
In the Proceedings of the IASTED International Conference on Applied Informatics (AI’2001) – Symposium on
Advances in Computer Applications, ACTA Press, pages 577-581, Innsbruck, Austria, February 2001.

APPLYING GENERIC PROGRAMMING

TO IMAGE PROCESSING

T. Géraud, Y. Fabre, A. Duret-Lutz

EPITA Research and Development Laboratory

14-16 rue Voltaire, F-94276 Le Kremlin-Bicêtre cedex, France
{Thierry.Geraud,Yoann.Fabre,Alexandre.Duret-Lutz}@lrde.epita.fr

Abstract

This paper presents the evolution of algorithms implementa-
tion in image processing libraries and discusses the limits of
these implementations in terms of reusability. In particular,
we show that in C++, an algorithm can have a general imple-
mentation; said differently, an implementation can begeneric,
i.e., independent of both the input aggregate type and the type
of the data contained in the input aggregate. A total reusability
of algorithms can therefore be obtained; moreover, a generic
implementation is more natural and does not introduce a mean-
ingful additional cost in execution time as compared to an im-
plementation dedicated to a particular input type.

Keywords

Image processing, genericity, reusability, programming.

1 Introduction

Several times, great efforts have been performed in building
an image processing library to provide a standard framework
to laboratories. However, one of the main difficulties of such
a project is taking into account the diversity of the problems
tackled in image processing. In particular, the diversity of data
aggregates (2D or 3D images, isotropic or not, sequences or
pyramids of images, regions or adjacency graphs of regions,
collections, etc.) and of data (Boolean, integer or floating
formats, complex, structures like RGB, vectors, etc.)

In this paper, we focus on image processing algorithms
programming techniques aiming to reuse these algorithms
vis-à-vis of the data type and of the aggregate type that
these algorithms can support. We are going to illustrate
our remarks on two very simple processing examples: the
addition of a constant to the value of the elements of an
aggregate (for example the points of an image) and a mean
filter on an aggregate. We will finally see that a completely
general implementation of these algorithms is possible in
C++ thanks to genericity and to type deduction; we will
also see that this kind of implementation does not cause
any significant additional cost in time of execution and that

it is close to a natural language description of these algorithms.

The code given in this paper is deliberatly simplified in or-
der to make easier the comprehension of the presented pro-
gramming techniques. The entire code is available on the
Internet at the location:http://www.lrde.epita.fr/
download/ .

2 C-Like Programming

In languages like the C (put differently, languages that are im-
perative, procedural and structured), an aggregate type is de-
fined by a structure, where the fielddata that holds the values
of the aggregate elements is untyped and where the fieldtype
gives information on their type. This style of definition is il-
lustrated below:

typedef struct
{

int nRows;
int nColumns;
type_t type;
void* data;

}
Image2D;

The advantage of this structure is to provide a unique def-
inition for each aggregate type, and so whatever is the data
type [1]; consequently, a processing algorithm on a given ag-
gregate is translated into a unique function. For a function to
support as input 2D images which data are unsigned 8 bit in-
tegers (char type in C), a routine specific to this type must be
written in the function:

void add(Image2D* image, void* val)
/* function for a given aggregate type */
{

int iRow, iColumn;
switch (image->type)
{

case CHAR:
/* routine for a given data type */

char** dataChar = toChar2D(image);
char valChar = toChar(val);
for (iRow = 0;

1

http://www.lrde.epita.fr/download/
http://www.lrde.epita.fr/download/

iRow < image->nRows;
++iRow)

for (iColumn = 0;
iColumn < image->nColumns;
++iColumn)

dataChar[iRow][iColumn] += valChar;
break;

/* other cases... */
/* i.e., routines for other data types */

}
}

T processing operators,S aggregate types andD data types
lead toT × S × D different routines. In order to reduce this
combinative, many libraries limit the number of data types
and aggregate types available for the user, and restrict the
applicability of most processing operators to a small number
of aggregates and data types. Thus, for aggregate types, most
libraries manage 2D images, sometimes 3D images, and rarely
adjacency region graphs. We find for data types, from the
most classic to the less frequent, unsigned and signed integers
on 8 and 16 bits, floating values, Booleans, RGB colors with
unsigned integer components on 8 bit.

The traditional C-like programming drives to a nearly nil
reusability: to introduce a new entity (a data type, an aggre-
gate type, or a processing operator) imposes in such a library
an implementation effort that results most the time in manual
“copy-paste-modify”.

3 Classic Object-Oriented Programming

3.1 Genericity

To avoid implementing a routine for each data type, some
object-oriented languages such as C++ permits to define data
aggregates with parameterized classes. This technique, used in
the IAC++ [2] and IUE [3] libraries, leads to definitions below,
where the parameterData is the data type. The implementa-
tions of processing operators are parameterized in the same
way.

template< class Data >
class Image2D
{

int nRows;
int nColumns;
Data** data;
// ...

};

template< class Data >
void add(Image2D<Data>& image,

Data val)
{

int iRow, iColumn;

for (iRow = 0;
iRow < image.nRows;
++iRow)

for (iColumn = 0;
iColumn < image.nColumns;
++iColumn)

image.data[iRow][iColumn] += val;
}

From this code, saidgeneric, the compiler automatically
constructs the necessary declensions, i.e., routines. Thus, the
declaration and the call:

Image2D<char > image; add(image, 3);

will force the compilation of the classImage2D<char >

and of the functionadd(Image2D <char >&, char) ;
the machine code of the routine dedicated to a particular
type of data (the one of the section2) is produced therefore
automatically by the compiler.

Generic programming presents two advantages: typing is
strong (the anonymous typevoid* disappears) and process-
ing implementations become independent of data types. For
the programmer, the number of functions to implement is then
reduced toT × S (a function is a generic routine); but, each
function is still dependent of the aggregate type (the function
of our example only accepts 2D images).

3.2 Inheritance and Dynamic Polymorphism

In order to make a unique function handle various aggregate
types, it is necessary to abstract details of implementation
bound to every aggregate type. This is feasible while present-
ing a unique interface to manipulate these different aggregate
types and while making intervene the notion of methods
redefinition via inheritance. In [4], an object-oriented design
of aggregates and iterators is given; here, we adapt it to our
problematic.

Two abstract classes are defined:Aggregate <Data > and
Iterator <Data >. The former class represents an aggregate
of elements (the elements type isData) and declares the ab-
stract methodcreateIterator() for the instantiation of an
iterator over the aggregate. The latter class represents an it-
erator on this aggregate and declares a set of methods for the
manipulation of an iterator:

• void first() to initialize the position of the iterator on
the first element of the aggregate,

• bool isDone() to know if the iterator has finished to
browse the aggregate,

• Data& value() to recover the value of the aggregate
element corresponding to the current position of the iter-
ator,

• void next() to move the iterator to the next aggregate
element.

From these two abstract classes derives respectively
the specialized concrete classes:Image2D<Data > and
Image2DIterator <Data >. An iterator on the points of a

2D image has three attributes: the indices of raw and column
of the current point and the reference to the targeted 2D image.

Finally, the implementation of the addition operator is:

template< class Data >
void add(Aggregate<Data>& aggregate,

Data val)
{

Iterator<Data>& iter
= aggregate.createIterator();

for (iter.first();
! iter.isDone();
iter.next())

iter.value() += val;
}

With this design, as shown below, only the abstract classes
intervene in the implementation of the addition. A binding
is performed at run-time to call the methods specific to
the effective types (called dynamic types) of the objects
aggregate anditer . Thus, with the declaration and call:

Image2D<char > image; add(image, 3);

the methodcreateIterator() that is executed is the
one of the classImage2D<char >, the dynamic type of
iter is Image2DIterator <Data >, and the executed iter-
ation methods are indeed the ones of an iterator on a 2D image.

Let us consider now the example of a mean filter. We can
define two new iterator types: a follower iterator and a neigh-
bourhood iterator. An implementation using a classic object-
oriented design is given below, with a macrofor each that
simplifies the implementation of the loop over the aggregate
elements. Here,inputElt iterates on the elements of the in-
put aggregate,neighborElt iterates on the neighbourhood of
the current element of the input aggregate, andoutputElt it-
erates on the output aggregate in an equivalent way to the input
aggregate iteration.

template< class Data >
void mean(Aggregate<Data>& inputAggregate,

Aggregate<Data>& outputAggregate)
{

Iterator<Data>& inputElt
= inputAggregate.createIterator(),

Iterator<Data>& neighborElt
= inputElt.createNeighborIterator(),

Iterator<Data>& outputElt
= outputAggregate

.createFollowerIterator(inputElt);

for_each(inputElt)
{

Data sum = 0;
for_each(neighborElt)

sum += neighborElt.value();
outputElt.value() = sum

/ neighborElt.getCard();
}

}

This implementation uses inheritance and dynamic poly-
morphism (more precisely, it involves bothinclusion polymor-
phismandoperation polymorphism[5]). In our examples, it
permits to deduct from the type of the aggregate, input of pro-
cessing operators, the adequate iterators. The functions are
thus independent from both data type and aggregate type. The
number of routines is therefore minimal: (T), one processing
operator being programmed once for all. Besides, the imple-
mentation of a processing operator is nearly close to the natural
language description of the operator algorithm.

3.3 Drawbacks

The solutions based on classic object-orientation present how-
ever four drawbacks, enumerated in [6]. The most penalizing
in the field of numeric computing is the cost resulting from
every call to a polymorphic method. Indeed, such a call results
in two indirections: one for the access to the methods of the
effective class of the targeted object and one for the access to
the considered method.

In order to estimate the cost of these indirections, we have
realised performance tests. The first test corresponds to the
addition of a constant on a 2D image made of 8 millions
points; the second test corresponds to a mean filter with a
6-neighborhood of a 3D image made of 8 millions points.
The results are given in table3.3 (the benchmarks have
been performed on a 333 MHz PC with Linux and with the
GNU C++ compiler). The use of classic object-orientation is
prohibitive, the repetition of calls to the methodsfirst() ,
value() , isDone() andnext() being very expensive.

C-like dynamic static

programming polymorphism polymorphism

addition 0.5 s 1.5 s 0.8 s

mean 3.5 s 11.4 s 3.9 s

Table 1: Compared Performance From Different Programming
Techniques.

Classic object-orientation is an interesting solution to make
a unique routine handle various input types; however, in the
context of image processing where the size of aggregates (for
instance, the number of points of a 2D image) can be impor-
tant, this “classic” approach is inadequate.

4 New Approach: Generic Programming

Accepted in 1994 by the ANSI/ISO C++ normalization com-
mittee as part of the C++ standard library, theStandard Tem-
plate Library (STL) [7] provides a set of containers and al-
gorithms. This library has helped thegeneric programming
paradigm to become popular. This paradigm is used by some
recent libraries [8] (see also the technical report [6]).

4.1 Type Aliases and Static Polymorphism

The key idea of generic programming is to parameterize the
algorithms, by the aggregate type (Aggregate) rather than
by the data type. The deduction of types from a aggregate
type is achieved by type aliases defined in aggregate classes.
The declaration of the classImage2D<Data > that allows
the use of the typeImage2D<Data >::Iterator , alias for
Image2DIterator <Data >, is given below with the result-
ing implementation of the mean algorithm.

template<class Data>
class Image2D
{
public:

typedef Data DataType;
typedef Image2DIterator<Data>

Iterator;
typedef Image2DFollowerIterator<Data>

FollowerIterator;
typedef Image2DNeighborIterator<Data>

NeighborIterator;
// ...

};

template<class Aggregate>
void mean(Aggregate& inputAggregate,

Aggregate& outputAggregate)
{

typename Aggregate::Iterator
inputElt(inputAggregate);

typename Aggregate::NeighborIterator
neighborElt(inputElt);

typename Aggregate::FollowerIterator
outputElt(outputAggregate, inputElt);

for_each(inputElt)
{

typename Aggregate::DataType::CumulType
sum = 0;

for_each(neighborElt)
sum += neighborElt.value();

outputElt.value() = sum
/ neighborElt.getCard();

}
}

The definition of the abstract classesAggregate <Data >

and Iterator <Data > is not longer necessary and inher-
itance becomes obsolete. Every object targeted by method
calls has here a concrete type, known at compile-time. The
execution over-cost at run-time due to dynamic polymorphism
in the classic object-oriented paradigm is therefore avoided.

Besides, the C++ language offers a mechanism that al-
lows the compiler to replace a method call by the method
code (when the method is not polymorph). If the func-
tion mean() given above is used for the aggregate type
Image2D<IntegerS8 >, the machine code generated by
the compiler will be rigorously equivalent to the one of the
section2.

Finally, execution times of generic programming implemen-
tations of algorithms only present a light additional cost as
compared to those of dedicated implementations, as testifies
table 3.3. Generic programming is therefore a pertinent so-
lution to the twofold problematic of implementing general al-
gorithms (i.e, applicable on various aggregate types and data
types) and having efficient processing functions. The inten-
sive use of parameters and type aliases leads tostatic poly-
morphism(more formally, this polymorphism is also called
parametric polymorphism[5]), in contrast to dynamic poly-
morphism.

4.2 Refinements

Generic programming permits to differentiate the particu-
larities of certain aggregate and data types. Indeed, if an
algorithm can or must be written differently for a specific type,
all that is necessary is to overload the generic implementation
by defining a function with the same signature but with an
explicit parameter.

About data types, a same predefined storage type of a
language can serve to data types of different semantics
(for example, an unsigned integer coded on 8 bit can also
represent a discrete fuzzy value); to make their distinction,
which conducts to different implementations, it is necessary
to define data types as classes. So, the classIntegerS8

replaces advantageously the typechar ; in particular, the type
of the sum variable that serves to sum up the values is being
deducted.

We currently develop a platform for image processing [9]
that uses in an hybrid way, in function of the needed perfor-
mances, classic and generic programming. Without increasing
the simplicity of algorithm implementations, we also have ob-
tained two additional forms of genericity that does not lead
to a meaningful additional cost at the execution: every algo-
rithm implementation can be restricted to the elements of an
aggregate that verify a given predicate and can concern a field
of data solely (for example, the red component of RGB). For
that, we have translated classicaldesign patternsto the generic
programming paradigm [10].

5 Conclusion

In this paper, we showed that the evolution of programming
techniques permits nowadays to have general and efficient im-
plementations for image processing algorithms. These imple-
mentations are then completely reusable: they accept the in-
troduction of new data types and aggregate types. Their mode
of implementation, generic programming, of which we have
presented the principle, is adapted to processing operators of
various natures: filtering, Markovian relaxations, scale-space
methods, and so on.

References

[1] M.R. Dobie & P.H. Lewis, Data structures for image pro-
cessing in C, Pattern Recognition Letters, 12(8), 1991,
457–466.

[2] G.X. Ritter, J.N. Wilson, & J.L. Davidson, Image Alge-
bra: an overview,Computer Vision, Graphics, and Image
Processing, 49(3), 1990, 297–331.

[3] C. Kohl & J. Mundy, The development of the Image
Understanding Environment,Proceedings of the Interna-
tional Conference on Computer Vision and Pattern Recog-
nition, 1994, 443–447.

[4] E. Gamma, R. Helm, R. Johnson, & J. Vlissides,Design
patterns – Elements of reusable object-oriented software
(Professional Computing Series, Addison Wesley, 1995).

[5] L. Cardelli & P. Wegner, On understanding types, data ab-
straction, and polymorphism,Computing Surveys, 17(4),
1985, 471–522.

[6] A. Fabri, G.J. Giezeman, L. Kettner, S. Schirra, &
S. Scḧonherr,On the design of CGAL, the computational
geometry algorithms library, Technical Report 3407, IN-
RIA, France, 1998.

[7] A. Stepanov & M. Lee,The Standard Template Library,
Hewlett Packard Laboratories, 1501 Page Mill Road, Palo
Alto, CA 94304, February 1995.

[8] The object-oriented numerics page,http://oonu-
merics.org/oon/

[9] T. Géraud, Y. Fabre, A. Duret-Lutz, D. Papadopoulos-
Orfanos, & J.-F. Mangin, Obtaining Genericity for Im-
age Processing and Pattern Recognition Algorithms,Pro-
ceedings of the 15th International Conference on Pat-
tern Recognition (ICPR’2000), vol. 4, Barcelona, Spain,
September 2000, 816–819.

[10] A. Duret-Lutz, T. Ǵeraud, & A. Demaille, Generic De-
sign Patterns in C++,Proceedings of the 6th USENIX
Conference on Object-Oriented Technologies and Sys-
tems (COOTS’2001), San Antonio, TX, USA, January-
February 2001. To appear.

	1 Introduction
	2 C-Like Programming
	3 Classic Object-Oriented Programming
	3.1 Genericity
	3.2 Inheritance and Dynamic Polymorphism
	3.3 Drawbacks

	4 New Approach: Generic Programming
	4.1 Type Aliases and Static Polymorphism
	4.2 Refinements

	5 Conclusion

