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Abstract

The purpose of the work presented in this article is the es-
timation of the partial volume effect very often observed in
medical image processing. Our working hypothesis is that
such partial volume effects will occur in tissue interfaces,
the proposed method uses a tissue-labeled distance map to
detect tissue interfaces as being those pixels closer to two
particular tissues than to any others. The tissue labeled
distance map is also used to detect pure tissue means as
being the gray-level means of pixels far from tissue inter-
faces. Knowing the positions of the different interfaces as
well as the pure tissue means, we are able to compute the
proportion of the two tissues mixed in each pixel of the
interface.

[. INTRODUCTION

A problem with virtually all medical imaging devices is
the partial volume effect: if the support of an image voxel
overlays the boundary between two or more tissues, then
the measured intensity value for that voxel will consist of
a mixture of partial contributions from all the involved tis-
sue types. Most of the work on segmentation of medical
images has been donc using algorithms that make ‘hard
decisions’ concerning tissue type i.e. that label a voxel
as being of the most predominant tissue type in the voxel.
This will inherently reduce precision of morphometric mea-
surements especially in thick-slice 3D scanner acquisition.
We overcome this problem by estimating the composition
of a mixed voxel using a new approach where contextual
information is used to detect tissue interfaces, a tissue in-
terface being defined as the region in the image in which
two tissues may Interact to produce partial volume voxels.
Having located these interfaces and calculated the pure tis-
sue means we compute the proportion of the two tissues
mixed in each pixel of the interface.
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A.  Related Works

Numerous methods aiming at solving these problems have
been proposed. Soltanian-Zadeh et. al. [1] use eigenimage
filtering. Choi et. al. [2] and Santago et. al. [3] intro-
duce statistical modeling based on Markov random fields
(MRF); Johnston et. al. extend this to 3D. Fessler [4] has
recently presented a new statistical model for reducing the
large computational burdens associated with earlier meth-
ods. Finally, Vincken et. al. [5] propose a multi-scale
approach in which partial volume voxels are analyzed at a
sub-voxel resolution. Unfortunately, existing methods do
not take large scale spatial context into consideration.

B. Image Material

The images used during this study were made using an
0.5T MR scanner (General Electric) installed at the Cochin
hospital in Paris. The patients under study suffer from
adrenoleukodystrophy (ALD) [6], a serious genetic disor-
der characterized by multi-focal demyelinisation of the cen-
tral nervous system along with adrenal insufficiency. Tt is
associated with an impairment of the degradation of sat-
urated very-long-chain fatty acids. ALD has a wide phe-
notvpic variation, but most cases appear in childhood or
adolescence as devastating degenerative neurological disor-
ders leading to major neurological deterioration and death
within a few years [7].

A typical MR examination of a patient suffering from
this disease lasts about 30 minutes, allowing for the ac-
quisition of irmages of twelve axial and frontal slices of the
brain. The thickness of each slice is 7 mm, a gap of 1 mm
1s left between each slice. Figure la) shows one of the ax-
1al slices with key anatomical features indicated. Due to
the thickness of the slice, numerous partial volumes are to
be found. As can be seen in la). gray-level values varies
strongly in the pathological region.

II. PROPOSED ALGORITHM

Estimating the partial volume voxel tissue content requires
knowledge of the spatial interaction between the classes
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that gave rise to the partial volumes. We propose an algo-
rithm in which such contextual information is taken into
account in order to obtain reliable estimations. Having cal-
culated a class-labeled distance map (CLDM), we deduce
the pure-tissue gray-level means as well as what classes
might have interfered to produce the partial volume vox-
els. This permits estimation of tissue fractions in each

voxel.

A.  Calculating the CLDM

Starting from an initial crisp and rough classification of
the image to be processed, a map of distances to all class
borders is calculated using the chamfer transform [8]. In
addition to propagating distances, we also propagate the
class defining the border from which the distance is mea-
sured. Thus we know, for each voxel in the image. its a
priori class label (as given by the original classification)
and we have found the distance from its class boundary as
well as a label indicating to which neighboring class this
voxel 1s closest.

Figure 1b) shows the result of an MRF-based segmenta-
tion [9] of the original image in figure la) which provides
the a priori class labels in the following process. Part c)
shows the labeling of voxels obtained with the extended
chamfer transform explained above. Consider for instance
point 1 in part b); this point clearly belongs to the brain
matter class. In part ¢} we see that this point has been
labeled so as to indicate that its closest neighboring class
Is disease. Points 2 and 3 can be seen to fall within the
disease class but have different closest neighboring classes,
brain matter and ventricles respectively. as indicated by
their label in part ¢}. Finally, point 4, being in the ventri-
cles, has disease as closest neighboring class.

B.  Calculating Pure Tissue Means

As explained above, generation of the quantization tables
to be applied to each interface depends on estimates of the
pure tissue means. Assuming that the interior regions of
each tissue are pure (in the sense that only the tissue type
in question occurs), such estimates are easily obtained us-
ing the CLDM. We base our estimates on the gray-level
values of voxels that are in the interior of each class. that
is, voxels that are at a certain distance from all tissue inter-
faces. Figure 2 shows the evolution of gray-level means as a
function of the distance from the interface of brain matter
with disease. Starting at a certain negative distance from
this interface (that is, in the interior of the brain matter
tissue) we observe that the gray-level mean is stable un-
til we are at a distance of about -5. At this point we are
sufficiently close to the interface to observe the onset of a
mixture with disease tissue and gray levels will gradually
change from that of pure brain matter to that of pure dis-
ease. As is evident from this figure, the pure tissue means
can be obtained from the interiors of the different tissues.
l.e. in regions where the gray-level mean is stable.

Ventricles

)

Figure 1: Tllustration of the algorithm.

d)

C.  FEstimating Disease Content

Now consider searching for all voxels that may contain dis-
ease tissue. These voxels are to be found in the two inter-
faces disease /brain matter and disease/ventricles; these in-
terfaces are easily identified using the label images shown
in parts b) and c¢): for instance, points 1 and 2 belong
to the interface disease/brain matter and points 3 and 4
to the interface disease/ventricles. Using estimates of the
pure tissue means (see below), we calculate for each inter-
face quantization tables indicating the link between voxel
gray levels in the original image and the corresponding
disease tissue content.

Part d) shows the fractional content of disease tissue for
each voxel in the original image limited to the two inter-
faces previously defined. A measure of the pathological
region volume is finally obtained by summing these frac-
tions.

ITI. Di1scussioON AND CONCLUSION

We have introduced the CLDM as a contextual approach to
partial volume estimation. Using the distance map we are
capable of selecting voxels in each class that are far from
any border in order to calculate accurate class gray-level
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Figure 2: Change in gray level means as a function of dis-
tance from the interface between brain matter and disease.

means. Due to this, our estimations are not influenced by
partial volume effects and are not sensitive to the shape
of the initial segmentation. The second advantage of the
CLDM is that it will identify the different types of tis-
sue interfaces. This allows us to treat each interface sep-
arately (by applying different quantization tables) instead
of globally as with classical methods; this guarantees more
precise measurements of tissue fractions. Compared with
hard decision based morphometric approaches, we are no
longer as dependent on the shape of the region in which
the volume is estimated due to the fact that the voxel vol-
umes are weighted using their tissue fractions. It should
be pointed out that all algorithms used in this study have
been extended to 3D and that the proposed methods are
applicable also in 3D . Note that the calculations of tissue
mixture assume linear variation of gray levels with respect
to tissue fraction.
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