
Design Patterns for Generic Programming in C++

Alexandre Duret-Lutz, Thierry Géraud, and Akim Demaille
EPITA Research and Development Laboratory

14-16 rue Voltaire, F-94276 Le Kremlin-Bicêtre cedex, France
{Alexandre.Duret-Lutz,Thierry.Geraud,Akim.Demaille}@lrde.epita.fr

http://www.lrde.epita.fr/

Abstract

Generic programming is a paradigm whose wide adop-
tion by the C++ community is quite recent. In this
scheme most classes and procedures are parameterized,
leading to the construction of general and efficient soft-
ware components. In this paper, we show how some de-
sign patterns from Gamma et al. can be adapted to this
paradigm. Although these patterns rely highly on dy-
namic binding, we show that, by intensive use of para-
metric polymorphism, the method calls in these patterns
can be resolved at compile-time. In intensive computa-
tions, the generic patterns bring a significant speed-up
compared to their classical peers.

1 Introduction

This work has its origin in the development of Olena
[11], our image processing library. When designing a li-
brary, one wants to implement algorithms that work on
a wide variety of types without having to write a pro-
cedure for each concrete type. In short, one algorithm
should be generic enough to map to a single procedure.
In object-oriented programming this is achieved using
abstract types. Design Patterns, which are design struc-
tures that have often proved to be useful in scientific
computing, rely even more on abstract types and inclu-
sion polymorphism1.

However, when it comes to numerical computing,
object-oriented designs can lead to a huge performance
loss, especially as there may be a high number of virtual
functions calls [7] required to perform operations over

1 Inclusion polymorphism corresponds to virtual member functions
in C++, deferred functions in Eiffel, and primitive functions in Ada.

an abstraction. Yet, rejecting design patterns for the sake
of efficiency seems radical.

In this paper, we show that some design patterns from
Gamma et al. [10] can be adapted to generic program-
ming. To this aim, virtual functions calls are avoided by
replacing inclusion polymorphism by parametric poly-
morphism.

This paper presents patterns in C++, but, although they
won’t map directly to other languages because “gener-
icity” differs from language to language, our work does
not apply only to C++: our main focus is to devise flex-
ible designs in contexts where efficiency is critical. In
addition, C++ being a multi-paradigm programming lan-
guage [28], the techniques described here can be limited
to critical parts of the code dedicated to intensive com-
putation.

In section 2 we introduce generic programming and
present its advantages over classical object-oriented pro-
gramming. Then, section 3 presents and discusses the
design of the following patterns: GENERIC BRIDGE,
GENERIC ITERATOR, GENERIC ABSTRACT FACTORY,
GENERIC TEMPLATE METHOD, GENERIC DECORA-
TOR, and GENERIC VISITOR. We conclude and con-
sider the perspectives of our work in section 4.

2 Generic programming

By “generic programming” we refer to a use of parame-
terization which goes beyond simple genericity on data
types. Generic programming is an abstract and efficient
way of designing and assembling components [15] and
interfacing them with algorithms.

Generic programming is an attractive paradigm for sci-
entific numerical components [12] and numerous li-
braries are available on the Internet [22] for various do-
mains: containers, graphs, linear algebra, computational
geometry, differential equations, neural networks, visu-
alization, image processing, etc.

The most famous generic library is probably the Stan-
dard Template Library [26]. In fact, generic program-
ming appeared with the adoption of STL by the C++
standardization committee and was made possible with
the addition of new generic capabilities to this lan-
guage [27, 21].

Several generic programming idioms have already been
discovered and many are listed in [30]. Most generic
libraries use the GENERIC ITERATOR that we describe
in 3.2. In POOMA [12] — a scientific framework
for multi-dimensional arrays, fields, particles, and trans-
forms — the GENERIC ENVELOPE-LETTER pattern ap-
pears. In the REQUESTED INTERFACE pattern [16], a
GENERIC BRIDGE is introduced to handle efficiently an
adaptation layer which mediates between the interfaces
of the servers and of the clients.

2.1 Efficiency

The way abstractions are handled in the object-oriented
programming paradigm ruins the performances, espe-
cially when the overhead implied by the abstract inter-
face used to access the data is significant in comparison
with the time needed to process the data.

For example, in an image processing library in which
algorithms can work on many kinds of aggregates (two
or three dimensional images, graphs, etc.), a procedure
that adds a constant to an aggregate may be written using
the object-oriented programming paradigm as follows.

template< class T >
void add (aggregate<T>& input, T value)
{
 iterator<T>& iter = input.create_iterator ();
 for (iter.first(); !iter.is_done(); iter.next())
 iter.current_item () += value;
}

Here, aggregate<T> and iterator<T> are abstract
classes to support the numerous aggregates available:
parameterization is used to achieve genericity on pixel
types, and object-oriented abstractions are used to get
genericity on the image structure.

dedicated C classical C++ generic C++

add 10.7s 37.7s 12.4s
mean 47.3s 225.8s 57.5s

Table 1: Timing of algorithms written in different
paradigms. (The code was compiled with gcc 2.95.2

and timed on an AMD K6-2 380MHz machine running

GNU/Linux.)

As a consequence, for each iteration the direct call to
T::operator+=() is drowned in the virtual calls to
current_item(), next() and is_done(), leading to
poor performances.

Table 1 compares classical object-oriented programming
and generic programming and shows a speed-up factor
of 3 to 4. The add test consists in the addition of a
constant value to each element of an aggregate. The
mean test replaces each element of an aggregate by the
mean of its four neighbors. The durations correspond
to 200 calls to these tests on a two dimensional image
of 1024 × 1024 integers. “Dedicated C” corresponds to
handwritten C specifically tuned for 2D images of inte-
gers, so the difference with classical C++ is what people
call the abstraction penalty. While this is not a text-
book case —we do have such algorithms in Olena— it
is true that usually the impact of object-oriented abstrac-
tion is insignificant. High speed-ups are obtained from
generic programming compared to object-oriented pro-
gramming when data processing is cheap relatively to
data access. For example for simple list iteration or ma-
trix multiplication.

The generic programming writing of this algorithm, us-
ing a GENERIC ITERATOR, will be given in section 3.2.

2.2 Generic programming from the language
point of view

Generic programming relies on the use of several pro-
gramming language features, some of which being de-
scribed below.

Genericity is the main way of generalizing object-
oriented code. Not all languages support both
generic classes and generic procedures (e.g., Eiffel
features only generic classes).

Nested type names refers to the ability to look up a
type as member of a class and allow to link re-
lated types (such as image2d and iterator2d)

together.

Constrained genericity is a way to restrict the possible
values of formal parameters using signatures (e.g.,
when using ML functors [19]) or constraining a
type to be a subclass of another (as in Eiffel or Ada
95). C++ does not provide specific language fea-
tures to support constrained genericity, but subclass
constraints [29, 23] or feature requirements [18, 25]
can be expressed using other available language fa-
cilities [27].

Generic specialization allows the specialization of an
algorithm (e.g., dedicated to a particular data type)
overriding the generic implementation.

Not all languages support these features, this explains
why the patterns we present in C++ won’t apply directly
to other languages.

2.3 Generic programming guidelines

From our experience in building Olena, which is entirely
carried out by generic programming, we derived the fol-
lowing guidelines. These rules may seem drastic, but
their appliance can be limited to critical parts of the code
dedicated to intensive computation.

Guidelines for generic classes:

• Avoid inclusion polymorphism.
In other words, the type of a variable (static type,
known at compile-time) is exactly that of the in-
stance it holds (dynamic type, known at run-time).
The main requirement of generic programming is
that the concrete type of every object is known at
compile-time.

• Avoid operation polymorphism.
Abstract methods are forbidden: dynamic binding
is too expensive. Simulate operation polymorphism
with either: (i) parametric classes thanks to the Cu-
riously Recurring Template idiom (see section 3.4),
or (ii) parametric methods, which lead to a form of
ad-hoc polymorphism (overloading).

• Use inheritance only to factor methods and to de-
clare attributes shared by several subclasses.

Guidelines for procedures which use generic pat-
terns:

• Parameterize the procedures by the types of their
inputs, even if the input itself is parameterized.

• Parameterize the procedures by the types of the
components used (unless they can be obtained by
a nested type lookup in another parameter-type).

3 Generic Design Patterns

Our generic design patterns exposition is Gamma et al.’s
description of the original, abstract version of the pat-
terns [10]. We do not repeat the elements that can be
found in this book.

3.1 Generic Bridge

Intent

Decouple an abstraction from its implementation so that
the two can vary independently.

Structure

imp

abstraction

T

refined_abstraction

T

concrete_implementor_a

operation ()

imp−>operation_imp ();

operation_imp ()

Participants

An abstraction class is parameterized by the
Implementation used. Any (low-level) operation on
the abstraction is delegated to the implementation in-
stance.

Consequences

Because the implementation is statically bound to the
abstraction, you can’t switch implementation at run-
time. This kind of restriction is common to generic pro-
gramming: configurations must be known at compile-
time.

Known Uses

This pattern is really straightforward and broadly used
in generic libraries. For example the allocator pa-
rameter in STL containers is an instance of GENERIC

BRIDGE.

The POOMA team [5] use the term engine to name im-
plementation classes that defines the way matrices are
stored in memory. This is also a GENERIC BRIDGE.

The Ada 95 rational [14, section 12.6] gives an example
of GENERIC BRIDGE: a generic empty package (also
called signature) is used to allow multiple implementa-
tion of an abstraction (here, a mapping).

As in the case of the original patterns, the structure of
this pattern is the same as the GENERIC STRATEGY pat-
tern. These patterns share the same implementation.

3.2 Generic Iterator

Intent

To provide an efficient way to access the elements of
an aggregate without exposing its underlying represen-
tation.

Motivation

In numeric computing, data are often aggregates and al-
gorithms usually need to work on several types of ag-
gregate. Since there should be only one implementation
of each algorithm, procedures must accept aggregates of
various types as input and be able to browse their el-
ements in some unified way; iterators are thus a very
common tool. As an extra requirement compared to the
original pattern, iterations must be efficient.

Structure

<<type>>

aggregate

typedef iterator_type

create_iterator() : iterator_type

typedef value_type

T

typedef iterator_type : concrete_iterator<T>

<<implementation class>>

concrete_aggregate

create_iterator() : concrete_iterator<T>

typedef value_type : T

first()

is_done() : bool

next()

<<type>>

iterator

iterator (aggregate&)

current_item() : aggregate::value_type&

T

concrete_iterator(concrete_aggregate<T>&)

first()

is_done() : bool

current_item() : T&

next()

<<implementation class>>

concrete_iterator

{ aggregate::iterator_type = iterator }

We use typedef as a non-standard extension of
UML [24] to represent type aliases in classes.

Participants

The term concept was coined by M. H. Austern [1], to
name a set of requirements on a type in STL. A type
which satisfies these requirements is a model of this con-
cept. The notion of concept replaces the classical object-
oriented notion of abstract class.

For this pattern, two concepts are defined: aggregate and
iterator, and two concrete classes model these concepts.

Consequences

Since no operation is polymorphic, iterating over an ag-
gregate is more efficient while still being generic. More-
over, the compiler can now perform additional optimiza-
tions such as inlining, loop unrolling and instruction
scheduling, that virtual function calls hindered.

Efficiency is a serious advantage. However we lose the
dynamic behavior of the original pattern. For example
we cannot iterate over a tree whose cells do not have the
same type2.

2 A link between an abstract aggregate and the corresponding
generic procedures can be achieved using lazy compilation and dy-
namic loading of generic code [8].

Implementation

Although a concept is denoted in UML by the stereotype
<<type>>, in C++ it does not lead to a type: a con-
cept only exists in the documentation. Indeed the fact
that concepts have no mapping in the C++ syntax makes
early detection of programming errors difficult. Sev-
eral tricks have been proposed to address this issue by
explicitly checking that the arguments of an algorithm
are models of the expected concepts [18, 25]. In Ada
95, concept requirements (types, functions, procedures)
can be captured by the formal parameters of an empty
generic package (the signature idiom) [9].

For the user, a type-parameter (such as Aggregate_

Model in the sample code) represents a model of aggre-
gate and the corresponding model of iterator can then
be deduced statically.

Sample Code

template< class T >
class buffer
{
 public:
 typedef T data_type;
 typedef buffer_iterator<T> iterator_type;
 // ...
};

template< class Aggregate_Model >
void add(Aggregate_Model& input,
 typename Aggregate_Model::data_type value)
{
 typename Aggregate_Model::iterator_type&
 iter = input.create_iterator ();

 for (iter.first(); !iter.is_done(); iter.next())
 iter.current_item () += value;
}

Known Uses

Most generic libraries, such as STL, use the GENERIC

ITERATOR.

Variations

We translated the Gamma et al. version, with methods
first(), is_done(), and next() in the iterator class.
STL uses another approach where pointers should also

be models of iterators: as a consequence, iterators can-
not have methods and most of their operators will rely
on methods of the container’s class. This makes imple-
mentation of multiple schemes of iteration difficult: for
example compare a forward and a backward iteration in
STL:

container::iterator i;
for (i = c.begin(); i != c.end(); ++i)
 // ...

container::reverse_iterator i;
for (i = c.rbegin(); i != c.rend(); ++i)
 // ...

First, the syntax differs. From the STL point of view
this is not a serious issue, because iterators are meant to
be passed to algorithms as instances. For a wider use,
however, this prevents parametric selection of the itera-
tor (i.e., passing the iterator as a type). Second, you have
to implement as many xbegin() and xend() methods
as there are schemes of iteration, leading to a higher cou-
pling [17] between iterators and containers.

Another idea consists in the removal of all the itera-
tor related definitions, such as create_iterator() or
iterator_type, from concrete_aggregate<T> in
order to allow the addition of new iterators without mod-
ifying the existing aggregate classes [32]. This can be
achieved using traits classes [20] to associate iteration
schemes with aggregates: the iterated aggregate instance
is given as an argument to the iterator constructor. For
example we would rewrite the add() function as fol-
lows.

template< class Aggregate_Model >
void add(Aggregate_Model& input,
 typename Aggregate_Model::data_type value)
{
 typename forward_iterator< Aggregate_Model >::type
 iter (input);

 for (iter.first(); !iter.is_done(); iter.next())
 iter.current_item () += value;
}

This eliminates the need to declare iterators into the ag-
gregate class, and allows further additions of iteration
schemes by the simple means of creating a new traits
class (for example backward_iterator<T>).

3.3 Generic Abstract Factory

Intent

To create families of related or dependent objects.

Motivation

Let us go back over the different iteration schemes prob-
lem discussed previously. We want to define several kind
of iterators for an aggregate, and as so we are candidates
for the ABSTRACT FACTORY pattern. The STL example
can be rewritten as follows to make this pattern explicit:
iterators are products, built by an aggregate which can
be seen as a factory.

factory_a::product_1 i;
for (i = c.begin(); i != c.end(); ++i)
 // ...

factory_a::product_2 i;
for (i = c.rbegin(); i != c.rend(); ++i)
 // ...

Implementing a GENERIC ABSTRACT FACTORY is
therefore just a matter of defining the product types in
the classes that should be used as a factory. This is really
simpler than the original pattern. Yet there is one sig-
nificant difference in usage: an ABSTRACT FACTORY
returns an object whereas a GENERIC ABSTRACT FAC-
TORY returns a type, giving more flexibility (e.g. con-
structors can be overloaded).

We have shown that if we want to implement multi-
ple iteration schemes, it is better to use traits classes,
to define the schemes out of the container. A trait
class if a GENERIC ABSTRACT FACTORY too (think of
trait::type as factory::product). But one issue
is that these two techniques are not homogeneous. Say
we want to add a new iterator to the STL containers: we
cannot change the container classes, therefore we define
our new iterator in a traits, but now we must use a differ-
ent syntax whether we use one iterator or the other.

The structure we present here takes care of this: both in-
ternal and external definitions of products can be made,
but the user will always use the same syntax.

Structure

concrete_factory_1 concrete_factory_2

typedef product_a_type: product_a1

typedef product_b_type: product_b1

{

 // ...
}

void foo (f : Factory)

 typename product_a_traits<Factory>::type a;

product_a1 product_a2

product_b1 product_b2

<< specialize >> (concrete_factory_2)

F

typedef type: F::product_b_type

typedef type: product_b2

<< specialize >> (concrete_factory_2)

F

typedef type: F::product_a_type

typedef type: product_a2

product_a_traits product_b_traits

product_a_traits<concrete_factory_2> product_b_traits<concrete_factory_2>

Here, we represent a parametric method by boxing its
parameter. For instance, Factory is a type-parameter of
the method Accept. This does cannot conform to UML

since UML lacks support for parametric methods.

Participants

We have two factories, named concrete_factory_1

and concrete_factory_2 which each defines two
products: product_a_type and product_b_type.
The first factory define the products intrusively (in it’s
own class), while the second do it externally (in the prod-
uct’s traits).

To unify the utilization, the traits default is to use the
type that might be defined in the “factory” class. For
example the type a defined in foo<Factory>, defined
as product_a_trait<Factory>::type will equal
to concrete_factory_1::product_a_type in the
case Factory is concrete_factory_1.

Consequences

Contrary to the pattern of Gamma, inheritance is no
longer needed, neither for factories, nor for products. In-
troducing a new product merely requires adding a new

parametrized structure to handle the types aliases (e.g.,
product_c_traits), and to specialize this structure
when the alias product_c_type is not provided by the
factory.

Known Uses

Many uses of this pattern can be found in STL. For ex-
ample all the containers whose contents can be browsed
forwards or backwards3 define two products: forward
and backward iterators.

The actual type of a list iterator never explicitly appears
in client code, as for any class name of concrete prod-
ucts. Rather, the user refers to A::iterator, and A is
an STL container used as a concrete factory.

3.4 Generic Template Method

Intent

To define the canvas of an efficient algorithm in a supe-
rior class, deferring some steps to subclasses.

Motivation

In generic programming, we limit inheritance to factor
methods [section 2.3]; here, we want a superior class
to define an operation some parts of which (primitive
operations) are defined only in inferior classes. As usual
we want calls to the primitive operations, as well as calls
to the template method, to be resolved at compile-time.

3vectors, doubly linked lists and dequeues are models of this con-
cept, named reversible containers

Structure

// ...

// ...

// ...
primitive_1();

primitive_2();

T

template_method()

primitive_2()

primitive_1()

abstract_class

static_cast<T&>(*this).primitive_2_impl();

static_cast<T&>(*this).primitive_1_impl();

primitive_1_impl()

primitive_2_impl()

abstract_class<concrete_class>

concrete_class

Participants

In the object-oriented paradigm, the selection of the tar-
get function in a polymorphic operation can be seen as
a search for the function, browsing the inheritance tree
upwards from the dynamic type of the object. In prac-
tice, this is done at run-time by looking up the target in
a table of function pointers.

In generic programming, we want that selection to be
solved at compile-time. In other words, each caller
should statically know the dynamic type of the object
from which it calls methods. In the case of a supe-
rior class calling a method defined in a child class, the
knowledge of the dynamic type can be given as a tem-
plate parameter to the superior class. Therefore, any
class needing to know its dynamic type will be parame-
terized by its leaf type.

The parametric class abstract_class defines two op-
erations: primitive_1() and primitive_2(). Call-
ing one of these operations leads to casting the target
object into its dynamic type. The methods executed are
the implementations of these operations, primitive_
1_impl() and primitive_2_impl(). Because the
object was cast into its leaf type, these functions are
searched for in the object hierarchy from the leaf type
up as desired.

When the programmer later defines the class
concrete_class with the primitive operation
implementations, the method template_method() is
inherited and a call to this method leads to the execution
of the proper implementations.

Consequences

In generic programming, operation polymorphism can
be simulated by “parametric polymorphism through in-
heritance” and then be solved statically. The cost of dy-
namic binding is avoided; moreover, the compiler is able
to inline all the code, including the template method it-
self. Hence, this design is more efficient.

Implementation

The methods primitive_1() and primitive_2() do
not contain their implementation but a call to an imple-
mentation; they can be considered as abstract methods.
Please note that they can also be called by the client
without knowing that some dispatch is performed.

This design is made possible by the typing model used
for C++ template parameters. A C++ compiler has to
delay its semantic analysis of a template function un-
til the function is instantiated. The compiler will there-
fore accept the call to T::primitive_1_impl() with-
out knowing anything about T and will check the pres-
ence of this method later when the call to the A<T>::
primitive_1() is actually performed, if it ever is. In
Ada [13], on the contrary, such postponed type checking
does not exist, for a function shall type check even if it is
not instantiated. This pattern is therefore not applicable
as is in this language.

One disadvantage of this pattern over Gamma’s imple-
mentation is directly related to this: the compiler won’t
check the actual presence of the implementations in the
subclasses. While a C++ compiler will warn you if you
do not supply an implementation for an abstract func-
tion, even if it is not used, that same compiler will be
quiet if pseudo-virtual operations like primitive_1_

impl() are not defined and not used. Special care must
thus be taken when building libraries not to forget such
functions since the error won’t come to light until the
function is actually used.

We purposely added the suffixes _impl to the name of
primitives to distinguish the implementation functions.

One could image that the implementation would use the
same name as the primitive, but this require some addi-
tional care as the abstract primitive can call itself recur-
sively when the implementation is absent.4

Sample Code

The following code shows how to define a get_next()
operation in each iterator of a library of containers. Ob-
viously, get_next() is a template method made by
issuing successive calls to the current_item() and
next() methods of the actual iterator.

We define this method in a superclass iterator_

common parametrized by its subtype, and have all iter-
ators derive from this class.

template< class Child, class Value_Type >
class iterator_common
{
 public:
 Value_Type& get_next () {
 // template method
 Value_Type& v = current_item ();
 next ();
 return v;
 }
 Value_Type& current_item () {
 // call the actual implementation
 static_cast<Child&>(*this).current_item_impl();
 }
 void next () {
 // call the actual implementation
 static_cast<Child&>(*this).next_impl();
 }
};

// sample iterator definition
template< class Value_Type >
class buffer_iterator: public
 iterator_common< buffer_iterator< Value_Type >,
 Value_Type >
{
 public:
 Value_Type current_item_impl () { ... };
 void next_impl () { ... };
 void first () { ... };
 void is_done () { ... };
 // ...
};

Known Uses

This pattern relies on an idiom called Curiously Recur-
ring Template [4] derived from the Barton and Nackman

4You can ensure at compile-time that two functions (the primitive
and its implementation) are different by passing their addresses to a
helper template specialized in the case its two arguments are equal.

Trick [2]. In [2] this idiom is used to define a binary op-
erator (for instance +) in a superior class from the corre-
sponding unary operator (here +=) defined in an inferior
class. Further examples are given in [30].

3.5 Generic Decorator

Intent

To efficiently define additional responsibilities to a set of
objects or to replace functionalities of a set of objects,
by means of subclassing.

Structure

C

concrete_decorator_a

operation()

added_state

C

concrete_decorator_b

operation()

added_behaviour()

C::operation();

added_behaviour();

concrete_component

operation()

concrete_decorator_b< concretecomponent > dc;

dc.operation();

We use a special idiom: having a parametric class that
derives from one of its parameters. This is also known
as mixin inheritance5 [3].

Participants

A class concrete_component which can be dec-
orated, offers an operation operation(). Two
parametric decorators, concrete_decorator_a and
concrete_decorator_b, whose parameter is the dec-
orated type, override this operation.

5 Mixins are often used in Ada to simulate multiple inheri-
tance [14].

Consequences

This pattern has two advantages over Gamma’s. First,
any method that is not modified by the decorator is auto-
matically inherited. While Gamma’s version uses com-
position and must therefore delegate each unmodified
operation. Second, decoration can be applied to a set
of classes that are not related via inheritance. Therefore,
a decorator becomes truly generic.

On the other hand we lose the capability of dynamically
adding a decoration to an object.

Sample Code

Decorating an iterator of STL is useful when a container
holds structured data, and one wants to perform opera-
tions only on a field of these data. In order to access
this field, the decorator redefines the data access opera-
tor operator*() of the iterator.

// A basic red-green-blue struct
template< class T >
struct rgb
{
 typedef T red_type;
 red_type red;

 typedef T green_type;
 green_type green;

 typedef T blue_type;
 blue_type blue;
};

// An accessor class for the red field.
template< class T >
class get_red
{
 public:
 typedef T input_type;
 typedef typename T::red_type output_type;

 static output_type&
 get (input_type& v) {
 return v.red;
 }

 static const output_type&
 get (const input_type& v) {
 return v.red;
 }
};

Note how the rgb<T> structure exposes the type of
each attribute. This makes cooperation between ob-
jects easier: here the get_red accessor will look up the
red_type type member and doesn’t have to know that
fields of rgb<T> are of type T. get_red can therefore

apply to any type that features red and red_type, it is
not limited to rgb<T>.

// A decorator for any iterator
template< class Decorated,
 template< class > class Access >
class field_access: public Decorated
{
 public:
 typedef typename Decorated::value_type value_type;
 typedef Access< value_type > accessor;
 typedef typename accessor::output_type output_type;

 field_access () : Decorated () {}
 field_access (const Decorated& d) : Decorated (d) {}

 // Overload operator*, use the given accessor
 // to get the proper field.
 output_type& operator* () {
 return accessor::get (Decorated::operator* ());
 }

 const output_type& operator* () const {
 return accessor::get (Decorated::operator* ());
 }
};

field_access is a decorator whose parameters are the
types of the decorated iterator, and of a helper class
which specifies the field to be accessed. Actually, this
second parameter is an example of the GENERIC STRAT-
EGY pattern [6, 30].

int main ()
{
 typedef std::list< rgb< int > > A;
 A input;
 // ... initialize the input list ...

 // Build decorated iterators.
 field_access< A::iterator, get_red >
 begin = input.begin (),
 end = input.end ();
 // Assign 10 to each red field.
 std::fill (begin, end, 10);
}

The std::fill() procedure is a standard STL algo-
rithm which assigns a value to each element of a range
(specified by two iterators). Since std::fill() is here
given decorated iterators it will only assign red fields to
10.

Note that the decorator is independent of the deco-
rated iterator: it can apply to any STL iterator, not only
list<T>::iterator. The std::fill() algorithm
will use methods of field_access inherited from the
decorated iterator, such as the assignment, comparison,
and pre-increment operators.

Known Uses

Parameterized inheritance is also called mixin inheri-
tance and is one way to simulate multiple inheritance
in Ada 95 [14]. This can also be used as an alternate
way for providing template methods [6].

3.6 Generic Visitor

Intent

To define a new operation for the concrete classes of a
hierarchy without modifying the hierarchy.

Motivation

In the case of the VISITOR pattern, the operation varies
with the type of the operation target. Since we assume
to know the exact type as compile-time, a trivial design
is thus to define this operation as a procedure overloaded
for each target. Such a design, however, does not have
the advantages of the translation of the VISITOR pattern
proposed in the next section.

Structure

element

accept (v : Visitor)

T

v.visit (static_cast<T&>(*this));

element<concrete_element_a>

concrete_element_a

visit (e : concrete_element_a &)

visit (e : concrete_element_b &)

...

concrete_visitor_1

visit (e : Element &)

concrete_visitor_2

Participants

In the original Gamma’s pattern the method accept has
to be defined in each element. The code of each of
these acceptmethod can be the same6, only type of the

6This is not actually the case in Gamma’s book, because the name
of the visiting method to call is dependent on the element type; how-

this pointer changes. Here we use the same trick as the
GENERIC TEMPLATE METHOD to factor accept in the
superclass.

Each visitor defines a method visit, for each ele-
ment type that it must handle. visit can be either an
overloaded function (as in concrete_visitor_1) or
a function template (as in concrete_visitor_2). In
both case, the overload resolution or function instanti-
ation is made possible by the exact knowledge of the
element type.

One advantage of using a member template (as in
concrete_visitor_2), over an overloaded function
(as in concrete_visitor_1) is that the concrete_
visitor_2 class does need to be changed when new
type are added: the visitor can be specialized externally
should the default be inadequate.

Consequences

The code is much closer to the one of Gamma than the
trivial design presented before, because the visitor is
here an object with all its advantages (state, life dura-
tion).

While accept and visit does not return anything
in the original pattern, they can be taught to. It the
GENERIC ITERATOR they can even return a type de-
pendent on the visitor’s type. As the following example
shows.

Sample Code

Let’s consider an image2d class the pixels of which
should be addressable using different kind of positions
(Cartesian or polar coordinates, etc.). For better modu-
larity, we don’t want the image2d to known all position
types. Therefore we see positions as visitors, which the
image accepts. accept returns the pixel value corre-
sponding to the supplied position. The image will pro-
vide only one access method, and it is up to the visitor to
perform necessary conversion (e.g. polar to Cartesian)
to use this interface.

A position may also refer to a particular channel in a
color image. The accept return type is thus dependent
on the visitor. We will use a traits to handle this.

ever, using the same name (visit) for all these methods make no
problem in any language as C++ which support function overloading.

template< class Visitor, class Visited >
struct visit_return_trait;

For each pair (Visitor, Visited) visit_return_
trait<Visitor,Visited>::type is the return type
of access and visit.

// factor the definition of accept for all images
template < class Child >
class image {
public:
 template < typename Visitor >
 typename visit_return_trait< Visitor, Child >::
 type accept (Visitor& v) {
 return v.visit (static_cast< Child& > (*this));
 }
 // ... likewise for const accept
};

template< typename T >
class image_2d : public image< image_2d< T > > {
public:
 typedef T pixel_type;
 // ...
 T& get_value (int row, int col){...}
 const T& get_value const (int row, int col){...}
};

Here is one possible visitor, with it’s corresponding
visit_return_trait specialization.

class point_2d {
public:
 point_2d (int row, int col) { ... }

 template < typename Visited >
 typename Visited::pixel_type&
 visit (Visited& v) {
 return v.get_value (row, col);
 }
 // ...
 int row, col;
};

template< class Visited >
struct visit_return_trait< point_2d, Visited > {
 typedef typename Visited::pixel_type type;
};

channel_point_2d is another visitor, which must be
parametered to access a particular layer (as in the deco-
rator example).

template< template< class > class Access >
class channel_point_2d {
public:
 channel_point_2d (int row, int col) { ... }

 template < typename Visited >
 typename Access< typename Visited::pixel_type >::
 output_type& visit (Visited& v) {
 return Access< typename Visited::pixel_type >::
 get (v.get_value (row, col));
 }
 // ...
};

template< template< class > class Access,
 class Visited >
struct visit_return_trait
 < channel_point_2d< Access >, Visited > {
 typedef typename
 Access< typename Visited::pixel_type >::
 output_type type;
};

Finally, the following hypothetical main shows how the
return value of accept differ according to the visitor
used.

int main () {
 image_2d< rgb< int > > img;
 point_2d p(1, 2);
 channel_point_2d<get_red> q(3, 4);

 int v = img.accept (p);
 rgb<int> w = img.accept (q);
}

In our library, accept and visit are both named
operator[] so we can write img[p] or p[img] at
will.

4 Conclusion and Perspectives

Based on object programming, generic programming al-
lows to build and assemble reusable components [15]
and proved to be useful where efficiency is required.

Since generic programming (or more generally Gener-
ative programming [31, 6]) is becoming more popular
and because much experience and knowledge have been
accumulated and assimilated in structuring the object-
oriented programming, we believe that it is time to ex-
plore the benefits that the former can derive from well-
proven designs in the latter.

We showed how design patterns can be adapted to the
generic programming context by presenting the generic
versions of three fundamental patterns from Gamma et
al. [10]: the GENERIC BRIDGE, GENERIC ITERATOR,

the GENERIC ABSTRACT FACTORY, the GENERIC

TEMPLATE METHOD, the GENERIC DECORATOR, and
the GENERIC VISITOR. We hope that such work can
provide some valuable insight, and aid design larger sys-
tems using generic programming.

Acknowledgments

The authors are grateful to Philippe Laroque for his fruit-
ful remarks about the erstwhile version of this work, to
Colin Shaw for his corrections on an early version of this
paper, and to Bjarne Stroustrup for his valuable com-
ments on the final version.

Availability

The source of the patterns presented in this paper, as
well as other generic patterns, can be downloaded from
http://www.lrde.epita.fr/download/.

References

[1] Matthew H. Austern. Generic programming and
the STL – Using and extending the C++ Standard
Template Library. Professional Computing Series.
Addison-Wesley, 1999.

[2] John Barton and Lee Nackman. Scientific and en-
gineering C++. Addison-Wesley, 1994.

[3] Gilad Bracha and William Cook. Mixin-based
inheritance. In procdings of ACM Conference
on Object-Oriented Programming: System, Lan-
guages, and APPLICATION (OOPSLA) 1990.
ACM, 1989. URL http://java.sun.com/
people/gbracha/oopsla90.ps.

[4] James Coplien. Curiously recurring template pat-
tern. In Stanly B. Lippman, editor, C++ Gems.
Cambridge University Press & Sigs Books, 1996.
URL http://people.we.mediaone.net/
stanlipp/gems.html.

[5] James A. Crotinger, Julian Cummings, Scott
Haney, William Humprey, Steve Karmesin,
John Reynders, Stephen Smith, and Timo-
thy J. Williams. Generic programming in
POOMA and PETE. In Dagstuhl seminar on
Generic Programming, April 1998. URL

http://www.acl.lanl.gov/pooma/
papers/GenericProgrammingPaper/
dagstuhl.pdf.

[6] Krzysztof Czarnecki and Ulrich Eisenecker. Gen-
erative programming. Methods, Tools, and Appli-
cations. Addison Wesley, 2000. URL http:
//www.generative-programming.org/.

[7] Karel Driesen and Urs Hölzle. The Direct
Cost of Virtual Function Calls in C++. In
11th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA’96), 1996.
URL http://www.cs.McGill.CA/ACL/
papers/oopsla96.html.

[8] Alexandre Duret-Lutz. Olena: a component-based
platform for image processing, mixing generic,
generative and oo programming. In symposium
on Generative and Component-Based Software
Engineering, Young Researchers Workshop, 10
2000. URL http://www.lrde.epita.fr/
publications/.

[9] Ulfar Erlingsson and Alexander V. Konstanti-
nou. Implementing the C++ Standard Tem-
plate Library in Ada 95. Technical Report
TR96-3, CS Dept., Rensselaer Polytech-
nic Institute, Troy, NY, January 1996. URL
http://www.adahome.com/Resources/
Papers/General/stl2ada.ps.Z.

[10] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design patterns – Elements of
reusable object-oriented software. Professional
Computing Series. Addison Wesley, 1995.

[11] Thierry Géraud, Yoann Fabre, Alexandre Duret-
Lutz, Dimitri Papadopoulos-Orfanos, and Jean-
François Mangin. Obtaining genericity for image
processing and pattern recognition algorithms. In
15th International Conference on Pattern Recogni-
tion (ICPR’2000), September 2000. URL http:
//www.lrde.epita.fr/publications/.

[12] Scott Haney and James Crotinger. How tem-
plates enable high-performance scientific comput-
ing in C++. IEEE Computing in Science and En-
gineering, 1(4), 1999. URL http://www.acl.
lanl.gov/pooma/papers.html.

[13] Ada95 Reference Manual. Intermetrics, Inc.,
December 1994. URL http://adaic.org/
standards/95lrm/. Version 6.00 (last draft
of ISO/IEC 8652:1995).

[14] Ada 95 Rationale. Intermetrics, Inc., Cambridge,
Massachusetts, January 1995. URL ftp://ftp.
lip6.fr/pub/gnat/rationale-ada95/.

[15] Mehdi Jazayeri. Component programming – a
fresh look at software components. In Procedings
of the 5th European Software Engineering Confer-
ence (ESEC’95), pages 457–478, September 1995.

[16] Ullrich Köthe. Requested interface. In
In Proceedings of the 2nd European Con-
ference on Pattern Languages of Program-
ming (EuroPLoP ’97), Munich, Germany, 1997.
URL http://www.riehle.org/events/
europlop-1997/p16final.pdf.

[17] John Lakos. Large-scale C++ software design.
Addison-Wesley, 1996.

[18] Brian McNamara and Yannis Smaragdakis. Static
interfaces in C++. In First Workshop on C++
Template Programming, Erfurt, Germany, October
10 2000. URL http://oonumerics.org/
tmpw00/.

[19] Robin Milner, Mads Tofte, Robert Harper, and
David MacQueen. The Definition of Standard ML
- Revised. MIT Press, 1997.

[20] Nathan C. Myers. Traits: a new and useful tem-
plate technique. C++ Report, 7(5):32–35, June
1995. URL http://www.cantrip.org/
traits.html.

[21] Nathan C. Myers. Gnarly new C++ language
features, 1997. URL http://www.cantrip.
org/gnarly.html.

[22] OON. The object-oriented numerics page. URL
http://oonumerics.org/oon.

[23] Esa Pulkkinen. Compile-time determi-
nation of base-class relationship in C++,
June 1999. URL http://lazy.
ton.tut.fi/˜esap/instructive/
base-class-determination.html.

[24] James Rumbaugh, Ivar Jacobson, and Grady
Booch. The Unified Modeling Language – Refer-
ence manual. Object Technology Series. Addison-
Wesley, 1999.

[25] Jeremy Siek and Andrew Lumsdaine. Concept
checking: Binding parametric polymorphism in
C++. In First Workshop on C++ Template Pro-
gramming, Erfurt, Germany, October 10 2000.
URL http://oonumerics.org/tmpw00/.

[26] Alex Stepanov and Meng Lee. The Standard
Template Library. Hewlett Packard Laboratories,
1501 Page Mill Road, Palo Alto, CA 94304, Octo-
ber 1995. URL http://www.cs.rpi.edu/
˜musser/doc.ps.

[27] Bjarne Stroustrup. The Design and Evolution
of C++. Addision Wesley, June 1994. URL
http://www.research.att.com/˜bs/
dne.html.

[28] Bjarne Stroustrup. Why C++ isn’t just an Object-
Oriented Programming Language. In OOPSLA’95,
October 1995. URL http://www.research.
att.com/˜bs/papers.html.

[29] Petter Urkedal. Tools for template metapro-
gramming. web page, March 1999. URL
http://matfys.lth.se/˜petter/src/
more/metad/index.html.

[30] Todd L. Veldhuizen. Techniques for sci-
entific C++, August 1999. URL http:
//extreme.indiana.edu/˜tveldhui/
papers/techniques/.

[31] Todd L. Veldhuizen and Dennis Gannon. Ac-
tive libraries – Rethinking the roles of com-
pilers and libraries. In Proceedings of the
SIAM Workshop on Object Oriented Meth-
ods for Inter-operable Scientific and Engineer-
ing Computing (OO’98). SIAM Press, October
1998. URL http://extreme.indiana.
edu/˜tveldhui/papers/oo98.html.

[32] Olivier Zendra and Dominique Colnet. Adding
external iterators to an existing Eiffel class
library. In 32nd conference on Technology
of Object-Oriented Languages and Systems
(TOOLS Pacific’99), Melbourne, Australia,
November 1999. IEEE Computer Society.
URL http://SmallEiffel.loria.fr/
papers/tools-pacific-1999.pdf.gz.

