
GENERIC IMPLEMENTATION OF
MORPHOLOGICAL IMAGE OPERATORS

When Harry’s C++ Code Met Sally’s Algorithms

J. Darbon
∗
, T. Géraud, A. Duret-Lutz

EPITA Research and Development Laboratory
14-16, rue Voltaire – F-94276 Le Kremlin-Bicêtre cedex – France
E-mail: {jerome.darbon, olena}@lrde.epita.fr
Phone +33 1 53 14 59 16 – Fax +33 1 53 14 59 22

Abstract Several libraries dedicated to mathematical morphology exist. But they
lack genericity, that is to say, the ability for operators to accept input of
different natures —2D binary images, graphs enclosing floating values,
etc. We describe solutions which are integrated in Olena, a library
providing morphological operators. We demonstrate with some exam-
ples that translating mathematical formulas and algorithms into source
code is made easy and safe with Olena. Moreover, experimental results
show that no extra costs at run-time are induced.

Keywords: mathematical morphology, image processing operators, genericity, pro-
gramming.

1. Introduction
Most people involved in mathematical morphology are mathematicians or im-
age processing practitioners rather than computer scientists. Therefore, they
should find it easy to use program libraries in order to avoid dealing with im-
plementation problems and rather focus only on the methodological aspects
of their work. Köthe [7] notes that the lack of algorithmic comparison in the
literature is due to the difficulty of implementing computer vision algorithms.
Furthermore, Mallat [10] insists on the notion of reproducible computational
science; that is to say, an author of article should make source code available.
Along these lines, Pitas has recently published a book [12] fully illustrated with
source code.

Quite a lot of image processing libraries are available on the Internet; how-
ever, they are usually restricted to very few image structures and data types,

∗Also with: École Nationale Supérieure des Télécommunications, Networks and Computer
Science Department. 46, rue Barrault – F-75634 Paris Cedex 13 – France.

H. Talbot, R. Beare (Eds): Proceedings of ISMM2002
Redistribution rights reserved CSIRO Publishing. ISBN 0 643 06804 X

175

whereas mathematical morphology applies on a wide range of data: signals,
2D and 3D images, graphs, etc., containing integers with different precisions,
floats, binaries, and so on. It is then very difficult for practitioners to find a
library with morphological operators that meet their requirements.

When an image processing algorithm —for instance an erosion— is trans-
lated into a single routine in a given computer language, one says that this
routine is generic if it accepts different input types. D’Ornellas and van den
Boomgaard [4, 3] mention that generic algorithms for morphological image op-
erators could be developed in C++ using the generic programming paradigm.

The aim of this paper is twofold: it presents a new library which provides
mathematical morphology operators, and it shows how one can easily translate
a mathematical formula into a C++ program in the context of our library.

This paper is organized as follows. In section 2, we present different paradigms
to program image processing operators; we discuss their advantages and draw-
backs with regard to their genericity level and their safety for the user. Then,
in section 3, we study the particular cases of several morphological operators.
Last, we conclude in section 4 and we give an evaluation of their performance.

2. Programming Paradigms, Types, and Safety

2.1 State of the Art

Most of image libraries are built on a C-style programming paradigm, and two
families can be identified.

The first family considers that a general type, usually float, is enough
to store data1. A 2D image structure is then defined as depicted below (left
column). A major drawback of this approach is that there are no semantical
distinctions between images with respect to their data type: procedures are
therefore unable to check constraints about input images. For instance, the
procedure foo (below, right column) expects that both input images have the
same data type but cannot check it. It is then very easy for a programmer to
call routines incorrectly.

Two other important drawbacks are that non-scalar data cannot be handled
by this image structure and that images consume memory unnecessarily.

The second family of library programming style, described by Dobie and
Lewis [2], addresses these problems by enforcing type control. To this end, the

1The general type float is the most convenient one for general purpose library; In mathe-
matical morphology, a general type would rather be short, even if PDE-based approaches
are now in fashion.

176

Generic implementation of morphological image operators 177

2D image structure is modified, see the left column below: a new field, type,
allows the programmer to insert assertions to check at run-time the proper
nature of the input images (right column below).

Unfortunately, if safety is enforced for the library user, the library program-
mer has to write as many sub-routines as there are data types. For instance,
the sub-routine foo_INTU8 contains the code dedicated to unsigned 8 bit in-
tegers. Since writing many similar routines per algorithm is long and tedious,
libraries usually handle only very few data types.

We have shown that genericity with respect to data types can be handled
either by the use of a general type (float) or in a tedious fashion by code
replication (the different cases of switch). However, image structures are still
not generic, since we can only handle 2D images. Some C libraries use macros
(keyword #define) to emulate C++ templates. However, macros cannot handle
all features that we enjoy with templates (e.g. stronger typing, recursivity,
meta-programming).

2.2 C++ and Genericity

An interesting feature of the C++ language [13] is genericity using the template
keyword. In the left column sample code below, image2d is a meta-structure
parameterized by an unknown data type T and the procedure foo is similarly
parameterized. Its input must share the same data type as made explicit by
the procedure signature: this constraint is now checked at compile-time.

In the right column above, the client instantiates different kinds of image
(ima1 contains floats whereas ima3 contains integers) and calls foo twice. At
each call, the compiler automatically deduces the type T from the input types
and creates a specialized version of the meta-procedure foo. In our example,
T is set to float at the first call and a version of foo dedicated to process

178 Darbon, J. et al

2D floats images is generated. That means that the compiler creates specific
sub-routines, and therefore saves the programmer from performing this tedious
task (see section 2.1).

2.3 Full Genericity and STL Style

Now we turn to full genericity as we want a procedure to accept different
image types. The key idea is given by the style of the Standard Template
Library (stl for short) now part of the C++ Standard Library [13]: procedures
should be parameterized by their input types. This paradigm is called generic
programming by the object-oriented scientific computing community [11].

For instance in order to browse the contents of images with different struc-
tures, obviously one cannot keep two loops when input is 2D or three when
it is 3D. These image structure implementation details must be hidden. The
solution that early appears in imaging software [9] is the use of iterator objects.
Consider the code below. A new procedure, bar, sets every pixel to 0. It is now
parameterized by InputIter which represents an iterator type. The object p
iterates from the first point of the targeted image to the last, these iteration
boundaries being given by the methods begin() and end() of the image class.
When bar is called, the particular procedure instantiated by the compiler uses
an iterator i of type image2d_iterator<float>; the single loop is thus able
browse image with different structures.

Finally, the procedure bar can accept various kind of input. It is fully
generic, type-safe and, moreover, as fast as dedicated C. Indeed, the use of pa-
rameterization (templates) along with type deductions (typedefs) is handled by
the compiler, that is, statically. In a classical object-oriented way of program-
ming, lot of work is performed at run-time (e.g, method dispatch through a
hierarchy) and the resulting programs are not as efficient as the one presented
in this section. As far as we know, the only other image processing library
based on this programming paradigm is Vigra by Köthe [8].

Please note that the contents of sections 2.1 to 2.3 is discussed in more detail
in [5], [4], [3], [6] and [8].

2.4 Image Processing Style

We find the previous proposal unsatisfactory: programs should be closer to
algorithm descriptions in mathematical language rather than in a computer

Generic implementation of morphological image operators 179

scientist language. Our proposal is not to design a new language dedicated to
image processing such as in [1] but to provide tools that make easier program-
ming for practitioners: we want something like:

And that’s indeed what we have in our library.
Please note that, for some mathematical morphology algorithms, there are

few approaches to design them (parallel, in-place, based on priority queue and
so on). Although we cannot provide a single version for all these flavors, we
are still able to preserve the other levels of genericity.

3. Case Studies of Mathematical Morphology
Operators

In this section, we study several morphological operators and we show that
mathematical formulas and algorithms can easily be written using our tools2.
In particular, the watershed operator is described as suggested by d’Ornellas
and van den Boomgaard [4].

Table 1. Some Simple Morphological Operators.

Operator Formula Code

dilation ∀x, [δB(f)](x) = max
b∈B

f(x+ b) for all(x) df[x] = max(f, x, B);

closing φB(f) = εB̌ [δB(f)] erosion(dilation(f, B), -B);

black top-hat BTH B(f) = φB(f)− f minus(closing(f, B), f);

th contrast op. κTH = Id+WTH B − BTH B plus(f, minus(white top hat(f, B),
black top hat(f, B)));

3.1 Simple Operators

Table 1 presents how four morphological operators are translated in C++ code.

Dilation. In our library, the body of the dilation procedure (left column
below) performs the following operations. Line 2 first defines the output image,

2In future versions, C++ operator overloading capabilities will be used in order to get a more
natural way of expressing formulas. For instance, minus(closing(f,B), f) will be replaced
by closing(f,B) - f.

180 Darbon, J. et al

fd, whose type is the procedure parameter I. To this aim, fd needs some
structural information from the input image f (for instance, its size). At line 3,
an iterator x is declared whose type is deduced from I. Then, the iteration is
performed. To remain close to the mathematical formula, a particular function,
max, is specialized according to the nature (type) of the structuring element.
That is, whether B is flat or not, calling max does not run the same code.

The body of procedure max when B is a flat structuring element is presented
in the right column above. Note that in order to keep this procedure generic, all
implementation details are hidden. An important feature of our library is that
we do not have to care too much about accessing data out of image support.
For instance, in the case of 2D images, x+b (e.g., line 11) may fall outside the
image support if x is near the image boundary. In order to save the programmer
from writing extra code to test if x+b is valid, some image type, such as 2D
image, have an outside border and we can assign values to these particular
points. In the case of dilation, we call border::adapt_copy (line 1) which first
adapts the border size of the image to that of the structuring element and then
copies values of the image inner boundary to the border3. Finally, dilating
induces no side effect. Image processing routines relying on masks, windows,
neighborhoods or structuring elements, are simpler to implement.

Closing. In our library, we do not want to annoy the user with memory
management of the data structures such as images or graphs. In the case of the
closing operator, a temporary image is first created resulting from a dilation
process, and then, erosion is applied to obtain the final result. In classical
libraries, the programmer should delete the temporary image to recover its
memory. There is a risk of forgetting this deletion and to get some memory
leaks at run-time. Another immediate consequence is that operators cannot be
chained such as in:

erosion(dilation(f, B), -B)

because no variable holds the temporary image which thus is responsible for a
memory loss.

For user convenience, we have implemented a transparent memory man-
agement: when a data structure is no longer referenced, it is automatically
destroyed. Combining operators is thus made as simple as possible.

3In the case of the input image being a graph, since the notion of border does not exist,
calling border::adapt copy is still valid but does not execute any code. Another approach
is to set the border to −∞ (+∞) in the case of dilation (erosion).

Generic implementation of morphological image operators 181

Top-Hat Contrast Operator. A lot of morphological operators rely on
arithmetics, and usually, image processing libraries use built-in types —that is,
types provided by the programming language— to express the nature of data.
A resulting well-known problem is value overflow. In the sample line below
positive values are encoded on 8 bit, ranging from 0 to 255:

unsigned char i = 255, j = 1, k = (i + j) / 2;

we finally have k set to 0. In the case of non-flat structuring elements and
in the case of morphological operators involving arithmetics, e.g., the top-hat
contrast operators, the programmer should not deal with from these problems.
To this end, we have defined our own data types and the corresponding safe
arithmetics. For instance, in the line above, one should use int_u8 instead
of unsigned char and the compiler raises en error at at compile-time because
the type of expression (i + j) / 2 is now int_u9 and because the assignment
from this type towards the “smaller” type int_u8 is forbidden.

We also have equipped our library with conversion routines that can be used
either as stand-alone functions or as first argument of other routines. In the
sample code below, the user does not need to know the data type of the image
returned by the contrast operator; she can guarantee that, at the very end,
every pixel value falls between 0 and 255. So, she benefits simultaneously from
safe arithmetics and convenient data type manipulations.

Last, the notion of scoping, whose correctness is verified by the compiler,
ensures the programmer that she uses as little memory as possible; at the end
of the main scope, only lena lies in memory.

3.2 Watershed

Mathematical morphology operators, such as the watershed, are often more
complicated than those already discussed. In [4], d’Ornellas and van den Boom-
gaard argue that a generic implementation of the watershed is possible based
on a wave-front propagation; they give the algorithm canvas that we recall
in the left column below. Our library provides a generic implementation of
this algorithm, that is, a function which works on various structures (n-D im-
ages, graphs, etc.) containing data of various types4. The corresponding code
excerpts from our library are given in the right column below.

4The queue-based priority algorithm presented here is of course optimal for discrete data
types. However, the user can alsa call it when data are floating values.

182 Darbon, J. et al

Note that we also succeeded in providing tools making “sophisticated” mor-
phological algorithms implementation easy.

4. Conclusion
In this article, we have shown that computer programs can achieve both gener-
icity and user-friendliness. Based on the conclusions of d’Ornellas and van den
Boomgaard [4], we have proposed solutions —some of them being described
here— and we have built an appropriate framework of object-oriented tools:
Olena. Olena is a library dedicated to image processing practitioners, and
in particular, to mathematical morphology users. The sources of Olena are
freely available on the Internet at the address:

http://www.lrde.epita.fr/olena

Last, getting all the benefits described in this article has not compromised
efficiency. Table 2 gives processing time for some morphological operators.
These algorithms were tested on the classical gray-level 256× 256 image lena
with a 1 Ghz personal computer running gnu/Linux; the code was compiled
using the gnu C++ compiler with all optimizations enabled. The column “regu-
lar” refers to operators being implemented in a classical way; equivalent “fast”
versions of morphological operators, based on [14], are also available in Olena.
We are aware of the optimal 11×11 dilation which uses a decomposition of two
dilations by straight lines. The algorithm is O(1) with line dilation approaches
such as van Herck’s [15]. But we do not use it because this is only a text-book
study to evaluate and compare execution times. Finally, table 3 presents major
functionalities in Olena.

References
[1] R. Cecchini and A. Del Bimbo. A programming environement for imaging ap-
plications. Pattern Recognition Letters, 14:817–824, October 1993.

[2] M. Dobie and P. Lewis. Data structures for image processing in C. Pattern
Recognition Letters, 12(8):457–466, 1991.

Generic implementation of morphological image operators 183

Table 2. Performance Evaluation (time in seconds).

Algorithms Structural Elt. Regular Fast

Dilation 3× 3 Square 0,04 0.05
Dilation 11× 11 Square 0,46 0,12
Dilation Disk of radius 6 0,44 0,13
Closing Disk of radius 6 0,85 0,31
Top-Hat Contrast Op. Disk of radius 6 1,74 0,62
Watershed 4-Connectivity 0,17 —

Table 3. Functionalities.

Dilation / Erosion
Closing / Opening
White Top Hat / Black Top Hat / Top Hat Contrast Operator
Hit-or-Miss
Hit-or-Miss Opening Foreground / Background
Hit-or-Miss Closing Foreground / Background
Beucher / Internal / External Gradient
Geodesic Dilation / Erosion
Geodesic Reconstruction by Dilation / Erosion (simple, sequential, hybrid)
Minima Imposition
Regional Minima
Watershed
Minima / Maxima Killer

[3] M. C. d’Ornellas. Algorithmic Patterns for Morphological Image Processing.
PhD thesis, University of Amsterdam, 2001.

[4] M. C. d’Ornellas and R. van den Boomgaard. Generic algorithms for morpho-
logical image operators — a case study using watersheds. In H. Heijmans and
J. Roerdink, editors, Mathematical Morphology and its Applications to Image
and Signal Processing, pages 323–330, 1998.

[5] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. On the design
of CGAL, the computational geometry algorithms library. Technical Report
3407, INRIA, April 1998.

[6] T. Géraud, Y. Fabre, A. Duret-Lutz, D. Papadopoulos-Orfanos, and J.-F. Man-
gin. Obtaining genericity for image processing and pattern recognition algo-
rithms. In Proceedings of the 15th International Conference on Pattern Recog-
nition, volume 4, pages 816–819. IEEE Computer Society, September 2000.

[7] U. Köthe. Reusable implementations are necessary to characterize and compare
vision algorithms. in DAGM-Workshop on Performance Characteristics and
Quality of Computer Vision Algorithms, September 1997.

[8] U. Köthe. STL-style generic programming with images. C++ Report Magazine,
12(1):24–30, January 2000.

184 Darbon, J. et al

[9] D. Lawton and D. Mead. A modular object oriented image understanding envi-
ronment. In Proceeding of the 10th International Conference on Pattern Recog-
nition, volume 2, pages 611–616, Atlantic City, NJ, USA, June 1990.

[10] S. Mallat. A Wavelet Tour of Signal Processing, chapter 1, pages 17–18. Aca-
demic Press, 1999.

[11] Scientific computing in object-oriented languages. Web page.
http://oonumerics.org/.

[12] I. Pitas. Digital Image Processing Algorithms and Applications. Wiley, 2000.

[13] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd edition,
1997.

[14] M. Van Droogenbroeck and H. Talbot. Fast computation of morphological
operations with arbitrary structuring elements. Pattern Recognition Letters,
17(14):1451–1460, 1996.

[15] M. Van Herk. A fast algorithm for local minimum and maximum filters on rect-
angular and octogonal kernels. Pattern Recognition Letters, 13:517–521, 1992.

