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AB STRACT

In this presentation a new search method is proposed to improve the speed and accuracy of surface based registration
algorithms. Furthermore, a parallel point projection based, multicomponent distance evaluation method is presented.
This method offers an elegant solution to the proble:m of partially overlapping data sets. An adaptive outlier treatment
method is also presented. Combination of all these new techniques results in a faster surface based algorithm with
better accuracy, but above all with better rehabihty than existing surface based 3D registration algorithms In the
context of the surface correspondence problem, surface based registration algorithms are compared to feature matching
methods.

1. INTRODUCTION

The aim of our applied research is to develop state-of-the-art medical workstations for neuroradiological diagnosis,
and for the planning of stereotactic neurosurgery, open neurosurgery, and neuroradiotherapy. These applications often
require the use of images obtained from multiple modalities, e.g. for the integrated visualization of anatomical (CT,
MIt) and functional (PET) information. However, integrated visualization of multimodal images is possible only after
solution of the registration problem, i.e. after the determination of the geometric transformation matrix relating
the locations of the patient head (or parts of it) in the different images. All registration algorithms use some form
of anatomical information obtained by segmentation, e.g. external landmark points, anatomical landmark points,
anatomical surfaces, stereotactic frames. In this article we present some new ideas for the enhancement of existing and
for the design of new surface based registration algorithms. The ideas logically emerged from the results of a detailed
analysis of existing state-of-the-art registration o61819

Three different approaches can be pursued for the development of better surface based registration algorithms: (1)
existing ones may possibly by improved (see sections 2, 3 and 4), (2) existing ones that have not yet been used for the
application at hand may be worth while adapting to the specific application (see section 5), and (3) it may be possible
to design entirely new algorithms.

The basic assuml)tions underlying our definition of surface based 3D registration algorithms are the following.
Segmentation of surfaces is assumed to be an independent preprocessing step. Surfaces contain geometric information
only, but can have different representations, ranging from simple binary volume images over structured point sets to
B-splines. However, if a point based representation is used, it will be assumed to contain sufficient points to allow for
interpolation of other surface points. The registration transformation will be taken to be a rigid one with 6 degrees
of freedom; i.e. only translations in 3 orthogonal directions and 3 rotations are taken into account. Since in our
applications image voxel sizes are accurately known and because patients' heads do not change size, this should not
pose any problems.

2. "GROWING HAT" SURFACE BASED 3D REGISTRATION

All surface based 3D registration algorithms iteratively search for registration parameter values that optimize a specific
surface based matching criterion. These surface based matching criteria can be divided into two categories: 1) moment
based , and 2) point projection based In this section a method will be described for accelerating iterative search
methods used in existing surface based registration algorithms Because the detailed formulation of the method differs
for the different categories of algorithms, it will be explained for algorithms using point projection based distances,
and then briefly reformulated for algorithms using moment based criteria.
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Examples of 3D registration algorithms using point projection based distances and currently used for matching
brain scans are Peizzari's'2"3 head-hat algorithm, and Jiang's9 and Mangin's" versions of Borgefors's4'5 hierarchical
chamfer matching algorithm. An example that has not been used in medical practice yet is Besl and McKay's2'3 free
form quaternion based iterative closest point algorithm. Essentially all of them can be described as follows:

. Two collections of corresponding surfaces - two corresponding surfaces in the simplest case - are obtained from
segmentation. Let us call them Si and 52 . Let us assume that the registration problem at hand is to match 52
onto Si ; i.e. find the transformation from 52's image coordinate system into S 's image coordinate system so
that after transformation S2 will coincide with Si.

. Both surfaces are preprocessed, but in different ways. Peizzari gets two surfaces from segmentation in simple
surface representations, i.e. as lists of 2D contour coordinates organized by image plane. Si 's point list is
transformed into a kind of polar coordinates, called the "head" format. S25 point list is reduced in size, and
in complexity; i.e. a sample of about 250 representative points is selected from the list and put in a new but
fiat list of 3D image coordinates, called the "hat" format. Borgefors on the other hand calculates the chamfer
"distance transform" of S , but also uses the "hat" for 52 . Besl and McKay do not prescribe any format for S,
but they too use a "hat" for S2.

. By Pelizzari the distance D8 from 52 to Si is defined as the root mean square average of the distances of all hat
points to the head surface along rays through the respective hat points and Si 's centroid Borgefors and Besl
and McKay define D, to be the root mean square average of the distances from the hat points to the closest
points on Si . So, the main difference between Pelizzari's and both other methods is that they use different
projections of S2 's points on S . Also Borgefors only approximates the eudidean distance between the points
and their projections using the chamfer distance transform, while Pelizzari and Besl and McKay calculate the
exact eucidean distances.

. Registration is the minimization of the distance from 52 to Si
Both Pelizzari and Borgefors reason as follows: "Because the distances defined above do not have analytical
expressions general n-dimensional optimization algorithms that do not use derivative information are required
to solve the problem. The registration parameters are the optimization variables." In our case there are 6 of
them (n=6). In practice the distance function has multiple local minima. Therefore a complete minimization
method has two components; i.e. an accurate locally converging algorithm (e.g. Powell's or steepest descent) is
used under control of a global optimization algorithm (e.g. simulated annealing, hierarchical optimization).
Besi and McKay on the other hand reason as follows: "If Si and 52 are in matching locations then 52 's point
projections on S coincide with 52 '5 points. So, in each iteration, let us consider the projections to be the true
corresponding points. In that case in each iteration a point based registration problem with point correspondence
information has to be solved instead of a surface based registration problem. So, a least squares estimation of
the registration parameters can be calculated." Besl and McKay use quaternions for this calculation. But they
also mention the calculation based on a singular value decomposition discussed by Faugeras and Hebert7. Besl
and McKay prove that using a closest point projection their matching distance monotonically converges to a
local minimum.

Besl and McKay studied the computational complexity in detail and proposed their own acceleration method based
on the prediction of quaternion components by means of a linear and a parabolic extrapolation of D3 in function of
the quaternion components' previous values. This acceleration method is meaningful only in case the old quaternion
values used for extrapolation are approximately linear in 7D quaternion space, which definitely is not always the case.
Each time it is not, the acceleration method does not work in the following steps.

The acceleration presented in this section is inspired upon the fact that optimization steps in distance space are
very large in the beginning, and very small at the end when local convergence occurs. This is illustrated in figure 1
for three quaternion registration parameters. Furthermore, the method logically followed from a quality constrained
cost analysis of surface based 3D registration algorithms6 . This analysis shows us that the large computational load
of the registration algorithms iS mainly due to the number of points selected on 52for evaluation of the distance D8.

Four non-coplanar surface points uniquely determine the position of the surface. So, the following question is a very
valid one: "Why should we use 250 points to estimate the direction in which to look for the registration parameters,
especially when the last estimate is not even close to the optimal one?".

780 / SPIE Vol. 1898 Image Processing (1993)

Downloaded from SPIE Digital Library on 16 Aug 2010 to 62.39.139.1. Terms of Use:  http://spiedl.org/terms



Figure 1: Left: The first 3 steps of some of Besi and McKay's quaternion components are very large. Right: The
following steps are much smaller. This curve shows in detail the last 50 iteration steps (ofa total of 100) corresponding
to the middle curve on the left.

We have investigated the effect of reducing the number of points in D8 . The results are represented in figure 2. It
shows that using few points will cause the function for D5 to have many more bad local minima. The figure also shows
that for complete data sets for which a fairly good initial registration position is known beforehand (misregistration
less than 25 mm for translations and less than 25 degrees for rotations) the number of points required for evaluation
of D8 may be much smaller than 250 as advised by Pelizzari.

We have also investigated the effect of selecting a very small - expressed in number of points - but different hat
in each iteration, so that in the end probably more surface points will have been used for distance evaluation than
by Pelizzari's or the other algorithms. It is not difficult to understand that in such a search approach not even local
convergence can be guaranteed.

The ultimate solution is to select a small set of non-coplanar points on 52 to start with and let it grow until it
comprises all of 52. So, in the beginning the registration will be much faster than in the algorithms with "fixed hat",
while it will be much slower at the end. But the accuracy will be optimal in the sense that all data in 52 will eventually
be used.

The number of pc)ints in the hat during the first iteration °at and the growth factor g(lc) of the hat from one
iteration 1c onto the next determine the total calculation time. From the surface based 3D registration algorithms' cost
analysis6 it can be concluded that in each iteration k calculation time is approximately proportional to the number of
points hat in the hat. And so, the following approximate expression gives us the total calculation time for "growing
hat" surface based registration:

k=N—2

TTp(n+ 9(1)1at) (1)

with T the time required per point on 52 and N the number ofiterations. Experimentation with this equation rapidly
leads us to the conclusion that in order to obtain maximal accuracy using growing hat search, speed performance will
be worse than with fixed hat search assuming that the fixed hat contains 250 points. The best compromise between
accuracy and speed performance is obtained with at and g(k) = 2 until nL$2ed and g(k) = 1 thereafter
until convergence for speed; then add an extra iteration with n =s2 (i.e. all of 52 's points) for accuracy.

An open question is the following: "Does the specific selection of the initial hat influence the search process so
that at the end a different local minimum is reached?" Clearly it might in some situations. But of course the answer
is irrelevant because of the global optimization algorithm at a higher level.
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Figure 2: Left: For the data set (containing 2543 points) represented at the bottom of the figure D5-traces are shown
in function of simultaneous translations and rotations in all directions. On these traces D8 is the distance o1 the
data set to itself after application of specific misregistration transformations. The number of points involved in the
calculation of 13 were 125, 250, 500 and 1000 Right The same traces for 15, 31, 62 and 125 points in

Note that this entire reasoning was made possible by the fact that D8 is a single number that equals the root mean
square average of multiple point distances It is also assumed that the cost of selecting a growing hat is neglectable
No specific selection algorithms have been proposed We used the simplest possible, i e we selected every ik-th point
from the hst of S2 's points where 2k =n2/at

The results ofthis section can be adapted to surface based 3D registration algorithms using moment based matching
criteria by means of a "field of view box1 with growing resolution"

L PARALLEL POINT PROJECTION BASED DISTANCE BETWEEN SURFACES

When trying to adapt the growing hat method to moment based matching criteria the following new method spon-
taneously emerged. It is based on the combined usage of 3 parallel projections in orthogonal directions of
some of S2 's points on Si for calculating 3 ray tracing based distance histograms. The reason why we use the term
"ray tracing" in stead of "point projection" here will become clear later on The root mean square averages from the
distance histograms are used as estimates of the registration translation parameters and the histogram spread is used
as a measure of matching quality that wifi be used to search for the optimal rotation parameters.

The algorithm can be summarized as follows (see figure 3):

1. Let us suppose that both S1 and 52 are available as chamfer distance transform images. These images are
used by Zuiderveld's2' ray tracing acceleration method We have selected this method because it is the fastest
available for our application.

2 Select three sets , A2 and A3 of 2D coordinates in the three orthogonal image planes respectively corresponding
to x = 0, y = 0 and z = 0, where z, y and z are image coordinates in S25 coordinate system.

3. For all coordinates in each set A perform a ray tracing calculation perpendicular to the corresponding image
plane and so doing construct three lists of S2's surface points: L = {(n, zi, .. . , x,1,)}, L, = {(n,, y, . . . ,
and L {(n, z1, . . . ,z)}. n, and n are the numbers of surface points on the respective rays and the
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Figure 3 : a) The complete head (thin line) represents Si , while the thick line represents 52 . Distances are determined
through parallel ray tracing in 3 orthogonal directions of which two are shown. Note that only the distances selected
after application of equation (2) are shown. The selection of the set of rays is not prescribed. b) Averaging the resulting
distances for each direction determines the registration translation step. c) Then the rotation angle is determined by
minimizing the spread of the global histogram of all point distances. d) Shows the final registration parameters for
the 2D case.

other numbers are the coordinates on the rays. This ray tracing step needs to be performed only once. This
means that the distance transform image of 52 does not need to be stored for further calculations

4. Initialize all translation parameters to values that make both surfaces mass centers coincide and have some
estimates for the euler angles initialized by a global optimization algorithm.

5. Transform the selected rays into Sj 's coordinate system and perform the same ray tracing operations. In this
process 3 more lists L' ,Li and L,i corresponding to the lists generated in step 3 are constructed.

6. Then three distance histograms III, III, and H are constructed by comparing both sets of lists. The following
distance calculation rule is used:

ViE{z,y,z},VkEL1 : ((mt =) —+Vip E{i,...,ik}:imcremeni(H(i,—i)) (2)

7, Calculate the root mean square average of all histograms: , , and j..
8. Adapt the translation parameters as follows:

ViEx,y,z:i=t'+,z (3)

where j is the iteration number.

9. Merge the 3 histograms into one global histogram Hg by simple addition.

10 Calculate a measure of the spread of the new histogram o2 and use it as a starting value for the optimizing
search for the euler angles in 3D rotation space For this search any locally converging algorithm can be used
During this optimization phase the intermediate histograms are never calculated.

11. Repeat steps 5 to 10 until the histogram averages and spread do not change anymore (i.e optimize locally). If
the histogram spread is too large, start all over again with a new set of values for euler angles (i.e. optimize
globally).
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The main advantage of this algorithm is that it automatically eliminates points from non-overlapping parts of the
surfaces in the evaluation of the matching quality by means of the specific histogram construction rule proposed in
equation (2). Other advantages of this method are that:

S If the points on 52 are whole image coordinates than its distance transform is not required to calculate the ray
tracing. It can then be calculated by simply searching through 52 in head format for example.

I The number of optimization variables to be obtained by search is only 3 (i.e. the rotations), which is much lower
than a minimum of 6 for the other algorithms using search based optimisation.

S However all 6 registration parameters can be fixed if their values are known beforehand, unlike some of them in
moment based algorithms and unlike the parameters in Besl and McKay's algorithm.

S Using three orthogonal parallel ray tracings automatically results in the selection of a hat that is representative
of the surfaces involved. Note that in order to obtain about 250 hat points as proposed by Pelizzari only about
40 rays are required for each orthogonal direction, under the assumption that the surfaces completely overlap
and that a ray intersects the surfaces twice.

. The growing hat method presented in the previous section can be applied by changing the number of rays used
for ray tracing.

. The surface complexity is not in any way limited by the algorithm.

S The availabifity of the histogram offers the possibility for easy integration of an outlier treatment algorithm as
described in the next section.

. The algorithm can easily be generalized for registration problems of higher dimension.

A disadvantage certainly is the need for a calculation of the distance transform. Therefore the chamfer distance is
used. Note that the approximated chamfer distances are not used to evaluate the distance. They are merely used to
accelerate the ray tracing. Note also that contrary to what is done by Jiang et a19, we do not interpolate to obtain an
isotropic image coordinate system. In stead we apply a heuristic optimization rule to determine a set of non-isotropic
chamfer coefficients. This approach saves a lot of work.

The most important disadvantage is the cost of ray tracing. That is why the availability of the distance transforms
is stressed. Zuiderveld's ray tracing algorithm is probably the fastest available for our application.

A problem that is not solved is the problem of local minima in the optimization criterion for the euler angles. So,
a global optimization algorithm is still required. But evidently the optimization space is much smaller. If however
the orientations of both surfaces are not too different then the first local minimum found will most often also be the
global one.

It can be concluded that a new surface based 3D registration algorithm has been designed that offers both some of
the speed of moment based direct matching optimization and all of the flexibility of point projection based matching
criteria. Its accuracy is of course not worse than that of both categories. Moreover its extension with the use of a
"growing ray set" also allows for augmentation of the accuracy.

4. ADAPTIVE OUTLIER TREATMENT

The algorithm presented in the previous section works perfectly if segmentation results are perfect, which is unfortu-
nately never the case in practice. After registration several points on surface 52 may be at a rather large distance of
surface Si even though they belong to part of 52 that does overlap with Si . Such outliers must be eliminated from
the calculation of the registration parameters because they would otherwise introduce registration errors. Jiang et al9.
propose the use of a simple threshold, but they do not say how to select the threshold.

Searching for an adaptive threshold heuristic the following unpublished adaptive outlier treatment algorithm has
recently been developed by Géraud et a18 (see figures 4 and 5):

1. Convert the global distance histogram Hg into a new histogram Ha of absolute values of point distances.
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Figure 4: Application of the adaptive outlier treatment method to two surfaces with very small overlap. The resulting
root mean square average of the remaining distances is 4 for the desired solution.

Figure 5: Application of the adaptive outlier treatment method to the same two surfaces as in figure 4. The resulting
root mean square ave:rage of the distances remaining after application of the adaptive threshold is 8, which is dearly
much worse than 4. The 2D projection at the top of the figure shows that the curve corresponds to a bad but locally
optimal registration solution.
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2. Let the available positive point distances d be ordered from small to large, and let the order number be i. The
resulting distance-index-function d(i) is used then to calculate the threshold above which point distances are no
longer meaningful; i.e. the corresponding points are probably outliers and possibly even non-overlapping with
the other surface. The function d1(i) is defined completely by Ha.

3. Inspired on the iterative end point curve approximation method the function d,(i) is approximated by 5 char-
acteristic points (see points 1 to 5 in thefigure). Point 4 and 5 always approximate the segment {1,3]. Point 5
approximates either segment [1,4] or segment [4,3]: the segment with the lowest slope is selected.

4. Among the 3 segments between points 1 and 3 select the one with the lowest slope and add the adjacent segments
if their slope is not too different (< 50% of the highest of the three slopes). The resulting segment extended
downto point 1 is the resulting set of distances d,(i) < dthrejhold. So, dthreshold 5 determined by either point 3,
point 4, or point 5.

The example in figures 4 and 5 clearly indicates that even the use ofa relative threshold d (i) < fthreahold .iflz(d(i))
would not suffice to distinguish a bad local minimum from the local minimum in D8 that is actually searched for.

Because the introduction of this outlier treatment method is fairly costly we do not advise its use during local
registration. Its use is encouraged however to select the correct solution amongst several locally optimal registration
solutions. It may also be used to recalculate the registration error in order to obtain a more accuracte value for D8.

Note that the results in figures 4 and 5 correspond to a set of d obtained by Besl and McKay's criterion. The
registration criterion presented in the previous section automatically eliminates non-overlapping surface parts. And
therefore segment [3,2] in figure 4 will not be present in function d1(i) in case the results of both this and the previous
section are combined. The algorithm needs to be simplified accordingly in that case.

5. FROM SURFACE CORRESPONDENCE TO POINT CORRESPONDENCE

The main difference between point based and surface based registration algorithms is in the availability of point
correspondence information. If the information is available outliers can be detected by the criterion proposed by
Toennies et al'6. Points without corresponding points are discarded from the point based registration problem, i.e.
non-overlap does not occur. It is exactly the lack of point correspondence information in the surface based registration
problem that causes surface based registration algorithms to be iterative search based. It is also the reason why either
hat point projections and field of view boxes are used by the point projection and the moment based registration
algorithms respectively. In the previous sections several techniques have been proposed on the one hand to accelerate
search and on the other hand to eliminate points that have no corresponding points.

A more direct approach for deducing more constraining correspondence information from corresponding surfaces
is possible by using features that contain geometric information of a more complicated nature. One such algorithm
is described by Shapiro and Brady'4. Their eigenvector approach to solve the feature-based point correspondence
problem can be used to convert surface correspondence information into point correspondence information. This
latter form of correspondence information can then be used by a direct point based registration algorithm in order
to calculate the registration parameters In theory this algorithm also is insensitive to non-overlap Non overlapping
surface parts would correspond to the least significant feature modes with the smallest eigenvalues and they would
be truncated from the association or correspondence matrix. Moreover the algorithm is able to cope with small
distortions, i.e. outliers in our case. A detailed computational analysis of the algorithm however shows that it does
not offer speed advantages over the other surface based registration methods. No accuracy results are available.

Another surface based registration algorithm that solves the correspondence problem before it calculates the reg-
istration parameters is the one described by Thirion et al15 . This algorithm detects crest lines on surfaces and uses
them as features to be matched. The advantage is that skull surface crest lines are much more asymmetric than skull
surfaces and more interesting even is that they contain a much smaller number of points. This method is very fast.
No accuracy results are available yet however.

In general feature based algorithms will use any geometrically invariant feature that can be extracted from the
images of all modalities These general features may not solely be surface based For example, Van den Elsen et al'7
propose the use of differential-geometric invariants based on Koenderinck's1° family of Gaussian differential operators.
No accuracy results are available for the 3D case. However Van den Elsen claims accuracy to be better than that of
surface based algorithms20.
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While surface based algorithms only require a simple threshold based segmentation algorithm to extract the skin
or the skull surface, feature based algorithms using complex features require specific and more complex segmentation
algorithms.

6. CONCLUSION

In case of point projection based matching criteria "growing hat search" and in case of moment based matching criteria
"growing field of view box search" are proposed to speed up surface based registration algorithms. It is argued that
the speed up can be traded for extra accuracy if an adapted hat or field of view box growing scheme is used.

Three orthogonal and parallel ray castings are used to define a multicomponent criterion to evaluate the distance
between surfaces. It is shown that this distance function combines advantages of both point projection based and
moment based matching criteria This criterion not only reduces search space, it also offers a simple solution for the
problem of partially overlapping surfaces.

Furthermore an adaptive outlier treatment method is proposed that can be used in combination with point projec-
tion based matching criteria. It is based on the characterization of the distance-index-function of individual distances
between points and their projections. This method is also adapted to the new multicomponent matching criterion.
Their combination results in the most reliable surface based registration algorithm known, because it is capable of
treating both outliers and partially overlapping surfaces.
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