

Introduction to Image Processing #5/7

Thierry Géraud

EPITA Research and Development Laboratory (LRDE)

2006

Thierry Géraud Introduction to Image Processing #5/7

< A > < 3

Introduction

Distributions

- About the Dirac Delta Function
- Some Useful Functions and Distributions

Fourier and Convolution

Convolution and Linear Filtering

Some 2D Linear Filters

- Gradients
- Laplacian

・ロ・ ・ 四・ ・ 回・ ・ 回・

Introduction

Distributions

- About the Dirac Delta Function
- Some Useful Functions and Distributions
- 3 Fourier and Convolution

 - Sampling
- 5 Convolution and Linear Filtering
 - Some 2D Linear Filters
 - Gradients
 - Laplacian

・ロ・ ・ 四・ ・ 回・ ・ 回・

Introduction

Distributions

- About the Dirac Delta Function
- Some Useful Functions and Distributions

Fourier and Convolution

Sampling

- Convolution and Linear Filtering
- Some 2D Linear Filter
 - Gradients
 - Laplacian

・ロ・ ・ 四・ ・ 回・ ・ 回・

Introduction

Distributions

- About the Dirac Delta Function
- Some Useful Functions and Distributions
- 3
- Fourier and Convolution

5

Sampling

- Convolution and Linear Filtering
- Some 2D Linear Filter
- Gradients
- Laplacian

・ロ・ ・ 四・ ・ 回・ ・ 回・

Introduction

Distributions

- About the Dirac Delta Function
- Some Useful Functions and Distributions
- 3
- Fourier and Convolution

Sampling

- 5
 - Convolution and Linear Filtering
- 6 Some 2D Linear Filters
 - Gradients
 - Laplacian

Filtering

Filtering images

- is a low-level process
- can be linear or not (!)
- is often useful
 - either to get "better" data
 e.g., with enhanced contrast, less noise, etc.
 - or to transform data to make it suitable for further processing

・ロ・ ・ 四・ ・ 回・ ・ 日・

An image is a function.

We have

- **sampling**: image values are only known at given points I_p with $p = (r, c) \in \mathbb{N}^2$
- **quantization**: image values belong to a restricted set for instance [0, 255] for a gray-level with 8 bit encoding

An image is a *digital* signal (contrary: *analog*).

This lecture background is

digital signal processing.

Thierry Géraud Introduction to Image Processing #5/7

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

Outline

Distributions

- About the Dirac Delta Function
- Some Useful Functions and Distributions
- Fourier and Convolution

- Convolution and Linear Filterin
- 6 Some 2D Linear Filters • Gradients
 - Laplacian

About the Dirac Delta Function Some Useful Functions and Distributions

About the Dirac Delta Function Some Useful Functions and Distributions

Dirac Delta Function (1/2)

The Dirac delta function, denoted by \uparrow , is defined by:

$$\int_{-\infty}^{\infty} s(t) \uparrow(t) dt = s(0)$$

where s is a test function.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

크

About the Dirac Delta Function Some Useful Functions and Distributions

Dirac Delta Function (2/2)

Please note that:

● ↑ is *not* a function,

• it is a *distribution* (or generalized function).

We have:

$$\int_{-\infty}^{\infty} \uparrow(t) \, dt = 1.$$

<ロ> <同> <同> < 回> < 回> < □> < □> <

About the Dirac Delta Function Some Useful Functions and Distributions

Weird Definition (1/2)

Just *think* of \uparrow being something like:

$$\uparrow(t) = \begin{cases} 1 \times \infty & \text{if } t = 0 \\ 0 & \text{if } t \neq 0. \end{cases}$$

but it cannot be a proper definition!

・ロ・ ・ 四・ ・ 回・ ・ 日・

About the Dirac Delta Function Some Useful Functions and Distributions

Weird Definition (2/2)

Here α is a constant in \mathbb{R} or \mathbb{C} .

We do *not* have $\alpha \uparrow = \uparrow$, but:

$$\uparrow(t) = \begin{cases} \alpha \times \infty & \text{if } t = 0 \\ 0 & \text{if } t \neq 0. \end{cases}$$

Indeed we should have $\int_{-\infty}^{\infty} \alpha \uparrow(t) dt$ being equal to α .

About the Dirac Delta Function Some Useful Functions and Distributions

Dirac Representation

Thierry Géraud Introduction to Image Processing #5/7

・ロト ・四ト ・ヨト

Outline

2

Distributions

- About the Dirac Delta Function
- Some Useful Functions and Distributions
- Fourier and Convolution

Samplin

- 5 Convolution and Linear Filtering
- Some 2D Linear Filters Gradients
 - Gradients
 - Laplacian

About the Dirac Delta Function Some Useful Functions and Distributions

・ロト ・四ト ・ヨト ・ヨト

About the Dirac Delta Function Some Useful Functions and Distributions

Understand that the Dirac delta function is the *most* important distribution we can think of.

Thierry Géraud Introduction to Image Processing #5/7

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

크

About the Dirac Delta Function Some Useful Functions and Distributions

Sinc (1/2)

The (unnormalized, historical, mathematical) sinc function is:

$$sinc(t) = \frac{sin(t)}{t}.$$

The normalized sinc function is:

$$\operatorname{sinc}(t) = \frac{\sin(\pi t)}{\pi t}.$$

so that:

$$\int_{-\infty}^{\infty} \operatorname{sinc}(t) \, dt = 1.$$

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

About the Dirac Delta Function Some Useful Functions and Distributions

Sinc (2/2)

・ロト ・四ト ・ヨト ・ヨト

About the Dirac Delta Function Some Useful Functions and Distributions

Sign Function (1/2)

The sign function is:

$$sgm(t) = \begin{cases} -1 & \text{if } t < 0 \\ 0 & \text{if } t = 0 \\ 1 & \text{if } t > 0. \end{cases}$$

Thierry Géraud Introduction to Image Processing #5/7

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

About the Dirac Delta Function Some Useful Functions and Distributions

Sign Function (2/2)

About the Dirac Delta Function Some Useful Functions and Distributions

Heaviside Step Function (1/2)

$$u(t) = \frac{1}{2}(1 + sgn(t)) = \begin{cases} 0 & \text{if } t < 0\\ 1/2 & \text{if } t = 0\\ 1 & \text{if } t > 0. \end{cases}$$

We have:

$$u(t) = \int_{-\infty}^{t} \uparrow(\tau) d\tau.$$

Put differently $\dot{u} = \uparrow$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

크

About the Dirac Delta Function Some Useful Functions and Distributions

Heaviside Step Function (2/2)

Thierry Géraud Introduction to Image Processing #5/7

About the Dirac Delta Function Some Useful Functions and Distributions

The rectangular function is:

$$rect(t) = \begin{cases} 1 & \text{if } |t| < 1/2 \\ 1/2 & \text{if } |t| = 1/2 \\ 0 & \text{if } |t| > 1/2. \end{cases}$$

We have:

$$rect(t) = u(t + 1/2) u(1/2 - t).$$

<ロ> <同> <同> < 回> < 回> < □> < □> <

About the Dirac Delta Function Some Useful Functions and Distributions

Rect (2/2)

Thierry Géraud Introduction to Image Processing #5/7

・ロト ・四ト ・ヨト ・ヨト

About the Dirac Delta Function Some Useful Functions and Distributions

The triangular function is:

$$tri(t) = \begin{cases} 1-t & \text{if } |t| < 1 \\ 0 & \text{if } |t| \ge 1. \end{cases}$$

Thierry Géraud Introduction to Image Processing #5/7

・ロト ・四ト ・ヨト ・ヨト

About the Dirac Delta Function Some Useful Functions and Distributions

Tri (2/2)

Thierry Géraud Introduction to Image Processing #5/7

・ロト ・四ト ・ヨト ・ヨト

. . .

About the Dirac Delta Function Some Useful Functions and Distributions

Dirac Delta Function as a Limit

We can define \uparrow as a limit of functions d_{α} in the sense that:

$$\lim_{\alpha\to 0} \int_{-\infty}^{\infty} s(t) d_{\alpha}(t) dt = s(0).$$

We can choose d_{α} in:

 $egin{aligned} t &
ightarrow \mathcal{N}(\mathbf{0}; lpha)(t) \ t &
ightarrow \mathit{rect}(t/lpha)/lpha \ t &
ightarrow \mathit{tri}(t/lpha)/lpha \end{aligned}$

. . .

normal distribution rectangular function triangular function

・ロ・ ・ 四・ ・ 回・ ・ 日・

About the Dirac Delta Function Some Useful Functions and Distributions

Dirac Comb (1/2)

The Dirac comb is:

$$\ddagger_T(t) = \sum_{k=-\infty}^{\infty} \uparrow(t-kT).$$

Thierry Géraud Introduction to Image Processing #5/7

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ.

About the Dirac Delta Function Some Useful Functions and Distributions

Dirac Comb (2/2)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

URLs (1/2)

About the Dirac Delta Function Some Useful Functions and Distributions

Distribution

http://en.wikipedia.org/wiki/Distribution_(mathematics)

Dirac delta

http://en.wikipedia.org/wiki/Dirac_delta_function

Dirac comb

http://en.wikipedia.org/wiki/Dirac_comb

1

About the Dirac Delta Function Some Useful Functions and Distributions

URLs (2/2)

Sign

http://en.wikipedia.org/wiki/Sign_function

Sinc

http://en.wikipedia.org/wiki/Sinc_function

Tri

http://en.wikipedia.org/wiki/Triangularfunction

Rect

http://en.wikipedia.org/wiki/Rectangular_function

Heaviside step

http://en.wikipedia.org/wiki/Heaviside_step_function

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fourier Series

You know that:

$$s(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$
$$= \sum_{n=-\infty}^{\infty} S_n e^{inx}.$$

its generalization is...

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Discrete Fourier Transform

...the discrete Fourier transform of a discrete function s:

$$s_k = \sum_{n=0}^{N-1} a_n e^{-i2\pi nk/N}$$

where $a_n = \frac{1}{N} \sum_{k=0}^{N-1} f_k e^{i2\pi nk/N}$

(日)

Fourier Transform

In the continuous case, S is the Fourier transform of s:

$$S(f) = \int_{-\infty}^{\infty} s(t) e^{-i2\pi ft} dt$$
$$s(t) = \int_{-\infty}^{\infty} S(f) e^{i2\pi ft} df.$$

where *f* is a frequency.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

크
Notations

We will denote with capital letters the Fourier transforms.

Considering that \mathcal{F} is the Fourier operator on the set of complex-valued functions:

$$S = \mathcal{F}(s).$$

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Some Nice Properties

Parseval's theorem:

$$\int_{-\infty}^{\infty} |\mathbf{s}(t)|^2 dt = \int_{-\infty}^{\infty} |\mathbf{S}(t)|^2 dt.$$

$$egin{array}{lll} \mathcal{F}^2(s)(t) &= s(-t) \ \mathcal{F}^* &= \mathcal{F}^{-1} \end{array}$$

Amazing:

$$g(t) = \alpha e^{-(t-\beta)^2/2}$$

is an eigenvalue of \mathcal{F} .

Convolution (1/2)

The convolution of two functions *h* and *s* is the function:

$$s'(t) = h(t) * s(t) = \int_{-\infty}^{\infty} h(\tau) s(t-\tau) d\tau.$$

The convolution operator is denoted by "*".

크

Convolution (2/2)

FIXME: figure.

Thierry Géraud Introduction to Image Processing #5/7

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Show that:

rect * rect = tri.

Thierry Géraud Introduction to Image Processing #5/7

= 990

Convolution Properties

We have:

commutativity associativity distributivity associativity with scalar

$$a * b = b * a$$

$$a * (b * c) = (a * b) * c$$

$$a * (b + c) = (a * b) + (a * c)$$

$$\alpha(b * c) = (\alpha b) * c = b * (\alpha c)$$

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Differentiation rule:

$$\mathcal{D}(\boldsymbol{a}*\boldsymbol{b})\,=\,\mathcal{D}(\boldsymbol{a})*\boldsymbol{b}\,=\,\boldsymbol{a}*\mathcal{D}(\boldsymbol{b}).$$

Dirac and Convolution (1/2)

We have:

$$(\uparrow * \mathbf{s})(t) = \int_{-\infty}^{\infty} \uparrow(\tau) \mathbf{s}(t-\tau) d\tau = \mathbf{s}(t) \forall t.$$

 $So \uparrow * s = s:$

 \uparrow is the neutral element for the \ast operator.

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Dirac and Convolution (2/2)

Let us note by:

$$\uparrow_{t'}(t) = \uparrow(t-t')$$

the translation to t' of the Dirac delta function put differently it is a Dirac impulse centered at t'

We have:

$$\begin{array}{rcl} \left(\uparrow_{t'} \ast \mathbf{S}\right)(t) &=& \int_{-\infty}^{\infty} \uparrow(\tau-t') \, \mathbf{S}(t-\tau) \, d\tau \\ &=& \mathbf{S}(t-t'). \end{array}$$

Convolving a function with a Dirac delta function centered at t' means *shifting* this function at the value t = t'.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Convolution and Fourier = a Theorem

The convolution theorem is:

$$\mathcal{F}(a * b) = \mathcal{F}(a) \mathcal{F}(b)$$

We also have:

$$\mathcal{F}(ab) = \mathcal{F}(a) * \mathcal{F}(b)$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

E

Dirac and Fourier

$$\int_{-\infty}^{\infty} 1(t) e^{-i2\pi ft} dt = \uparrow(f).$$

Thierry Géraud Introduction to Image Processing #5/7

Some Fourier Transforms (1/2)

 $\begin{array}{c|c} \mathcal{F} \\ \hline rect(\alpha t) & \frac{1}{|\alpha|}sinc(\frac{f}{\alpha}) \\ sinc(\alpha t) & \frac{1}{|\alpha|}rect(\frac{f}{\alpha}) \\ sinc^{2}(\alpha t) & \frac{1}{|\alpha|}tri(\frac{f}{\alpha}) \\ tri(\alpha t) & \frac{1}{|\alpha|}sinc^{2}(\frac{f}{\alpha}) \\ \hline 1(t) & \uparrow(f) \\ \uparrow(t) & 1(f) \\ cos(\alpha t) & 1/2(\uparrow(f-\frac{\alpha}{2\pi})+\uparrow(f+\frac{\alpha}{2\pi}) \end{array}$

크

Some Fourier Transforms (2/2)

A remarkable Fourier transform:

$$\mathcal{F}(\Uparrow_T)(t) = \frac{1}{T} \sum_{k=-\infty}^{\infty} \delta(f-k/T) = \frac{1}{T} \Uparrow_{1/T}(f).$$

Thierry Géraud Introduction to Image Processing #5/7

URLs

Fourier series

http://en.wikipedia.org/wiki/Fourier_series

Discrete Fourier transform

http://en.wikipedia.org/wiki/Discrete_fourier_transform

Fourier transform

http://en.wikipedia.org/wiki/Fourier_transform

Parseval's theorem

http://en.wikipedia.org/wiki/Parseval's_theorem

Convolution

http://en.wikipedia.org/wiki/Convolution

Convolution theorem

Analog Function

Consider an analog function:

$$\mathbf{s}: \left\{ egin{array}{cc} \mathbb{R} & o \mathbb{R} \ t & \mapsto \mathbf{s}(t) \end{array}
ight.$$

FIXME: figure.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

From Analog to Digital (1/2)

A discrete function s_d is sampled from *s* with the sampling frequency $f_d = 1/T$:

$$\begin{aligned} s_d(t) &= \sum_{k=-\infty}^{\infty} s(kT) \uparrow (t-kT) \\ &= s(t) \times \ddagger_T(t). \end{aligned}$$

So:

$$\begin{array}{rcl} \mathsf{S}_d(f) & \propto & \mathsf{S}(f) * \Uparrow_{f_d}(f) \\ & \propto & \mathsf{S}(f) * \sum_{k=-\infty}^{\infty} \uparrow (f - kf_d) \\ & \propto & \sum_{k=-\infty}^{\infty} \mathsf{S}(f) * \uparrow (f - kf_d) \\ & \propto & \sum_{k=-\infty}^{\infty} \mathsf{S}(f - kf_d) \end{array}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

크

Introduction Distributions Fourier and Convolution

Sampling

Convolution and Linear Filtering Some 2D Linear Filters

From Analog to Digital (2/2)

FIXME: figure.

Thierry Géraud Introduction to Image Processing #5/7

From Digital to Analog (1/2)

An analog function s_a is reconstructed from the digital one s_d :

$$S_a(f) = S_d(f) \times rect(rac{f}{2f_d}).$$

So:

$$\begin{split} \mathbf{s}_{\mathsf{a}}(t) &\propto \mathbf{s}_{\mathsf{d}}(t)*\operatorname{sinc}(t/T) \ &\propto \left(\sum_{k=-\infty}^{\infty}\mathbf{s}(kT)\uparrow(t-kT)
ight)*\operatorname{sinc}(t/T) \ &\propto \sum_{k=-\infty}^{\infty}\left(\mathbf{s}(kT)\uparrow(t-kT)*\operatorname{sinc}(t/T)
ight) \ &\propto \sum_{k=-\infty}^{\infty}\left(\mathbf{s}(kT)\operatorname{sinc}(rac{t-kT}{T})
ight) \end{split}$$

<ロ> <同> <同> < 回> < 回> < □> < □> <

크

Introduction Distributions Fourier and Convolution

Sampling

Convolution and Linear Filtering Some 2D Linear Filters

From Digital to Analog (2/2)

FIXME: figure.

Thierry Géraud Introduction to Image Processing #5/7

Shanon Sampling Theorem (1/2)

The minimum sampling frequency to be able to perfectly reconstruct an analog signal is twice the maximum signal frequency.

So we should have:

$$f_d > 2 f_{max}$$
.

Practically this condition is (usually) never satisfied.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Introduction Distributions Fourier and Convolution Sampling Convolution and Linear Filtering

Some 2D Linear Filters

Shanon Sampling Theorem (2/2)

FIXME: figure.

Thierry Géraud Introduction to Image Processing #5/7

E

Aliasing

The right image is anti-aliased:

Thierry Géraud Introduction to Image Processing #5/7

(日)

E

Removing the Moire Effect (1/3)

An image with aliasing presence (left) and a detail (right):

Thierry Géraud Introduction to Image Processing #5/7

(日)

Removing the Moire Effect (2/3)

The original Fourier spectrum (left) and after removing folded peaks (right):

・ロ・ ・ 四・ ・ 回・ ・ 回・

Removing the Moire Effect (3/3)

The result (right) compared to the original (left):

Thierry Géraud Introduction to Image Processing #5/7

(日)

URLs

Signal processing

http://en.wikipedia.org/wiki/Signal_processing

Sampling

http://en.wikipedia.org/wiki/Sampling_(signal_processing)

Shannon's sampling theorem

http:

//en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem

Aliasing

http://en.wikipedia.org/wiki/Aliasing

Anti-aliasing

http://en.wikipedia.org/wiki/Anti-aliasing_filter

Discrete Convolution

The convolution between a and b:

$$\mathbf{s}'(t) = \mathbf{h}(t) * \mathbf{s}(t) = \int_{-\infty}^{\infty} \mathbf{h}(\tau) \mathbf{s}(t-\tau) d\tau.$$

can be turned into a discrete convolution:

$$s'[t] = (h * s)[t] = \sum_{\tau=-\infty}^{\infty} h[\tau] s[t-\tau] = \sum_{\tau=-\infty}^{\infty} h[t-\tau] s[\tau]$$

where *t* and τ are now $\in \mathbb{Z}$.

3

Discrete Convolution in 2D (1/2)

$$\begin{array}{lll} s'[r][c] &=& (h*s)[r][c] \\ &=& \sum_{r'=-\infty}^{\infty} \sum_{c'=-\infty}^{\infty} h[r'][c'] \, s[r-r'][c-c'] \\ &=& \sum_{r'=-\infty}^{\infty} \sum_{c'=-\infty}^{\infty} h[r-r'][c-c'] \, s[r'][c'] \end{array}$$

Thierry Géraud Introduction to Image Processing #5/7

Discrete Convolution in 2D (2/2)

FIXME: figure.

Thierry Géraud Introduction to Image Processing #5/7

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Linear Filters (1/2)

A filter ϕ is linear if

$$\phi(\alpha \mathbf{s}_1 + \beta \mathbf{s}_2) = \alpha \phi(\mathbf{s}_1) + \beta \phi(\mathbf{s}_2)$$

for all α and β scalars, and s_1 and S_2 functions.

 ϕ is a linear filter \Leftrightarrow h_{ϕ} exists such as $\phi = h_{\phi} *$

Put differently:

- we can write $\phi(s) = h_{\phi} * s$
- convolutions are the only linear filters.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Consider that a filter ϕ is a black box.

If this filter is linear, we want to know h_{ϕ} .

When you input the Dirac delta function (an impulse) into the black box, the resulting function (signal) is:

$$h_{\phi} * \uparrow = h_{\phi}.$$

 h_{ϕ} is the impulse response of ϕ .

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Gradients Laplacian

Dirac Delta Function

Before all:

$$\uparrow [r][c] = \begin{cases} 1 & \text{if } r = 0 \text{ and } c = 0 \\ 0 & \text{otherwise.} \end{cases}$$

Thierry Géraud Introduction to Image Processing #5/7

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Gradients Laplacian

Outline

Thierry Géraud Introduction to Image Processing #5/7

・ロ・ ・ 四・ ・ 回・ ・ 日・

Gradients Laplacian

Gradients as Linear Filters (1/3)

Consider the gradient of a 2D function s:

$$\nabla \mathbf{s} = \begin{pmatrix} \frac{\delta \mathbf{s}}{\delta \mathbf{x}} \\ \frac{\delta \mathbf{s}}{\delta \mathbf{y}} \end{pmatrix}$$

The gradient is linear; with $\phi_{\nabla}(s) = \nabla s$, we have:

$$\phi_{\nabla}(\alpha \mathbf{S}_{1} + \beta \mathbf{S}_{2}) = \alpha \phi_{\nabla}(\mathbf{S}_{1}) + \beta \phi_{\nabla}(\mathbf{S}_{2})$$

...so it can be expressed with convolutions!

크

Gradients Laplacian

Gradients as Linear Filters (2/3)

Assuming that sampling is isotropic ($T_x = T_y = 1$), some discrete approximations of the gradient are:

$$\nabla s[r][c] \approx \nabla^{ante} s[r][c] = \begin{pmatrix} s[r][c] - s[r][c-1] \\ s[r][c] - s[r-1][c] \end{pmatrix}$$

or:

$$\nabla \mathbf{s}[r][c] \approx \nabla^{post} \mathbf{s}[r][c] = \begin{pmatrix} \mathbf{s}[r][c+1] - \mathbf{s}[r][c] \\ \mathbf{s}[r+1][c] - \mathbf{s}[r][c] \end{pmatrix}$$

and even:

$$\nabla s[r][c] \approx \frac{\nabla^{ante} s[r][c] + \nabla^{post} s[r][c]}{2} = \left(\begin{array}{c} \frac{s[r][c+1] - s[r][c-1]}{2} \\ \frac{s[r+1][c] - s[r-1][c]}{2} \end{array} \right)$$

Gradients Laplacian

Gradients as Linear Filters (3/3)

With:

$$abla \mathbf{s} = \left(\ \mathbf{h}_{
abla}^{/\!\mathbf{x}} * \mathbf{s} \mathbf{h}_{
abla}^{/\!\mathbf{y}} * \mathbf{s} \
ight)$$

and considering the "post" version:

$$abla^{/x} s[r][c] \approx s[r][c+1] - s[r][c] \ pprox h^{/x}[0][-1] s[r-0][c-(-1)] \ + h^{/x}[0][0] s[r-0][c-0]$$

we have:

$$h^{/x}[r][c] = \begin{cases} 1 & \text{if } r = 0 & \text{and } c = -1 \\ -1 & \text{if } r = 0 & \text{and } c = 0 \\ 0 & \text{otherwise} & \text$$

Gradients Laplacian

Gradients Illustrated (1/2)

LENA (left) and the x gradient (right):

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・
Gradients Laplacian

Gradients Illustrated (1/2)

crops of resp. the x gradient (left) and the y gradient (right):

Please note that, to better view images, contrast is enhanced and values are inverted (the lowest values are now the brightest).

Gradients Laplacian

Graphical Representation

To depict functions we use a graphical representation:

$$h^{/x} = \begin{array}{|c|c|c|c|} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{array}$$

In such representations, the origin is always centered and we do not represent null values that lay outside the window.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Introduction Distributions Fourier and Convolution Sampling Convolution and Linear Filtering Some 2D Linear Filters	Gradients Laplacian	
Gradient Magnitude (1/2)		

The magnitude is often approximated with a L_1 norm, so:

$$|\nabla \mathbf{s}| = |\frac{\delta \mathbf{s}}{\delta \mathbf{x}}| + |\frac{\delta \mathbf{s}}{\delta \mathbf{y}}|.$$

For instance with the "post" version:

 $|\nabla^{post} s|[r][c] = |s[r+1][c] - s[r][c]| + |s[r][c+1] - s[r][c]|$

Gradients Laplacian

Gradient Magnitude (2/2)

Warning: magnitude is also video inverted here.

・ロト ・四ト ・ヨト ・ヨト

E

Gradients Laplacian

Other Versions of Gradient Magnitude (1/3)

Many versions of the gradient magnitude exist... for instance this one (the Roberts filter):

 $|\nabla^{\textit{roberts}} s|[r][c] = |s[r+1][c+1] - s[r][c]| + |s[r][c+1] - s[r+1][c]|$

Gradients Laplacian

Other Versions of Gradient Magnitude (2/3)

A noise-"insensitive" version of the gradient magnitude is the Sobel filter:

$$h_{Sobel}^{/x} = \frac{1}{4} \begin{array}{|c|c|c|c|} \hline -1 & 0 & 1 \\ \hline -2 & 0 & 2 \\ \hline -1 & 0 & 1 \end{array}$$

Exercise: explain why it is less sensitive to noise.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Gradients Laplacian

Other Versions of Gradient Magnitude (3/3)

Result of the Sobel filter:

Warning: magnitude is also video inverted here.

Exercise: explain why contours/edges look thicker here than in

Gradients Laplacian

Extracting Object Contours (1/2)

Extracting contours/edges can be performed thru thresholding the gradient magnitude:

Exercise: is it great?

Thierry Géraud Introduction to Image Processing #5/7

Gradients Laplacian

Extracting Object Contours (2/2)

Full size:

Exercise: is it great?

Gradients Laplacian

Outline

Thierry Géraud Introduction to Image Processing #5/7

・ロ・ ・ 四・ ・ 回・ ・ 日・

臣

Definition

The Laplacian of *s* is:

$$\Delta s = \frac{\delta^2 s}{\delta x^2} + \frac{\delta^2 s}{\delta y^2}$$

Gradients

Laplacian

Exercise: express h_{Δ} .

・ロト ・四ト ・ヨト ・ヨト

臣

Gradients Laplacian

Solution

You should end up with:

$$h_{\Delta} = \begin{array}{|c|c|c|c|c|} \hline 0 & -1 & 0 \\ \hline -1 & 4 & -1 \\ \hline 0 & -1 & 0 \end{array}$$

Thierry Géraud Introduction to Image Processing #5/7

・ロト ・四ト ・ヨト ・ヨト

æ.

Filtering (1/2)

Result:

Gradients

Laplacian

Thierry Géraud Introduction to Image Processing #5/7

・ロ・・ 日本・ ・ 日本・ ・ 日本

E

Gradients Laplacian

Filtering (2/2)

Crop:

Exercise:

- find how to sharpen image contours/edges,
- express $h_{sharpen}$ in function of a strength parameter.

Gradients Laplacian

Edge Sharpening (1/2)

Contour/edge sharpening results:

Gradients Laplacian

Edge Sharpening (2/2)

Contour/edge sharpening results:

