
In the Proceedings of the 15th International Conference on Pattern Recognition (ICPR’2000),
IEEE Computer Society, vol. 4, pages 816-819, Barcelona, Spain, September 2000.

Obtaining Genericity for Image Processing and Pattern Recognition Algorithms

Thierry Géraud, Yoann Fabre, Alexandre Duret-Lutz
EPITA Research and Development Laboratory

14-16 rue Voltaire, F-94276 Le Kremlin-Bicêtre cedex, France
thierry.geraud@lrde.epita.fr

Dimitri Papadopoulos-Orfanos, Jean-François Mangin
Service Hospitalier Fŕed́eric Joliot, CEA

4 place du Ǵeńeral Leclerc, F-91401 Orsay cedex, France
papadopo@shfj.cea.fr

Abstract

Algorithm libraries dedicated to image processing and
pattern recognition are not reusable; to run an algorithm
on particular data, one usually has either to rewrite the al-
gorithm or to manually “copy, paste, and modify”. This is
due to the lack of genericity of the programming paradigm
used to implement the libraries. In this paper, we present a
recent paradigm that allows algorithms to be written once
and for all and to accept input of various types. Moreover,
this total reusability can be obtained with a very compre-
hensive writing and without significant cost at execution,
compared to a dedicated algorithm. This new paradigm is
called “generic programming” and is fully supported by the
C++ language. We show how this paradigm can be applied
to image processing and pattern recognition routines. The
perspective of our work is the creation of a generic library.

1 Introduction

Great effort has gone into building image processing and
pattern recognition libraries that can be used and augmented
by different research centers. However, the main diffi-
culty that is systematically encountered and that remains
unsolved is how to manage the large number of input types
used in this domain. An algorithm developed for a partic-
ular input can rarely be reused. As a consequence, no one
library has succeeded in being unanimously adopted by the
scientific community.

An ideal library should be generic, i.e. supply generic al-
gorithms. A generic image processing algorithm is written
once, and indistinctly accepts 2D and 3D images (isotropic

or not), regions, region adjacency graphs, image and graph
pyramids, sequences, collections and so forth; the types of
data contained in these structures is scalar (Boolean, integer
or float), complex, composed (e.g. RGB). Existing libraries
are usually dedicated to a particular data structure (mostly
2D images) and their algorithms are restricted to few data
types (mostly unsigned 8 bit integers). Ideal pattern recog-
nition algorithms also have this problem: for instance, a
given primitive such as a contour can have different repre-
sentations.

Most algorithm data can have different forms (i.e., dif-
ferent types) and should be used as the input of algorithms
in a transparent way. In this paper, we show that recent
advances inC++ programming allow this genericity with a
very comprehensive syntax and without leading to a signif-
icant extra cost of execution time as compared to dedicated
algorithms. This new paradigm is called “generic program-
ming”. We have successfully applied it both to low level im-
age processing routines and to high level pattern recognition
algorithms in a library that we are currently developing.

In section 2, we present the generic programming
paradigm and its benefits compared to usual paradigms.
Then, in section3, we explain how to design a generic al-
gorithm and we show with a simple example algorithm how
this paradigm can be applied to the field of image process-
ing, and how we can obtain maximal genericity. Lastly, in
section4, we conclude and give future perspectives of our
work.

2 The generic programming paradigm

To emphasize the benefits of generic programming ap-
plied to image processing and computer vision, we will first
point out some drawbacks of existing libraries.

1

2.1 Current libraries

In current C libraries, an algorithm has to be written
as many times as there are input types [1]; see figure1.
For instance, a simple addition of a constant to image el-
ements leads to four routines if we want this algorithm to
deal with 2D and 3D images with Boolean or floating ele-
ments. Since the combination “algorithms× structure types
× data types” can be enormous, many libraries limit the
number of structure types and data types handled by each
algorithm. TheC-like programming paradigm has two main
drawbacks: the capabilities of such libraries are limited, and
introducing a new structure type or data type is a tedious
task.

Some object languages such asC++ offer generic-
ity, which means that classes and procedures can be
parametrized. A common use of genericity is to parame-
terize the definitions of data structures and routines by the
data type of their elements. As a consequence, reusability
is enhanced but, although some libraries use genericity in
this way [6, 5], the reusability is far from being total: rou-
tines still have to be written for each structure type. In fact,
existing libraries do not rely on the generic programming
paradigm presented below.

The limits of reusability of image processing algorithms
induced by different programming paradigms are explained
with further details in [3].

2.2 The novelty

Generic programmingis a new paradigm to write fully
generic algorithms without leading to significant overheads
at run-time as compared to dedicated code. This paradigm
is very attractive for scientific numerical programming and
is used in some recent libraries: CGAL [2] and Blitz++ [7],
respectively dedicated to geometric and algebraic calculi.

The generic programming paradigm is based on two key
ideas:

• an algorithm is parametrized by its input types (in con-
trast to data parameterization, see section2.1),

• the tools, helper objects needed by the algorithm, are
deduced from its input (like the iterators presented in
section3.2).

When an algorithm is used, the compiler generates the
appropriate machine code for the particular input types; see
figure2. Moreover, each method call in this code can be re-
placed by its implementation, so the cost of method calls
is avoided. Therefore, the executable code is similar to
that of a routine written for the particular input types and
generic procedures are roughly as fast as dedicated proce-
dures. Generic programming makes the compiler do the
work that the programmer has to do in usual programming.

uses

n

tools 1

tools 2

tools

algorithm

code for type 1

code for type 2

code for typen

compilation
stage

bin. for type 1

bin. for type 2

bin. for type n

machine bin. code

Figure 1. Usual mechanism in C.

compilation
stage

code for any typerequires

algorithm

bin. for type 1

bin. for type 2

bin. for type n

ntools

tools 2

tools 1

tools’ interfaces

machine bin. code

Figure 2. Generic mechanism in C++.

C++ is a language that offers a good compromise be-
tween efficiency and generic capabilities [4], so all existing
generic libraries are implemented inC++. In the next sec-
tion, we present the syntactic bases which are of prime im-
portance to understand the generic programming paradigm.

2.3 Syntax

The sample code below gives a part of the definition of a
generic 2D image class inC++:

template< typename T > // parameterization
class Image2D {

public:
typedef T value_type; // a type alias
size_t size() const; // a method
//...

};

This code contains two main syntactical elements.
Firstly, the class definition is parametrized (keyword

template) and a single parameter is defined,T, whose na-
ture is a type (keywordtypename). This parameter repre-
sents the type of the image elements. For instance, the pro-
grammer can then use the typeImage2D<float> to ma-
nipulate 2D images containing floating values. The param-
eterization thus allows the definition of only one class per
structure type in the library whatever the data type.

Lastly, one can define a type alias (keywordtypedef)
within a class; for instance, the parametric classImage2D

contains the aliasvalue type , which gives the element
type,T. Such an alias is used as follows:

typename class name::alias name .

Let us consider a procedure that is parametrized by the
type I of an input aggregate; this aggregate is the argument

input of the procedure. In the procedure body, the pro-
grammer can use type aliases such asI::value type , and
methods ofI such as ininput.size() ; see for instance
proc in the code below:

template< typename I > // parametrization
void proc(I& input) {

size_t a_size = input.size();
typename I::value_type a_value;
//...

}

int main() {
Image2D<float> ima;
proc(ima);

}

Whenproc is called, the typeI is known, and the dedi-
cated procedure is compiled (if it has not already been com-
piled). The compiler then checks that the type effectively
contains a methodsize() and an aliasvalue type (these
two points represent a required interface). Since it is the
case for the typeImage2D<float> , in main() , the vari-
ablevalue is of typefloat in the compiled routine.

3 Generic algorithm design

The generic programming paradigm being quite recent,
algorithm design does not follow a standard process. So, we
first present the method that we have established.

3.1 Design method

The design method is sequential and composed of sev-
eral steps.

1. Express the algorithm in mathematical language while
paying attention to remaining as general as possible.
This step ensures that we will not provide an algo-
rithm that depends upon particular considerations (for
instance, an algorithm linked to a given data structure).

2. Identify the objects that are involved in the expression
obtained at the previous step and describe their role
and their required behavior.

3. Point out each algorithm option that should be set by
the user, and give each option a default value if it is
pertinent. If needed, return to step 2 to take into ac-
count these options.

4. Analyze the dependencies between the types of the ob-
jects used in the algorithm, and deduce its parameters.

5. Finally, write the generic algorithm.

3.2 A simple example

To illustrate how to obtain the highest genericity for an
image processing or pattern recognition algorithm, let us
study a very simple example: the addition of a constant to
the elements of an aggregate.

Step 1 For the sake of genericity, let us first generalize this
example and consider that the algorithm has to be designed
for any operator similar toval += cst . We can then for-
mulate this algorithm as follows : “for each element of an
input aggregate, apply the operator to the element value”.
Please note that this description conceals all implementa-
tion details related to the particular types of the objects that
could be involved in the algorithm.

Step 2 The objects involved in the algorithm are: an input
aggregate (argumentinput), an iterator (internal variable
iter), a constant value (argumentcst).

To translate this description into a generic algorithm, the
introduction of an object which iterates over the elements of
an aggregate is required; such an object, called aniterator,
is a common tool in software design. One iterator class is
defined per structure type and all iterators provide the same
interface (i.e., the same subset of methods and aliases) in
order to be uniformly manipulated. In this way, iterating
over graph vertices leads to the same syntax as iterating over
image points.

Step 3 The options of the algorithm are:

• an operator (for instance, a saturated addition),

• a predicate to restrict the addition to certain elements
of the aggregate (by default, the predicate returns al-
ways true),

• an accessor to specify, if the element type is structured,
which field is concerned by the addition (by default,
the accessor is the identity; its name isget value<>),

Each option is translated into one extra object in the algo-
rithm.

Step 4 Let us denote byI the type of the input aggregate,
by C the type of the constant value, byO the type of the
operator, byP the type of the predicate, byget A the type
of the accessor (when accessing fieldA of I), and by T the
type of the iterator. Then, we have the following statements:

• C is given byget A::output type ,

• T is given byI::iterator type ,

• get A<>::input type is given byI::value type

and get A<>::output type is given by
I::value type::A type ,

• O::args type is given byget A::output type .

The parameters of the algorithm are:I , O, P, andget A.
The first parameter is known when the algorithm is called
and the last two parameters have default values. The only
parameter that the user has to set isO.

Step 5 The core of the algorithm is transformed into the
following description. Defineiter on input ; then, for
each iteration handled byiter , conditioned bypred , ap-
ply oper with cst on the value given byiter through
access . Finally, this algorithm is ready to be translated
into the genericC++ code1:

template< typename O,
template< class U > class get_A = get_value,
typename P = Pred_true >

struct op
{

template< typename I > static
void on(I& input,

const get_A< I::value_type >::output_type& cst,
P pred = P())

{
O oper; get_A< I::value_type > access;
I::iterator_type iter(input);
for (iter.first(); ! iter.isDone(); iter.next())

if (pred(access(iter())))
oper(access(iter()), cst);

}
};

This algorithm accepts various structure and data types.
Moreover, the user can parameterize its behavior (for in-
stance, the user can subtract a constant value from the red
component of some elements of a 3D image). Since the user
is not required to set all parameters, the simplest call of the
algorithm (arithmetical plus) is:

op<plus>::on(input, cst);

4 Conclusion

In this paper, we have presented the generic program-
ming paradigm that enables the implementation of generic
algorithms. Then, we have demonstrated with an example
how to apply this paradigm to the field of image process-
ing and pattern recognition and how to obtain the highest
genericity.

The main difficulty of building a generic library lies in
correct designing of algorithms and tools. For that, the
closer the code is to the theory, the better the genericity is.
Although the example given in this paper is very simple, the
design process is rigorously equivalent for high-level rou-
tines.

This paradigm has five major advantages that we set out
below.

Reusability Since algorithms are generic, their reusability
is maximal. Each algorithm is programmed only once
and accepts data of various types. When one wants to

1The full implementation of the example is available at the URL
http://www.lrde.epita.fr/download/

introduce a new data type in the library, one only has to
conform to few requirements in order to benefit from
the existing algorithms.

Functionalities From the viewpoint of the user, such a li-
brary is no more complicated than current libraries.
Algorithms can be called very simply because they de-
fine their own default settings, while it remains possi-
ble for the user to be more specific.

Development The development cost of a generic algorithm
is dramatically reduced as compared to that of current
libraries (see figures1 and2). Consequently, mainte-
nance and reliability are significantly improved.

Efficiency Generic algorithms are roughly as fast as ded-
icated algorithms (the compiler expands generic code
and makes it similar to dedicated code).

Federative A generic library is able to federate tools and
algorithms developed by different research centers.
We believe that this point is of prime importance for
the community because such a library enhances the
capitalization of knowledge.

We are currently developing such a library whose first
version will be soon freely available. We do not aim at pro-
viding a wide range of algorithms and tools but the most
usual ones to facilitate algorithm programming.

References

[1] M. Dobie and P. Lewis. Data structures for image processing
in C. Pattern Recognition Letters, 12(8):457–466, 1991.

[2] A. Fabri, G. Giezeman, L. Kettner, S. Schirra, and
S. Scḧonherr. On the design of CGAL, the computational
geometry algorithms library. Technical Report 3407, INRIA,
1998.

[3] T. Géraud, Y. Fabre, D. Papadopoulos-Orfanos, and J.-
F. Mangin. Vers une réutilisabilit́e totale des algo-
rithmes de traitement d’images. In17th Symposium on
Signal and Image Processing (GRETSI’99), volume 2,
pages 331–334, Vannes, France, September 1999. In
French; available in English as a technical report at
http://www.lrde.epita.fr/publications

[4] S. Haney and J. Crotinger. How templates enable high-
performance scientific computing in C++.IEEE Computing
in Science and Engineering, 1(4), 1999.

[5] C. Kohl and J. Mundy. The development of the Image Un-
derstanding Environment. InProceedings of the Interna-
tional Conference on Computer Vision and Pattern Recogni-
tion, pages 443–447, 1994.

[6] G. Ritter, J. Wilson, and J. Davidson. Image Algebra: an
overview.Computer Vision, Graphics, and Image Processing,
49(3):297–331, 1990.

[7] T. Veldhuizen. Arrays in Blitz++. InProc. of the 2nd
Intl. Conf. in Object-Oriented Parallel Environments (IS-
COPE’98), number 1505 in Lectures Notes in Computer Sci-
ence, pages 223–230. Springer Verlag, 1998.

	1 Introduction
	2 The generic programming paradigm
	2.1 Current libraries
	2.2 The novelty
	2.3 Syntax

	3 Generic algorithm design
	3.1 Design method
	3.2 A simple example

	4 Conclusion

