Problems (Exercises) Have Solutions

- Sudoku
- Peppers in Images

Probability, Part II

- Markovian Tools
- Some Models
- Some Definitions and Distributions
- Estimation

4
Statistics

- Another Way of Thinking About Image and Pixels
- Histogram
- Classification Methods

Putting Things Altogether

- Finding Objects / Classes
- Bayes and Markov
- Some Results

About Statistics and Data (1/2)

- Statistics: science pertaining to collection, analysis, interpretation, and presentation of data.
- Data analysis: act of transforming data to extract useful information and facilitate conclusions.
- Data mining: automatic search for patterns in large volumes of data.

About Statistics and Data (2/2)

Just realize that images are data and patterns are scene objects!

```
)
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Data_analysis
http://en.wikipedia.org/wiki/Data_mining
```


Data as a Population (1/2)

We now consider that:

- a pixel (or higher-level primitive) is an individual in a population-an entry in a set of data;
- the population of individuals is the input image,
- we have some data / information about every observed individual

Data as a Population (2/2)

Cont'd:

- yet we represent each individual by a vector of features,
- often features are not the raw observation information,
- all individuals are now in a single (n-dimensional feature) space called the feature space,
- the transform "observation \rightarrow feature vector" aims at normalizing data,
- so in the feature space, individuals can be compared and the population can be processed...

Principal Component Analysis (1/2)

The principal component analysis:

- is a technique to simplify a data set;
- is a linear transform that transforms data to a new coordinate system;
- the greatest variance is on the 1st axis, the 2nd greatest variance on the 2nd axis, and so on;
- is also known as Karhunen-Loève transform.
http://en.wikipedia.org/wiki/Principal_component_analysis

Principal Component Analysis (2/2)

The how-to:

- compute the empirical mean μ;
- compute the covariance matrix Σ;
- compute the eigenvectors and eigenvalues λ_{p};
- rearrange the system with decreasing eigenvalue so $\lambda_{p} \geq \lambda_{p+1} ;$
- compute the cumulative energy $E_{p}=\sum_{q} \lambda_{q}$;
- select the principal eigenvectors, with $p \leq p_{\text {max }}$, so that $E_{\max } \geq \tau \sum_{p} E_{p}$
- express data in this basis.

Other Kinds of Analysis

- Factor analysis: aims at studying variability among observed random variables in term of fewer unobserved random variables called factors; the observed variables are modeled as linear combination of factors + some error terms.
- Linear discriminant analysis aims at finding the linear combination of features which best separate two or more classes.
§

```
http://en.wikipedia.org/wiki/Factor_analysis
http://en.wikipedia.org/wiki/Linear_discriminant_analysis
```


Objectives (1/2)

The objective can be multiple.

- If the population is composed of one single group of individuals:
- we want to characterize this group,
- we say that we are learning-how this group is / looks like.

Exercise:
Which kind of data analysis is relevant in that case?

Objectives (2/2)

Cont'd:

- If the population is composed of different groups of individuals.
- in an image, groups usually come from the presence of different objects,
- objects naturally form clusters / classes,
- we aim at identifying these clusters / classes,
- and often the big deals consists in achieving to separate clusters / classes,

Lecture Focus

In the following we will focus on data clustering and statistical classification.

```
6
http://en.wikipedia.org/wiki/Data_clustering
http://en.wikipedia.org/wiki/Statistical_classification
```


Exercise

Consider the Palm Pilot alphabet:

- Express character recognition in terms of a data analysis problem.
- Imagine different sets of some relevant features.

Another Way of Thinking About Image and Pixels Histogram
Classification Methods

Outline

(1)Introduction

Problems (Exercises) Have Solutions

- Sudoku
- Peppers in Images

Probability, Part II

- Markovian Tools
- Some Models
- Some Definitions and Distributions
- Estimation

4
Statistics

- Another Way of Thinking About Image and Pixels
- Histogram
- Classification Methods
(5)

```
Putting Things Altogether
O Finding Objects / Classes
O Bayes and Markov
- Some Results
```


Statistics is About Counting (1/3)

Given a gray-level image I, we can count the number of gray-level occurrances of its pixels:

$$
h(g)=\sum_{p, I(p)=g} 1
$$

where:

- g is a gray-level value, e.g., $\in[0,255]$
- and p an image point.
h is the image histogram.

Statistics is About Counting (2/3)

For instance, with I (left), we get the histogram h (right):

The x-axis shows increasing gray-levels from black (left) to white (right); statistics is here about gray-levels.

Statistics is About Counting (2/3)

Although the image is not well-contrasted, we clearly see:

- 6 histogram peaks at least
- which translate the existance of several clusters / classes.

A Few Remarks (1/3)

In the previous example:

- we have $N=1$
- a pixel has one single feature, this is not much to analyze data!
- we can observe that clusters / classes are not well-separated,
- we have a digital image,
- so the image is quantized (usually on 8 bit) and features are discrete values (from 0 to 255),
- often feature components are not discrete but $\in \mathbb{R}$.

A Few Remarks (2/3)

In the previous example (cont'd):

- we have small objects in the image,
- for instance, the white parts of the windows and of the roof represent less than 200 pixels in the image,
- often we have to perform statistics on sub-populations that have very few samples (individuals).

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

A Few Remarks (3/3)

Other examples.

- When we have color image,
- for instance, encoded on red-green-blue (RGB for short) with 8 bit per component,
- then we have a straightforward 3-dimensional feature space.
- When we have texture information,
- for instance, we have computed some characteristics of the local texture around each pixel,
- we can take these values into account in the pixel feature vector.

Another Way of Thinking About Image and Pixels Histogram
Classification Methods

Outline

Introduction

Problems (Exercises) Have Solutions

- Sudoku
- Peppers in Images

Probability, Part II

- Markovian Tools
- Some Models
- Some Definitions and Distributions
- Estimation

4
Statistics

- Another Way of Thinking About Image and Pixels
- Histogram
- Classification Methods

Putting Things Altogether

- Finding Objects / Classes
- Bayes and Markov
- Some Results

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

What a Class Is (1/2)

First add a distance to the feature space; then:

- a class is a set of individuals which are very similar \rightarrow the distance between every couple of individuals of the same class is low,
- two distinct classes are dissimilar
\rightarrow the distance between every couple of individuals taken in two distinct classes is high,
- a special "class", the rejection class, contains individuals that cannot be classified...

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

What a Class Is (2/2)

About the rejection class:

- two criteria can cause an individual to fall in the rejection class;
- the ambiguity criterion rejection,
\rightarrow the two tiniest distances between an individual and classes are too similar,
- the distance criterion rejection, \rightarrow the tiniest distance between an individual and classes is too high.

In the following, we will not discuss the use of such a class.

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Automatic Classification

Automatic classification:

- Classification is automatic when there is no explicit learning step relying on a human expert.
- An automatic classifier thus provides us with classes from the raw input data-the population.
- Though there is somehow an implicit learning process within the classifier...

```
http://en.wikipedia.org/wiki/Data_clustering
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Unsupervised_learning
```


Supervised Classification

Supervised classification:

- A classifier can be supervised if there is an explicit learning step relying on a human expert.
- On one hand a first population, classified by a human expert, is used to learn some characteristics about classes.
- On the other hand, a population to process is classified w.r.t. to what has been learned.

FIXME: Reminder

Say something about:

- hierarchical clustering v. partional clustering;
- data clustering v. classification;
- k-nearest neighbor.
http:
//en.wikipedia.org/wiki/Nearest_neighbor_(pattern_recognition)

Agglomerative Hierarchical Clustering

On the left vectors in a 2D feature space and on the right a hierarchical clustering:

To build the hierarchy (the classification), some particular distance in feature space is required.

Introduction

k-Means Algorithm (1/5)

Given:

- the number k of expected classes,
- the individuals represented by the set $\left\{\boldsymbol{v}^{(j)}\right\}_{j=1 . . n}$ of vectors in the feature space,
- the classes $\omega_{l} \in \Omega$ with $I=1$.. k
the k-means algorithm is an iterative process to group vectors into clusters while minimizing:

$$
U=\sum_{l=1}^{k} \sum_{j, v^{(j)} \in \omega_{l}}\left|v^{(j)}-\mu_{l}\right|^{2}
$$

with μ_{I} the mean vector of all $v^{(j)} \in \omega_{l}$, that is, the center of the $t^{\text {th }}$ class.

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

k-Means Algorithm (2/5)

More precisely the algorithm:

- Initialization: chose class centers $\mu_{I}($ with $I=1$.. k) in the feature space;
- Repeat until convergence:
- compute the classes, that is, assign a class to every $v^{(j)}$: $v^{(j)} \in \omega_{l}$ if $\forall l^{\prime}, d\left(v^{(j)}, \mu_{l}\right) \leq d\left(v^{(j)}, \mu_{l^{\prime}}\right)$
- compute the number of vectors in each class $\omega_{/}$:

$$
n_{I}=\sum_{j} \delta_{v}() \in \omega_{I}
$$

- update the center of each class ω_{l} :
$\mu_{I}=\frac{1}{n_{l}} \sum_{j} v^{(j)}$

k-Means Algorithm (3/5)

Input data (left) and its gray-level histogram (right):

k-Means Algorithm (4/5)

Results with k from 3 (left) to 6 (right):

The gray-level values in the classified images correspond to the respective centers of classes.

4
http://en.wikipedia.org/wiki/K-means_algorithm

k-Means Algorithm (5/5)

The classification process is the assignment:

$$
v^{(j)} \rightarrow x^{(j)} \in \Omega
$$

and a population after classification is $x=\left\{x^{(j)}\right\}$.
We thus have:

- y the raw population (set of observations, measures);
- $\left\{v^{(j)}\right\}$ the feature vectors representing y in the feature space;
- and x an output classification.

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Finding Objects / Classes

Bayes and Markov
Some Results

Outline

(1)

Introduction

Problems (Exercises) Have Solutions

- Sudoku
- Peppers in Images

Probability, Part II

- Markovian Tools
- Some Models
- Some Definitions and Distributions
- Estimation

Statistics

- Another Way of Thinking About Image and Pixels
- Histogram
- Classification Methods
(5) Putting Things Altogether
- Finding Objects / Classes
- Bayes and Markov
- Some Results

Example (1/3)

Now consider this color image:

We can compute the histogram of its color components (red, left; green, middle; blue, right):

Example (2/3)

Actually we can represent data in the 3D RGB space:

FIXME: insert a picture here!
or in 2D if we discard the blue component:

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Bayes and Markov
Some Results

Example (3/3)

From left to right below: the original image, the classification in RG space, and the classified image.

Another Look at the k-Means Algorithm (1/4)

Actually the k-means algorithm, while minimizing

$$
U(v)=\sum_{l=1}^{k} \sum_{j, v(i) \in \omega_{l}}\left|v^{(j)}-\mu_{l}\right|^{2},
$$

assumes that:

- all classes follow normal distributions, respectively centered in y, but with the same covariance!
- ...

Another Look at the k-Means Algorithm (2/4)

so it assumes that:

- the gray-level distributions are:

$$
P\left(v \mid \omega_{l}\right)=\frac{\mathcal{N}\left(\mu_{l}, \sigma\right)(v)}{Z}
$$

where Z is a normalization constant;

- and the class assignment decision is:

$$
v \rightarrow \omega_{/} \text {where } I=\arg \max _{\prime^{\prime}} P\left(v \mid \omega_{\prime \prime}\right)
$$

Another Look at the k-Means Algorithm (3/4)

Precisely, the Gaussian functions $P\left(v \mid \omega_{l}\right)$ are the following:

The limits between classes in the gray-level space correspond to the values where the functions cross.

Another Look at the k-Means Algorithm (4/4)

Finding classes in the feature space does not take into account the (spatial) context of pixels in the image. Otherwise the isolated pixels would be removed.

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Partial Conclusion

- We may want to turn classification into a probabilistic problem.
- We rather would like to maximize $P\left(\omega_{\mu} \mid v\right)$; so to introduce prior probabilities in the model.
- We prefer:
- to have the best distribution estimates as possible,
- automatic methods over supervised ones.
- We expect our solution to take into account contextual information.
- We really like global solutions (not local ones).

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Finding Objects / Classes
Bayes and Markov
Some Results

Outline

(1)

Introduction

Problems (Exercises) Have Solutions

- Sudoku
- Peppers in Images

Probability, Part II

- Markovian Tools
- Some Models
- Some Definitions and Distributions
- Estimation

Statistics

- Another Way of Thinking About Image and Pixels
- Histogram
- Classification Methods
(5) Putting Things Altogether
- Finding Objects / Classes
- Bayes and Markov
- Some Results

We Said... (1/2)

- We are looking for a realization of X, an image of object labels and we have the input image y, realization of Y.
- We want to maximize $P(X=x \mid Y=y)$, that is, get the most probable solution given the input.
- $x_{\text {sol }}=\frac{P(Y=y \mid X=x) P(X=x)}{P(Y=y)}$

Introduction

We Said... (2/2)

An histogram h counts people in a feature space:

- $h(v)$ is the number of individuals whose feature (or feature vector) is v;
- this value can be interpreted in terms of the probability $P(v)=h(v) / n$.
- and in feature space we have different classes.

!!!

Thus the classification process can be expressed in terms of probability.

Input (1/6)

Let us first consider $P(Y=y)$, that is, the input image whatever the objects within the scene are. More precisely, focus on $P\left(Y_{i}=y_{i}\right)$, that is, on the $i^{\text {th }}$ pixel; then:
let us assume that input pixels are independent.

This assumption is very critizable: the captor can mix observations from one pixel to a neighbor one...

However we thus state that:

$$
P(Y=y)=\Pi_{i} P\left(Y_{i}=y_{i}\right) .
$$

Input (2/6)

Cont'd:

$$
\begin{aligned}
P\left(Y_{i}=y_{i}\right) & =P\left(Y_{i}=y_{i} \cap\left(\cup_{l} X_{i}=\omega_{l}\right)\right) \\
& =P\left(\cup_{l}\left(Y_{i}=y_{i} \cap X_{i}=\omega_{l}\right)\right) \\
& =\sum_{l} P\left(Y_{i}=y_{i} \cap X_{i}=\omega_{l}\right) \\
& =\sum_{l} P\left(Y_{i}=y_{i} \mid X_{i}=\omega_{l}\right) P\left(X_{i}=\omega_{l}\right)
\end{aligned}
$$

Imagine that you have a learning process for each class:

- if your problem is stationary, these probabilities are functions that do not depend upon the location of the $i^{\text {th }}$ point in the image;
- the prior probability and the likelihood can be estimated.

Introduction

Input (3/6)

So

- the $I^{\text {th }}$ class has a given probability to appear:
- $P\left(X_{i}=\omega_{l}\right)=P_{l}$
- either you do not know so you say that each class has the same probability to appear: $P_{l}=\frac{1}{k}$,
- or you have n_{l} samples from this class in your population thus: $P_{l}=\frac{n_{l}}{n}$.
- for each class, the likelihood is defined as a probability density function of the input data:
- $P\left(Y_{i}=y_{i} \mid X_{i}=\omega_{l}\right)=f_{l}\left(y_{i}\right)$
- with $f_{l}(v)$ learned from the samples of the $I^{\text {th }}$ class,
- for instance, $f_{l}(v)=\mathcal{N}\left(\mu_{l}, \sigma_{l}\right)(v)$

Input (4/6)

- If we take the results of the k-means algorithm, we have a rough classification thus classes and samples for these classes.
- We can estimate μ_{l}, σ_{l}, and n_{l} for each class.
- And compute:

$$
P(v)=\frac{1}{n} \sum_{l} \mathcal{N}\left(\mu_{l}, \sigma_{l}\right)(v) n_{l} .
$$

- We should find that $n \times P(v)$ is close to the image histogram $h(v)$.

Introduction

Input (5/6)

The estimates $n \times P(v)$, with k varying from 3 to 6 , is depicted in red, below and in the next slide:

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Input (6/6)

Now the underlying distributions really stick to data.

Output (1/X)

$$
\begin{aligned}
P(X=x \mid Y=y) & =P(Y=y \mid X=x) P(X=x) / P(Y=y) \\
& \propto P(Y=y \mid X=x) P(X=x)
\end{aligned}
$$

Assumptions:

- an input pixel value does not depend on what the objects located at the image other pixels are

$$
P\left(Y_{i}=y_{i} \mid X=x\right)=P\left(Y_{i}=y_{i} \mid X_{i}=x_{i}\right)
$$

- the input pixels are independent

$$
P(Y=y \mid X=x)=\Pi_{i} P\left(Y_{i}=y_{i} \mid X_{i}=x_{i}\right)
$$

- $P(X=x)$ is a Markovian network.

Output (2/X)

The Markovian assumption gives:

$$
\begin{aligned}
P(X=x) & =\Pi_{i} P\left(X_{i}=x_{i} \mid X_{\nu_{i}}=x_{\nu_{i}}\right) \\
& =e^{-\sum_{k} U_{k}\left(x_{(k)}\right)} / Z
\end{aligned}
$$

where $x_{(k)}$ is a realization of the clique k.
So:

$$
P\left(X_{i}=x_{i} \mid X_{\nu_{i}}=x_{\nu_{i}}\right)=\frac{1}{Z} \Pi_{k \text { such as } X_{i} \in X_{(k)}} e^{-U_{k}\left(x_{(k)}\right)}
$$

In the following, we shorten " k such as $X_{i} \in X_{(k)}$ " into " $k \ni i$ ".

Output (3/X)

We have:

$$
\begin{aligned}
P(X=x \mid Y=y) & \propto P(Y=y \mid X=x) P(X=x) \\
& \propto\left(\Pi_{i} P\left(Y_{i}=y_{i} \mid X_{i}=x_{i}\right)\right)\left(\Pi_{k \ni i} e^{-U_{k}\left(x_{(k)}\right)}\right)
\end{aligned}
$$

If we change:

$$
P\left(Y_{i}=y_{i} \mid X_{i}=x_{i}\right) \quad \text { into } \quad e^{-U^{a}\left(y_{i}, x_{i}\right)} / Z^{\prime}
$$

Output (4/X)

...we end up with:

$$
\log (P(X=x \mid Y=y)) \propto-\sum_{i}\left(U^{a}\left(y_{i} ; x_{i}\right)+\sum_{k \ni i} U_{k}\left(x_{(k)}\right)\right)
$$

which can be transformed (changing U_{k} with multiplicative constants) into:

$$
\log (P(X=x \mid Y=y)) \propto-\left(\sum_{i} U^{a}\left(y_{i} ; x_{i}\right)+\sum_{k} U_{k}\left(x_{(k)}\right)\right)
$$

actually we are counting each clique k several times (precisely \bar{k} times); these multiplicative constants can just be handled by the definition of U_{k} !

Output (5/X)

Maximizing $P(X=x \mid Y=y)$ is thus minimizing:

$$
\sum_{i}\left(U^{a}\left(y_{i} ; x_{i}\right)+\sum_{k} U_{k}\left(x_{(k)}\right)\right) .
$$

A rewriting gives:

$$
P(X=x \mid Y=y) \propto e^{-\sum_{k} U_{k}^{\prime}\left(x_{(k)} ; y_{(k)}\right)} .
$$

and $P(X=x \mid Y=y)$ is also a Markov random field.

Output (6/X)

Understand that:

- U^{a} allows to take into account data
- it is a data attachment term;
- it relates x_{i} and y_{i};
- U_{k} expresses how the solution looks like
- it is a regularization term;
- it relates x_{i} with its neighborhood for $\bar{k}>1$;
- it allows to take into account a prior when $\bar{k}=1$.

So What?

Many problems in image processing can be expressed with U^{a} and U_{k}.

We have to maximize $U(x)$ and the search space is huge.
We can rely for instance on a "Metropolis + simulated annealing" process.

Outline

(1)

Introduction

Problems (Exercises) Have Solutions

- Sudoku
- Peppers in Images

Probability, Part II

- Markovian Tools
- Some Models
- Some Definitions and Distributions
- Estimation

Statistics

- Another Way of Thinking About Image and Pixels
- Histogram
- Classification Methods
(5) Putting Things Altogether
- Finding Objects / Classes
- Bayes and Markov
- Some Results

Denoising (1/5)

The input is an image corrupted by some noise and the process should remove this noise.

An output realization at every pixel is a value taken in the same space than the pixel values of the input image.
gray-levels \rightarrow gray-levels, colors \rightarrow colors...
Though iterations $x^{(t)}$ is randomly taken into that space.

Denoising (2/5)

Consider the $L^{1}+T V$ model:

$$
U(x)=\sum_{i}\left|x_{i}-y_{i}\right|+\beta \sum_{i} \sum_{x_{j} \in \nu_{i}}\left|x_{i}-x_{j}\right| .
$$

if we choose 4-connectivity, we actually have:

$$
\begin{array}{lll}
U^{a}\left(y_{i} ; x_{i}\right) & =\left|x_{i}-y_{i}\right| \\
U_{k}\left(x_{(k)}\right) & =\beta\left|x_{i}-x_{j}\right| & \text { if } \bar{k}=2 \\
U_{k}\left(x_{(k)}\right) & =0 & \text { if } \bar{k}=1
\end{array}
$$

where any clique $x_{(k)}$ of size 2 is defined by $x_{(k)}=\left(x_{i}, x_{j}\right)$.

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Denoising (3/5)

When we minimize $U(x)$:

- with $\left|x_{i}-y_{i}\right|$ we ensure that x is not too far from y
- that means that we want to keep our data!
- with $\left|x_{i}-x_{j}\right|$ we ensure that we cannot have a pixel of x whose value is too different from those of its neighbors
- that means that we do not want to keep noise pixels!

The result is thus a compromise between globally keeping data and changing data (removing noise).

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Finding Objects / Classes
Bayes and Markov

Some Results

Denoising (4/5)

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Finding Objects / Classes
Bayes and Markov

Some Results

Denoising (5/5)

Introduction

Artistic Binarization (1/3)

Consider a gray-level input image, we want a simple binary output:

- it contains large regions, respectively black and white,
- we can recognize the original image.

We have $x_{i} \in \mathcal{B}$ (true or 1 for white and false or 0 for black).
Assume that the input is quantized on q bit; gray values go from 0 , black, to $2^{q}-1$, white.

Artistic Binarization (2/3)

Choosing 4-connectivity, we actually can set:

$$
U^{a}\left(y_{i} ; x_{i}\right)= \begin{cases}y_{i} & \text { if } x_{i}=0 \\ \left(2^{q}-1\right)-y_{i} & \text { if } x_{i}=1\end{cases}
$$

and:

$$
\begin{array}{ll}
U_{k}\left(x_{(k)}\right)=\beta \delta_{x_{i} \neq x_{j}} & \text { if } \bar{k}=2 \\
U_{k}\left(x_{(k)}\right)=0 & \text { if } \bar{k}=1
\end{array}
$$

Artistic Binarization (3/3)

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Dithering

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Texturing

Introduction
Problems (Exercises) Have Solutions
Probability, Part II
Statistics
Putting Things Altogether

Classification (1/4)

Take back our favorite object recognition / classification problem:

Now

- we have $x_{i} \in \Omega$;
- we assume that we have learned the probability distributions related to every class ω_{l}, so we have estimated $P\left(y \mid \omega_{l}\right)$ and $P\left(\omega_{l}\right)$;
- we want "clean" regions in the output labeled image, meaning that, they are spatially coherent (no isolated points) and their contours are smooth (not chaotic).

Classification (2/4)

We have:

- $P\left(Y_{i}=y_{i} \mid X_{i}=\omega_{l}\right)=f_{l}\left(y_{i}\right)$
- with $f_{l}\left(y_{i}\right)=\mathcal{N}\left(\mu_{l}, \sigma_{l}\right)\left(y_{i}\right)$
- so the data term energy is straightforwardly:

$$
U^{a}\left(y_{i} ; I\right) \propto \frac{\left(y_{i}-\mu_{l}\right)^{2}}{\sigma_{I}^{2}}
$$

- $P\left(X_{i}=\omega_{l}\right)=P_{l}$
- with $P_{l}=\frac{n_{l}}{n}$
- so the energy term for cliques of size 1 is:

$$
U_{k}\left(x^{(k)}\right) \propto-\log \left(P_{l}\right)
$$

where the clique is reduced to a singleton $x^{(k)}=\left\{x_{i}\right\}$ and $I=x_{i}$.

Classification (3/4)

For cliques with size greater than 1:

- we want to handle the context while classifying;
- we expect regions so we must have regularization terms.

So we use the Potts model for cliques with size 2:

$$
U_{k}\left(x^{(k)}\right)=\beta \delta x_{i} \neq x_{j}
$$

where $x_{(k)}=\left(x_{i}, x_{j}\right)$.

Classification (4/4)

From left to right: the original image, the m-kmeans result with $k=4$, the Markovian result with classes learned from the previous image, the former result depicted in false colors.

Exercise

Express the sudoku problem in terms of a Markov network.

