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Abstract This paper presents a morphological classifier with application to color image
segmentation. The basic idea of a morphological classifier is to consider a color
histogram as a 3-D gray-level image, so that morphological operators can be
applied to it. The final objective is to extract clusters in color space, that is,
identify regions in the 3-D image. In this paper, we particularly focus on a
powerful class of morphology-based filters called levellings to transform the 3-
D histogram-image to identify clusters. We also show that our method gives
better results than other state-of-the-art methods.

Keywords: Classification; color image segmentation; color spaces; mathematical morphol-
ogy; levellings.

1. Introduction
A classical approach to segmentation is to perform data classification in a

judiciously chosen feature space. In the case of color images, trivial spaces are
color ones such as red-green-blue (RGB) space or others more relevant with
respect to human color perception. However, when dealing with natural im-
ages, image segmentation is a rather difficult task. In such images, objects are
often textured, specular, and subject to color gradation and to noise. Conse-
quently, color modes or classes usually do not have “simple” shapes in feature
space, that is, they cannot be described easily by parametric models such as
those described in [2]. In this context, mathematical morphology appears to be
a suitable tool for studying data and extracting classes.

Every morphological classifier considers histograms as 3-D digital images
in order to process them with common image operators. Segmentation of the
color space is then used to classify the pixels in the original image. The main
problem for natural images is to avoid over-segmented results.
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In [9] a very simple morphological classifier based on binary mathematical
morphology is proposed. The 3-D histogram is first thresholded to get a binary
image in which only cluster cores appear. A morphological closing is then ap-
plied for regularization purpose and a connected component labelling process
identifies the clusters. Unfortunately, this method does not take full advantage
of the “level-shape” of histograms. In [14] an evolution of the former method
is described. Before thresholding, the 3-D histogram is pre-processed by a
morphological filter which digs the valleys, in order to increase the separabil-
ity of clusters. A major problem of this method is that the initial relief between
two clusters must be contrasted enough for them to be separated.

In [8] a difference of Gaussians from the histogram is computed and then
thresholded. The resulting binary image of cluster cores is processed by a
morphological closing and a connected component labeling is performed. Each
component, i.e. each cluster, is then dilated to enlarge its volume in the feature
space. At this stage, one cannot assign a label to every color: some colors of
the original image do not belong to any cluster of the color space. Park et al.
propose to assign such colors to their respective nearest clusters.

Last, a method is proposed in [1] which relies on morphological operators
to model the clusters of training sets before to determinate class boundaries in
feature space. However, this is not an automatic classifier.

This paper describes a very simple, efficient and effective clustering method
based on a morphology study of data in color space. In section 2 we present a
general scheme for histogram filtering and classification and we recall the def-
initions and some properties about openings, connected filters and levellings.
In section 3 we explain how to modify the histogram in feature space to ob-
tain relevant classification and we compare our method with others. Last we
conclude in section 4.

2. About Histogram Filtering and Mathematical
Morphology Operators

For the sake of clarity, this section deals with 1-D functions: IR → IR. How-
ever, every notion given here is naturally expendable to greater dimensions. In
the case of color images, these functions are IR3 → IR.

A General Scheme for Histogram Filtering and Classification
Basically, clustering in feature space aims at finding relevant peaks in this

space. Consider the histogram of a gray image given in Figure 1. Without prior
knowledge about the underlying intensity distributions of the object appearing
in the original image, we can assume that proper locations for peak separations
are close to minimum values for the function. These values are pointed out by
the red bullets on the left diagram in Figure 1.
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Figure 1. Histogram Filtering.

In a histogram most of its maxima are not representative of the presence of
classes. Such maxima are just due to local variations of the function. They
should be removed in order to keep significant peaks only, thus avoiding an
over-classification of the feature space. A simple approach is to apply a filter
that keeps (respectively removes), the proper (resp. invalid) maxima.

The result of such a filter is depicted on the right diagram in Figure 1. Every
function maximum corresponds exactly to one relevant histogram peak. This
is depicted by the green bullets on the right diagram in Figure 1. Furthermore,
the expected locations of class separators (depicted by the bullets on the left
diagram in Figure 1) are the only minima appearing in the filtered function.

Partitioning the feature space into classes is thus equivalent to put a frontier
between every maxima. Such frontiers should be located on function minima.
If we consider the negative of the filtered function (that is, maxx(f(x)) −
f(x)), the classification problem can be re-phrased as follows: partitioning the
feature space into classes is equivalent to separate every function minima and
separations between minima should be located on function crest values. This
operation is performed using a morphological filter, the geodesic watershed
transform, as described in [13].

Finally, we end up with the following classification scheme, which is a much
more simplified version of the one that has already been proposed in [6].

1 Compute image histogram,
2 if needed, regularize this histogram to get a better description of data in

feature space,
3 apply a filter on this function to suppress inconsistent maxima,
4 invert the result,
5 run the watershed transform to get a partition of the feature space.
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Obviously, the quality of such a classifier is highly dependent on the properties
of the filter used in step 3. Thus, choosing and designing the appropriate filter
is a critical step.

About Openings, Connected Filters and Levellings
Let us consider a function f defined on points and whose values f(x) are

quantified with n bits (this assumption allows us to simplify notations): f :
X → [0..2n−1], where X is a set of points. If n = 1, f is a Boolean function;
if n > 1, we will say that f is a scalar function. The flat zone of f containing
x, denoted by Γx(f), is the largest connected component that includes x and
such that ∀x′ ∈ Γx(f), f(x′) = f(x). We have Γx(f) ⊂ X .

In the following, when a set of points Z ⊂ X is given, we will denote
Z(i) a connected component of Z, so that Z = ∪iZ

(i)). Given a function f ,
ft(x) is defined as: ft(x) = 1 if f(x) ≥ t, 0 otherwise, and the set Ft as:
Ft = {x | ft(x) = 1 }

Morphological filters. A filter Φ is a morphological filter if it verifies two
properties: it should be increasing (f ≤ g ⇒ Φ(f) ≤ Φ(g)) and idempotent
(Φ ◦ Φ = Φ).

A morphological opening is an anti-extensive morphological filter (γB ≤
id , where B is a structuring element) that can be expressed as the composition
of an erosion and a dilation using a structuring element as defined in [11].

Because morphological opening is an anti-extensive filter, it can be used
to suppress local maxima while “globally” keeping the information that was
contained in the original image. However, these basic filters shift contours.
This drawback makes their use redhibitory when object contours should be
perfectly preserved ([5]).

Our objective is now to move to morphology-based filters that satisfy the
contour preservation property. This family of filters is known as connected
operators ([10]).

Connected operators. A filter ψ is a connected operator if the flat zones
of the input function are included into the flats zones of the output function:
y ∈ N (x) and f(x) = f(y) ⇒ ψ(f)(x) = ψ(f)(y), where N (x) denotes
the neighborhood of x. An equivalent definition comes with the decomposition
of f into flat zones: ψ is a connected operator if ∀x, Γx(f) ⊂ Γx(ψ(f)).

A criterion κ defined over a set is increasing if: (Z ⊆ Z ′ and Z satisfies
κ) ⇒ Z ′ satisfies κ. The trivial opening of a connected set Z is defined by:
γκ(Z) = Z if Z satisfies κ, ∅ otherwise. This definition is trivially extended
to a non-connected set Z = {Z(i)} following γκ(Z) = ∪iγκ(Z(i)).

An attribute opening γκ of a function f relies on an increasing criterion κ:
γκ(f) =

∑
t γκ(ft) where γκ(Ft) = ∪iγκ(F

(i)
t ).
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Figure 2. Area Opening and Volume Levelling.

A classical attribute opening is the area opening. The corresponding crite-
rion is αλ such as αλ(Z) is verified iff |Z| ≥ λ, where |Z| denotes the number
of points of Z and where λ is a given threshold. In Figure 2, a scalar function
f has been decomposed into the sets F (i)

t . The set F5 is depicted in red. It
has three connected components, and F (1)

5 = [75, 90] (so |F
(1)
5 | = 16). Filter-

ing f by an area opening with λ = 15 is the function γα15(f) that appears in
Figure 2 when stacking bold lines. For instance, we have γα15(f)(120) = 12.
Put differently, bold lines represent the sets F (i)

t which verify the criterion
α15. For instance, the criterion is not verified for F (3)

5 = {180, .., 190} since
|F

(3)
5 | = 11 so we have γα15(f)(185) < 5. Please note that the flat zone of f5

containing x = 185 is Γ185(f5) = F
(3)
5 .

Levellings. Being connected is not such a strong property for an operator.
Sometimes, we also want to preserve the local spatial ordering of function
values. This leads to the definition of a sub-class of connected operators. A
filter is a levelling if: y ∈ N (x) and f(x) < f(y) ⇒ ψ(f)(x) ≤ ψ(f)(y).

An interesting levelling is the volume levelling, ([12]). A volume can be
computed from every F (i)

t′ following:

ν(F
(i)
t ) =

∑

t′≥t, i′ such as F
(i′)

t′
⊆F

(i)
t

|F
(i′)
t′ |

For instance, the volume of F (1)
5 is computed from the flat zones included

in the ellipse drawn in Figure 2. We have ν(F (1)
5 ) = |F

(1)
5 | + |F

(1)
6 | + |F

(1)
8 |.

Last, the criterion used in filtering is based upon a volume threshold λ: νλ(Z)
is verified iff ν(Z) ≥ λ. The filter is finally defined just like attribute openings:
γνλ

(f) =
∑

t γνλ
(ft) where γνλ

(Ft) = ∪iγνλ
(F

(i)
t ). However, it is not an
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attribute opening since the criterion computation does not rely on F (i)
t only,

but takes into account the components of Ft′ with t′ 6= t.

3. Proposed Method and Comparative Results
Our method follows the classification scheme described in section 2. The

key point is to use an appropriate filter to keep the relevant peaks in feature
space only.

Histogram Filtering by Volume Levellings
Simply consider a histogram as a function f . The volume levelling filter

has a simple interpretation: it is a number of pixels in the original image. The
volume levelling process flattens a peak of the histogram only if the number
of pixels (in the original image) which corresponds to the removed part of this
peak is less than a given threshold. Another way to explain the meaning of this
filter and the influence of the volume threshold is the following: no class will
be created when the number of pixels from the original image would be less
than λ.

Figure 3. Classication using Volume Levelling Filtering: original image (left), our result
(right, 6 classes).

The original robotic image contains 352×288 pixels encoded in 8 bits RGB;
it is depicted in Figure 3 (left). First, the image histogram in the hue-saturation-
lightness (HSL) space is computed (step 1). To speed-up the classification
process, the histogram is down-sampled to 5 bits per color component and then
regularized (step 2) with a Gaussian kernel (sigma = 0.5). For the filtering
step (step 3), the volume threshold has been set to 0.05% of the number of
pixels in the original image (λ = 506). Last, the filtered histogram is inverted
(step 4) and the watershed transform (step 5) is applied to provide a color space
partition into classes. This process leads to 6 color classes, and finally, the non-
contextual labeling of the original image is depicted in Figure 3 (right). We can
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observe that the “green” class, corresponding to the table, is perfectly extracted
in feature space, although the color of the table in the original image is not
homogeneous. We have not yet performed a rigourous quantitative comparison
of our results with other ones; nevertheless, extra results are accessible through
the Internet from www.lrde.epita.fr/dload/papers/iccvg04/ for a qualitative
comparison of results over various images.

Figure 4. State-of-the-art Morphological Classifications: Zhang et al. (left., 8 classes) and
Park et al. (right, 9 classes).

Figure 4 depicts the result of the morphological classifiers proposed in [14],
and in [8] respectively. As we can see, classification in color space is less
relevant than with our method (many artifacts appear in the resulting image due
to bad class identification in feature space). Moreover, we have tried to tune
the parameters of both of these classifiers but we did not succeed in getting a
correct result with 6 classes.

Contextual Segmentation
The method presented here does not take into account contextual informa-

tion to assign end labels to points. Thus, noise-like effects might appear in
the labeled image. In such a case a contextual labeling using Markov random
fields can be applied as presented in [6].

Implementation Details
To regularize with a Gaussian kernel, we use the fast recursive implemen-

tation explained in [4]. For the volume filter, we use an implementation based
on the union-find algorithm from Tarjan. Our implementation is an adaptation
of the one proposed for attribute openings in [7]. In all our experiments, we
use olena, a generic image processing library written in C++ that we have de-
veloped ([3]). This library is available under the GNU Public Licence (GPL)
through the Internet from http://olena.lrde.epita.fr
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4. Conclusion
We have proposed a morphology-based classifier in feature space that takes

advantage of levellings. First, it gives relevant results due to the strong proper-
ties of levellings. Second, both parameters of our method are very intuitive: a
variance for the regularization, if needed, and the minimal number of pixels of
a class. Last, the method is fast: a color image segmentation with our method
takes less than 0.5s on a common computer—we have a 1,7 GHz personal
computer running GNU/Linux.
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