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12.1 Introduction

In this chapter, we deal with the very important implementation problem of various image analysis
operators, filters and methods seen in previous chapters.

In general, researchers like to present a novel operator through a mathematical description.
However, this may not always be a simple task to translate this description into computer code.
Yet, if such an operator is of any interest at all, we should expect to be able to use it in practice.
To get there, we need to go beyond pure mathematics into the realm of programming. We need
to express the mathematical operator in an applicable algorithm.

Note that although a mathematical description is useful for understanding, it is generally not
so when an implementation is needed. This usually explains why we often see more than one
implementation, with varying characteristics, for most proposed operators. Also, the evolution
of computer architectures and programming techniques imply that new implementations have
sometimes been proposed decades after the initial definition of some operators.

Rather than attempting to build a comprehensive database of all algorithms and data structures
that have ever been used for implementing morphological operators, an undertaking that would be
enormous and quite uninteresting to read, in this chapter we concentrate on the purer algorithmic
aspects of mathematical morphology. We therefore ignore some specific implementation aspects
dealing with both software and hardware.

Formally, an algorithm is defined, since the Babylonian time till Ada Lovelace [STU 87], as a
series of operations sequenced to solve a problem by a calculation. In mathematical morphology,
filters or operators usually operate on sets or functions and they are defined in formal mathematical
terms.

An algorithm is thus the expression of an efficient solution leading to the same result as the
mathematical operator once applied on input data. This translation process in a mathematical
algorithm aims to facilitate the implementation of an operator on a computer as a program re-
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gardless of the chosen programming language. Consequently, the algorithmic description should
be expressed in general and abstract terms so to allow to decline an implementation in any envi-
ronment (platform, language, toolbox, library, ...).

Computer scientists are familiar with the formalization of the concept of an algorithm and
computation on a real computer with the Turing machine [TUR 36]. This formalization makes it
possible, although not in a tractable form, to implement any correct algorithm. Rather than to
describe algorithms with this formalism, we use a more intuitive notation that, in particular, relies
on non trivial data structures.

This chapter is organized as follows. In Section 12.2, we first discuss the translation process
of data structures and mathematical morphology definitions in computational terms. Then, in
Section 12.3, we deal with different aspects related to algorithms in the scope of mathematical
morphology. In particular, we propose a taxonomy, discuss possible trade-offs, and present algo-
rithmic classes. These aspects are put into perspective for the particular case of the morphological
reconstruction operator in Section 12.4. Finally, historical perspectives and bibliographic notes are
presented in Section 12.5.

12.2 Translation of definitions and algorithms

12.2.1 Data structures

Before discussing an algorithm, once has to describe the data to be processed and how they
materialize once they are not pure mathematical objects anymore.

An image f is a function from a space E to a space V. Since infinite spaces can nor be stored
neither be handled appropriately, these two spaces are always sampled (or discretized) to provide
E ⊂ E and V ⊂ V respectively :

f :

{
E −→ V
p 7−→ f(p).

i

j

Figure 12.1: Illustrations of locations defined by a discrete squared grid and a pixel.

For convenience, a discrete topology with the notion of neighborhood is often associated to E.
Let us denote an element of E by p (which stands for “point”) and a neighboring point of p by n.
In the terms of graph theory, a subset of E is a mesh with nodes (the points p) and a collection
of edges that connect points to their neighbors. The most common situation is given by a regular
sampling of a subpart of E. The resulting mesh is then regular and points belong to a grid. Such a
classical topology for a two-dimensional image defined on a squared grid is shown in Figure 12.1.

A point p of such an image is easily described by two integer indices (i, j), and an image f ,
that links a point to a value, can be represent in memory by a two-dimensional array of values :
f(p) is then equivalent to f [i, j]. This common representation of an image has the advantage that
point values can be stored and modified independently. In the following, the allocation procedure
for a given image f of a value v ∈ V at point p ∈ E is denoted in the abstract terms f(p) := v
although, from a practical point of view, the underlying mechanism is described by f [i, j] := v.

From the implementation perspective, f is not “a mathematical function” but a variable (or a
memory) that represents a function at a given time t during the execution process of an algorithm.
Formally, an algorithm generates a series of ft functions, and each allocation changes a function ft
to a next one ft+1. In computational terms, the f variable hides the existence of all the successive
functions; it is similar to a function that evolves over time. The algorithm starts to deviate from
mathematics.
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12.2.2 Shape and size of the function domain

In the field of computer sciences, the representation of an image by an array assumes that the
underlying function f is defined on a finite domain. In practice, the function domain is generally a
rectangular subset of Z2 or of N2 for two-dimensional images. A process that iterates on all points
of such an image then accesses all the array elements with two loops, as shown on the left-hand
side of the following pseudo-code.

for i := 1 to nraws

for j := 1 to ncolumns

... // use f[i,j]
for all p ∈ E
... // use f(p)

But the abstract right-hand side code is to be preferred as it relates less to a specific imple-
mentation and more to the mathematics of the algorithm. In addition, it does not exhibit any
restrictive underlying assumption about f : the function domain can have a non-rectangular shape,
and its domain does not necessarily have to be two-dimensional. An abstract expression of an
algorithm is suitable to hide the details about the representation of the data, and to focus on the
functionalities of the algorithm. On the other hand, one has, as well, to provide all the details
about the underlying data structure, because performance and complexity issues are closely related
to the basic operations on the data. If browsing all the points of a set of N points has a O(N)
complexity, the complexity of a random access to the value of a point p has a complexity dependent
on the used data structure.

A program accesses values of an image whose data are organized in memory as an array in
constant time: reading and writing of image values at a point p have a complexity of O(1),
regardless of the used access order. The representation of an image as an array is practical and
widely spread. In addition, this representation is compact as it has a negligible overhead to describe
the structure itself compared to the data associated to the image. But it might not always be the
optimal solution. Consider for example the case of an image that describes the contour of an
object. Coding contours of an object by a two-dimensional array guarantees a constant time
access to any point of a discrete grid to determine if it belongs to the contour. However, this
coding is inappropriate with regards to two other aspects. First of all, the required memory size
expands from the size of the contour to the size to the smallest rectangle that encloses the object.
Next, the access to any contour point requires searching in an array: one has to search for the
first contour point by scanning the image line by line, then in the neighborhood to find the next
contour point. For algorithms that operate on a the contour of an object directly, for example a
morphological dilation, it might be advisable to use a more appropriate data structure, like a list
of contour points.

The conclusion is that any data structure used by an algorithm impacts on the complexity of
the algorithm.

12.2.3 Structure of a set of points

The classical representation of a function as an array is flexible enough to be able to define a set
of points. Indeed, if the destination space of f is the set of booleans (V = B), f can be interpreted
as the characteristic function of a set of points : formally, F = { p ∈ E | f(p) = true }. f is then a
binary image. The set F ⊂ E encodes an object while its complementary E \F denotes the image
“background”. To scan all the points of F , it is then sufficient to look for points p in the domain E
satisfying f(p) = true. In the following, we make no notational difference between a set (F ⊆ E)
and its characteristic function (F : E → B).

12.2.4 Notation abbreviations

For convenience, we use the following notation abbreviations to describe algorithms:
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Extensive notation Abbreviation

Scans all the points of a set
F ⊆ E

for all p ∈ E, if F (p) = true, ... for all p ∈ F , ...

Allocates a constant c to all
the points of an image f

for all p ∈ E, f(p) := c f := c �

Copies the content of an im-
age f1 to an image f2

for all p ∈ E, f2(p) := f1(p) f2 := f1

As explained before, with this kind of abstract formulation, it is possible to bypass some
practical difficulties. For example, there is no need for a two-dimensional image to be rectangular
(its domain may be arbitrarily shaped). One problem occurs when dealing with the neighbors of
points located on the border of the image. Again, we define the following abstract formulation
to operate on all the neighboring points of a point p on turn, regardless of the shape of the
neighborhood :

for all n ∈ N (p)
...

With this notation, one can focus on the description of the algorithm and ignore useless imple-
mentation details.

Finally, we use the symbol B to the denote the conventional video order to scan all the points
of an image (from the upper left corner to the bottom right corner, line by line). A reverse video
order (from the bottom right corner to the upper left corner, line by line) is denoted by C.

12.2.5 From a definition to an implementation

As said previously, if morphological operators are often described in mathematical terms, the
translation of it in algorithmic terms is not always straightforward. Experience also shows that,
in the event that such a translation is possible, its efficiency is often questionable (sometimes, it is
even the worst possible implementation). This should not come as a surprise as the purpose of a
mathematical definition is to ensure the correctness of an algorithm rather than to provide hints
for an appropriate algorithm.

To discuss the suitability of algorithms, let us consider a binary dilation. There are several
equivalent ways to define the dilation of a set X by a set B :

X ⊕B =
⋃
b∈B

Xb (12.1)

= { x+ b ∈ E | x ∈ X, b ∈ B } (12.2)

= { p ∈ E | ∃ b ∈ B, p− b ∈ X } (12.3)

Definition (12.1) leads to a so-called trivial algorithm given as algorithm (1) as shown in Fig-
ure 12.2 (from line 1 to line 16). In computational terms, the main procedure is setdilation,
which uses a function translate. In algorithmic terms, it is easy to see that the method derives
directly from the definition, which justifies the soundness of the algorithm.

For a processor, accesses to memory account for a significant computational cost both in reading
mode but even more in writing mode. For simplicity, let us count only the number of memory
allocations (that is, in the writing mode) to true. One can see that the trivial algorithm requires
|B| × |X| × 2 allocations, where |.| denotes the cardinality of a set.

A second version, derived from (12.2), reduces the number of allocations by half. It is detailed
in Figure 12.2 by the dildirect procedure (from line 34 to 47). But the best approach is given by
the algorithm derived from relation (12.3). It improves significantly on the previous algorithms as
the number of allocations is lowered to |X⊕B|. Note that the multiplication of the sizes of X and
B has been replaced by a summation on their sizes. The corresponding algorithm is detailed in
Figure 12.2 by the procedure named dilreverse (from line 50 to line 66). This is the “classical”
implementation of a set dilation as one can find it in several image processing software packages.



CHAPTER 12. 5

1 // algorithm (1)
2

3 setdilation(X : Image of B,
4 B : Set of Point)
5 → Image of B
6 begin
7 data Xb, U : Image of B
8 // initialization to the empty set
9 U := false �

10 for all b ∈ B
11 // computes Xb

12 Xb := translate(X, b)
13 // updates U
14 U := union(U,Xb)
15 return U
16 end
17

18 translate(X : Image of B,
19 b : Point)
20 → Image of B
21 begin
22 data O : Image of B
23 // initialization to the empty set
24 O := false �
25 // computes the set
26 for all p ∈ X
27 if p+ b ∈ E
28 O(p+ b) := true
29 return O
30 end
31

32

33

34 // algorithm (2)
35

36 dildirect(X : Image of B,
37 B : Set of Point)
38 → Image of B
39 begin
40 data O : Image of B
41 O := false � // initialisation
42 for all p ∈ E
43 for all b ∈ B
44 if X(p) = true and p+ b ∈ E
45 O(p+ b) := true
46 return O
47 end
48

49

50 // algorithm (3)
51

52 dilreverse(X : Image of B,
53 B : Set of Point)
54 → Image of B
55 begin
56 data O : Image of B
57 for all p ∈ E
58 for all b ∈ B
59 if p− b ∈ E and X(p− b) = true
60 // existence of a point b
61 O(p) := true
62 goto next
63 O(p) := false // there is no candidate b
64 label next
65 return O
66 end

Figure 12.2: Dilation of a set X by B.

Even with such a simple morphological operator, it appears that there is a major difference
between a concise mathematical definition and the transcription of it in an algorithm.

The case of the dilation is representative for the issues raised during the transcription of a
definition to an algorithm. Next we consider a more complex algorithm to highlight algorithmic
strategies for a single operator.

Most algorithms in mathematical morphology show a pseudo-polynomial complexity. For ex-
ample, the trivial algorithm of dilation has a complexity of O(N ×M) where N and M denotes
the number of points of the image and of the structuring element respectively.

12.3 Taxonomy of algorithms

For different reasons, drawing up a taxonomy of algorithms used in mathematical morphology is
a hard task. First of all, several pages would not suffice to cite all existing algorithms, because
scientists continue to propose new algorithms for operators that are almost forty years old ! Also,
one needs a descriptive and complete set of criteria to propose a taxonomy that encompasses a
large collection of algorithms. Finally, it has to be noted that there is no universal algorithm valid
for any morphological operator. Algorithmic strategies are as diverse as the operators themselves,
with specific characteristics, trade-offs, underlying data structures, etc.
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12.3.1 Criteria for a taxonomy

Taxonomy criteria as applicable to mathematical morphology algorithms are numerous. As an
illustration, a non-exhaustive list of criteria runs as follows :

• type of auxiliary or intermediate data structure (file, tree, etc) ;

• order or strategy to browse points in the image ;

• complexity of the algorithm ;

• required memory size ;

• algorithmic properties ;

• operating conditions (and thus limitations) of an algorithm ;

• concerned classes of operators or filters ;

• universality of the algorithm ;

• purpose of the algorithm ;

• processed data types.

Applications constrains lead to additional possible taxonomy criteria : domain of applicability,
data range and precision, application objectives, etc.

It would take too long to analyze algorithms with respect to all these criteria. Note however
that some criteria lead to a classification of algorithms and that other criteria only permit to
distinguish between them. The following tables illustrate some criteria for both cases.

criterion : universality of the algorithm
restricted large
decomposition of the structuring element (to
speed up computations of dilations and ero-
sions) ;

Dijkstra’s algorithm (for the computation of
a distance function) ; Viterbi’s algorithm (for
the pruning filter as described in Chapter 7);
Prim’s or Kruskal’s algorithm (for a segmenta-
tion process based on the computation of the
minimum spanning tree as described in Chap-
ter 9).

criterion : algorithmic properties
parallel sequential
classical dilation or erosion algorithm by a
structuring element (version (3) as described
in Section 12.2.5) ; detection of simple points

chamfer’s distance (see Section 2.4.3) ; alter-
nate sequential filters (see Section 1.2.7)

criterion : data range and precision
small quantization step1 large quantization step
distribution sort or radix sort ; use of tree rep-
resentations (see Section 7.2)

fast sorting, heapsort

criterion : browsing order
propagation of a front all points on turn
distance based dilation ; most algorithms to
compute the watershed (see Section 1.5 and
Chapter 3)

trivial dilation ; hit-and-miss transform (see
Section 1.1.4)

The following table elaborates on criteria useful to discriminate between algorithms.
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criterion : auxiliary structures
arrays, files, priority queues, trees, graphs, etc.

criterion : purpose
data simplification, resulting transform, computations / estimations on the data, partitioning,
etc.

criterion : processed data type
pixels, textures, objects, regions, contours, etc.

12.3.2 Trade-offs

An image processing chain is a particular case of the transcription of a scientific calculus by a
processing unit. When part of this chain relates to a morphological operator, it is constrained by
a general framework. In particular, a typical constraint is the need to find an appropriate balance
between three antagonistic notions, as described hereafter.

• Expected computational time or speed. Some applications require to run in real time ; other
are less severe on the processing delay. But the absolute execution time is only one part of the
discussion related to the implementation of an algorithm. It is also important to analyze the
variability of the running time. A hardware implementation will favor a constant execution
time, even at the cost of an increased execution time.

• Storage space. Resources proper to the algorithm in terms of disk space or memory usage are
generally limited. Likewise, the amount of data handled by an application can be bounded.
Therefore available storage capacity plays a crucial role in the choice of an algorithm and
adequate auxiliary data structures.

• The results of a computation have a given level of precision. They could be exact or approx-
imated, which then requires to elaborate on the expected level of precision. Many practical
situations do not intrinsically require an exact calculation, or at least not for all points.

Practitioners are motivated by application requirements when they implement a morphological
operator but they are constrained by the trade-off triangle made of three antagonistic notions, as
illustrated on Figure 12.3. If execution speed is favored, then precision is lowered or computational
resources are increased. Note however that modern architectures are capable to perform many
morphological operations in real time so that questions about precision become meaningless.

speed
(processing time)

(memory, disk usage)

precision

approximation level)

storage

(correctness or

Figure 12.3: Trade-off triangle.

12.3.3 Classes of algorithms and canvases

Any algorithm running on images usually relies on those following features:
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1 point wise(f : Image,
2 h : Function)
3 → o : Image
4

5 begin
6 for all p ∈ E
7 o(p) := h(f(p))
8 end

1 sliding window(f : Image,
2 w : Window,
3 h : Function)
4 → o : Image
5 begin
6 for all p ∈ E
7 o(p) = h( { f(q) | q ∈ w(p) } )
8 end

Figure 12.4: “Point-wise” canvas (left) and “sliding window” canvas (right).

• one or several ways of browsing pixels;

• auxiliary data structures (images and/or any other kind of structures, classical or not) ;

• a processing rationale composed of several steps, most of the time “initialization, loops, and
finalization”;

• and, often, a definition of neighborhood, crucial in mathematical morphology to inspect data
around each pixel.

Let us consider the large set of algorithms dedicated to morphological operators. We can observe
that it can be split up into several different groups of algorithms sharing the same algorithmic
scheme, that is, the same sequence of operations, the same use of control structures (such as
loops), and the same auxiliary structures. This leads us to algorithm classes.

In the following we use the term canvas to name the description of a class of algorithms. Such a
description looks like an algorithm template with some blank parts corresponding to the variability
of algorithms belonging in this class. This canvas, or algorithmic scheme, is comparable to use a
“pattern” to make clothes where the choice of fabric, color, and ornaments remains to be defined.

Figure 12.4 depicts a couple of canvases that are very common in image processing. The left one
is a point-wise operator on image values; the value at the point p in the output image o is obtained
by applying a function h to the value of p in the input image f : o(p) := h( f(p) ). With h = C
(complementation function), this canvas becomes the complementation operator; with h = lum
(luminance function), it is then a conversion of a color image into a gray-scale image.

The canvas in the right part of Figure 12.4 computes o(p) from the set of values belonging to a
window w centered at p in the input image. It is therefore the canvas of convolutions ψ(f) = f ∗ g
when h( { f(q) | q ∈ w(p) } ) =

∑
q g(p − q) f(q), and of dilations ψ(f) = δw(f) when h = ∨

(supremum).
Algorithmic canvases are interesting for many reasons :

• Firstly, they are general. Each canvas is not specifically dedicated to a single particular
operator. To the contrary, a canvas has the ability of being “transposed” in order to handle
several operators; to that aim, one just has to define its variable parts (h in the previous
examples).

• Secondly, they are intrinsically abstract. Their expression does not introduce any constraint
that would restrict their use to a limited set of input data. For instance, having a double
loop over the coordinates of points in the canvases of Figure 12.4 would implicitly state that
they are only applicable on bi-dimensional images, which is clearly wrong.

• Lastly, they are helpful for educational purpose. Each canvas translates a meta-algorithm;
understanding it from an algorithmic point of view leads to comprehend any operator that
can be derived from this canvas.

12.4 Geodesic reconstruction example

The different classes of algorithms presented in the following did not appear at the same time in
the litterature. They belong to an historical perspective which is discussed in Section 12.5.
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1 Rd parallel(f : Image,
2 g : Image)
3 → o : Image
4 begin
5

6 data
7 o′ : Image
8 stability : B
9

10 // initialization
11 o := f
12

13 // iterations
14 repeat
15 o′ := o // swap
16

17 // dilation...
18 for all p ∈ E
19 o(p) := max{ o′(q) |
20 q ∈ N (p) ∪ {p} }
21

22

23 // ...under condition
24 for all p ∈ E
25 o(p) := min{ o(p), g(p) }
26

27 stability := (o = o′)
28 until stability
29 return o
30

31 end

33 Rd sequential(f : Image,
34 g : Image)
35 → o : Image
36 begin
37

38 data
39 o′ : Image
40 stability : B
41

42 // initialization
43 o := f
44

45 // iterations
46 repeat
47 o′ := o // memorization
48

49 // first pass (forward)
50 for all p ∈ EB
51 o(p) := min{ max{ o(q) |
52 q ∈ N−(p) ∪ {p} }, g(p) }
53

54 // second pass (backward)
55 for all p ∈ EC
56 o(p) := min{ max{ o(q) |
57 q ∈ N+(p) ∪ {p} }, g(p) }
58

59 stability := (o = o′)
60 until stability
61 return o
62

63 end

Figure 12.5: Reconstruction canvases (part 1/2): Parallel algorithm (left) and sequential algorithm
(right), described in Sections 12.4.1 and 12.4.2 respectively.

To illustrate those classes, we will show different algorithms that map the same morpholog-
ical operator: the geodesic reconstruction by dilation of a function (a gray-scale image for in-
stance) [VIN 93b].

This example, taking the form of an exercise of style, nicely illustrates different algorithmic
schemes used by many other operators in mathematical morphology.

12.4.1 The mathematical version: parallel algorithm

As a first step, we can start by implementing the geodesic reconstruction by dilation from its
mathematical definition:

Rδg(f) = lim
n→∞

δng (f) = δ∞g (f)

where:
δ1g(f) = δ(f)

∧
g,

δn+1
g (f) = δ( δng (f) )

∧
g.

This reconstruction definition is close to the one given in Section 1.2.2; more precisely, it is its
generalization to functions. Here δ is the geodesic dilation: δ(f) = f ⊕B, where B = N (0) ∪ {0},
with N the considered neighborhood and 0 the spatial origin.

An implicit but compulsory assumption for this operator to be valid is that f ≤ g. Put
differently, the marker function f to be dilated shall be “under” the mask function g. As in
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the case of sets, the reconstruction on functions aims at reconstructing some details of g from a
simplified image f .

The definition of this reconstruction is itself an algorithm: it is the result of iterations repeated
until convergence of a geodesic dilation followed by a point-wise condition.

Such a recursion is implemented with a loop and the algorithm terminates when the result is
stable (when no modification has been noticed during the last iteration). The convergence of this
algorithm is mathematically ensured, yet it is very slow in practice. Indeed, consecutive passes
reconsider parts of the image where local convergence has been reached during previous steps. This
algorithm is illustrated by the routine Rd parallel in Figure 12.5.

Similar algorithms

This kind of algorithm, repeat modifications until stability, does not belong exclusively to the
area of mathematical morphology; it is also used, for instance, to compute diffusions.

The complexity of one pass is pseudo-polynomial with respect to the number N of image points
and to the connectivity M . In the worst case (as for a Peano curve image), this algorithm has a
complexity of O(M ×N2). Practically, you should not use this algorithm, except if you are ready
to wait for a long time...

A point in favor of this algorithm is that it is easily parallelizable. One just has to observe that
the computations performed at every points within both loops only depend on the image obtained
at the end of the previous iteration. Those loops thus can be split into several independent tasks,
each task running on a single part of an image partition. From that point of view, this algorithm
highly contrasts with the alternative ones presented hereafter: with the present parallel version
only, there is no dependence between the computation at point p and the computation of its
neighbors during the same iteration.

12.4.2 Sequential algorithm

Getting an acceptable complexity for the reconstruction can be achieved once one notices that this
filter can be expressed in a sequential way. Yet, we will see that it is not a sufficient.

In the parallel version, lines 18 and 20 of Figure 12.5, each dilation is performed independently
from the ones of previous iterations, and the current image o is obtained by dilation of the image
o′ resulting from the previous iteration.

In the sequential version, the auxiliary image o′ is not used during the dilation step anymore;
each dilation is performed in-place, see lines 51 to 57 of Figure 12.5. At a given point p, the local
dilation value is computed from the neighbor values of p in o and immediately written in the work
image o. Consequently, a modification of o appearing at point p can propagate to other points
during the same pass.

In order to ease the comparison between the parallel and the sequential algorithms, we keep a
copy o′ of o to test the stability condition. Please note that we can get rid of o′ if we count the
number of modifications in o during the forward-backward pair of passes to test stability.

Despite the propagation mechanism, the complexity of the sequential algorithm is not improved
w.r.t. the parallel algorithm! Again, in the particular unfavorable case of an image representing a
Peano curve, the reconstruction requires a number of passes proportional to the number of pixels.
However, for convex objects, a forward step and a backward step suffice to obtain the result. In
practice, natural images have a lot of such locally convex parts and then those parts are efficiently
processed. That explains why one usually observes that this sequential algorithm outperforms the
parallel version.

Similar algorithms

The class corresponding to this sequential algorithm is large. In particular, it includes discrete dis-
tance map computation, such as chamfer distances, and the pseudo-Euclidean distance of Daniels-
son [DAN 80].
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65 Rd queue based(f : Image,
66 g : Image)
67 → o : Image
68 begin
69 data
70 q : Queue of Point
71 M : Image
72

73 // initialization
74 M := regional maxima(f)
75 for all p ∈M
76 for all n ∈ N (p)
77 if n 6∈M
78 q.push(p)
79 o := f
80

81

82

83

84

85

86

87 // propagation
88 while not q.empty()
89 p := q.first()
90 for all n ∈ N (p)
91 if o(n) < o(p) and o(n) 6= g(n)
92 o(n) := min{o(p), g(n)}
93 q.push(n)
94

95 return o
96 end

98 Rd hybrid(f : Image,
99 g : Image)

100 → o : Image
101 begin
102 data
103 q : Queue of Point
104

105 // initialization
106 o := f
107

108 // two−pass sequence...
109 for all p ∈ EB
110 o(p) := min{ max{ o(q) |
111 q ∈ N−(p) ∪ {p} }, g(p) }
112 for all p ∈ EC
113 o(p) := min{ max{ o(q) |
114 q ∈ N+(p) ∪ {p} }, g(p) }
115 // ...with enqueuing
116 for all n ∈ N+(p)
117 if o(n) < o(p) and o(n) < g(n)
118 q.push(p)
119

120 // propagation
121 while not q.empty()
122 p := q.first()
123 for all n ∈ N (p)
124 if o(n) < o(p) and o(n) 6= g(n)
125 o(n) := min{o(p), g(n)}
126 q.push(n)
127

128 return o
129 end

Figure 12.6: Reconstruction canvases (part 2/2): Queue-based algorithm (left) and hybrid algo-
rithm (right) are respectively described in Sections 12.4.4 and 12.4.3.
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12.4.3 Queue-based algorithm

In this algorithm version of the reconstruction, another data structure is used: a queue, First-In-
First-Out (FIFO) structure. The general idea is to dilate through a front that propagates into the
whole image, while remaining under the condition imposed by g (line 92).

The two main advantages of this approach are its very simple formulation and the one-pass
dilation. To the contrary of the previous versions, the need for browsing several times the image
pixels is avoided, thus meaning that useless operations (precisely browsing stable regions) are
avoided and that complexity is significantly lowered.

Most of queue-based algorithms rely on the same scheme:

• the queue is initialized with some particular points;

• while the queue is not empty do:

1. remove the point at the front of the queue file,

2. perform a given computation at that point,

3. add some neighbors of that point at the back of the queue.

This scheme is precisely a breath-first traversal of the neighborhood graph of the image starting
from the points pushed in the queue during the initialization step. Some other kinds of browsing
are possible; for instance, we get a depth-first traversal if we switch steps 1 and 3.

In the case of the reconstruction, the initialization starts from the detection of regional max-
ima and the points of their external contour are pushed in the queue. Those maxima are then
propagated by the queue. The operation managed by the queue is not really a “common” dilation,
in the sense that the propagation performs neither a dilation with a structuring element, nor a
geodesic one. Only maxima values of f are dilated. Yet, it is an algebraic dilation (see Chapter 2).
Since the dilation is only effective under the condition imposed by the mask g, we get the expected
reconstruction by dilation, as defined previously [VIN 93b].

The core of the algorithm, given in the left column of Figure 12.6, lies in the propagation process
(lines 87 to 93). One can easily notice that every point p is only inspected once, which contrasts
with the previous given algorithms. This part of the algorithm thus has a linear complexity.

On the other hand, the initialization step requires to compute the regional maxima of f
(line 74) which can be as costly as the propagation step! Such an operation is equivalent to a
connected component labeling, the complexity of which being quasi-linear thanks the Union-Find
algorithm [TAR 75].

More generally, using a random-access structure such as a queue or a stack is efficient when
the initialization stage extracts adequate information. One can relate that issue with the notion
of redundancy of information. In a dilation process relevant information are the localization and
the value of local maxima. Algorithms can either ignore such information (those are content blind
algorithms), or rely on those information and propagate them. Amongst the fastest (and also
the most complex) algorithmic approaches, we have those that detect relevant information and
propagate them during the same browsing of image points. To understand how detection and
propagation can merge into a single step, one can look at the algorithm proposed in [Van 05]
for the morphological opening. The queue-based reconstruction given in this section does not
feature such an elaborate scheme; in the following, we see that it is possible to get a more efficient
reconstruction than the current version.

Remarks

Similar algorithms: Amongst algorithms similar to the queue-based reconstruction we can cite,

• for the breath-first traversal: distance functions [RAG 93], SKIZ, skeletonization [VIN 91a],
ordered dilations [ZAM 80],

• and for the depth-first traversal: the component tree computation given in [SAL 92].
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Stack instead of queue: Using a stack, either a simple Last-In-First-Out structure or a
pushdown automaton, instead of a queue, can be relevant when combined with the storage of some
information related to data. Yet it should often be avoided when the behavior of the algorithm
containing it is recursive. Indeed, in such cases, computation calls are stacked so that can be
executed later. So, even if the algorithm is theorically correct, it may become inefficient when the
size of the stack grows too much (note that its size may be as large as the image).

Priority queue: A simple queue ensures only one property of the contained elements: they
are ordered as they were pushed in the queue. This ordering usually corresponds to a particular
spatial ordering of the image domain. It is sometimes useful to get a more general property about
the element ordering in the queue. For instance, we may want points to be sorted first by their
values and then by their introduction order in the queue. To that aim, a particular structure has
been proposed by F. Meyer in the context of a watershed transform algorithm: the hierarchical
queue [MEY 91]. This is an array of queues whose size as large as the number of values; it is thus
efficient if and only if the values are encoded with a few bits (typically less than 12 bit). Note,
however, that it is a particular case of the more general and very common priority queue structure,
that can be implemented thanks to a heap or a self-balancing binary search tree.

Complexity: Some data structures are more appropriate than others depending on the algo-
rithms, on the nature of input images, and on the operations that rely on those structures. A study
of the most classical data structures that we can find in morphology has been realized by E. Breen
and D. Monro [BRE 94]; furthermore they also emphasized the distance existing between theory
and practical results, related to the use of those structures. In particular Fibonacci heaps [L. 87],
though theoretically efficient, happen to be rather slow when involved in effective algorithms. As
a piece of advice, when an efficient priority queue is required, maintaining a stable sort (that is,
with the insertion order of elements always preserved in the queue), regardless of the data type
used for priorities, then splay-queues are often an appropriate choice [SLE 85].

12.4.4 Hybrid algorithm

In the hybrid algorithm, given in the right column of Figure 12.6, we can recognize first a sequential
part but limited to a couple of passes. During those passes, the reconstruction is thus performed
in convex regions of the input image. In the second part of the algorithm, we have the propagation
of the queue-based algorithm. This last part completes the reconstruction when the convergence
is achieved.

The advantage of this method over the previous one is manifold. The computation of regional
maxima is avoided since the queue is initialized with the frontier obtained after the sequential
passes. Furthermore, in the case of non-pathological images, most of the reconstruction is actually
achieved during this sequential part and the final propagation, much more costly, is only performed
on a small part of the image domain.

Please note that hybrid algorithms, where an actual synergy exists between the different ap-
proaches they mix, are rather rare in the literature.

Remarks

We have again the worst cases of the previous algorithms with image representing fractal patterns.
In those cases, the queue size remains small but many loops are required for the algorithm to
converge.

A way to get better performances from this algorithm is to use a queue implemented by a
circular array (more compact in memory and faster when inserting and suppressing elements).

This hybrid version highlights the important relationship between the algorithm in itself and
the data structures it rely on. Authors usually study the complexity of the algorithms they propose
with respect to the number of manipulation of image data, that is the number of input/output
(reading/writing) performed on points. Unfortunately many authors forget to take into account
the effective cost of the auxiliary structures involved in those algorithms. The simplest form of such
structures is a data buffer in memory, where even a writing operation is not negligible, depending
on the buffer size and the amount of RAM available. On the other hand, being able to precisely
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130 make set(p : Point)
131 begin // creates singleton { p }
132 parent(p) := p
133 end
134

135 is root(p : Point) → B
136 begin // tests if p is root
137 return parent(p) = p
138 end
139

140 find root(p : Point) → Point
141 begin // finds the root of p
142 if is root(p)
143 return p
144 else
145 parent(p) := find root(parent(p))
146 return parent(p)
147 end
148

149 do union(n : Point, p : Point)
150 begin // merges two trees
151 r := find root(n)
152 if r 6= p
153 if g(r) = g(p) or g(p) ≥ o(r)
154 parent(r) := p
155 o(p) := max(o(r), o(p))
156 else
157 o(p) := MAX
158 end

159 Rd union find(f : Image,
160 g : Image)
161 → o : Image
162 begin
163 data
164 parent : Image of Point
165 S : Array of Point
166

167 // initialization
168 o := f
169 S := sort(g) // w.r.t. B and g(p) ↓
170

171 // first pass
172 for all p ∈ S
173 make set(p)
174 for all n ∈ N (p) if deja vu(n)
175 do union(n, p)
176

177 // second pass
178 for all p ∈ S−1

179 if is root(p)
180 begin
181 if o(p) = MAX, o(p) := g(p)
182 end
183 else
184 o(p) := o(parent(p))
185

186 return o
187 end

Figure 12.7: Reconstruction by dilation with union-find . This algorithm is described in Sec-
tion 12.4.5.

characterize the cost of an algorithm including its auxiliary structures is a tricky task, in particular
because it also highly depends on machine hardware.

12.4.5 Algorithm based on Union-Find

The “Union-Find” algorithm is an identification of the equivalence classes of a graph. It is presented
in Figure 12.7. This algorithm is relatively complex; yet, if we do not fully explain it, we will try
to describe it roughly. It is composed of three steps: an initialization, a union stage, and a labeling
stage (find).

Rough sketch of the algorithm

The cornerstone of this algorithm lies in a change of representation for images: we move from the
notion of pixels, with no connectivity information but local, to a structure of tree, where a node
can represent a large connected component of an image. In this tree, the root node maps the whole
image domain, whereas leaves relate to local components.

During the initialization, the points of image g are sorted by decreasing value of gray levels and
stored in the array S (line 169).

During the union stage, points are browsed as stored in S. The current point can be isolated,
in the sense that its neighbors have not yet been inspected; it thus belongs to a regional maxima.
This point then forms a singleton set. If not isolated, it is thus connected to a regional maximum
of g; it is then merged with the corresponding tree and becomes its new root. A key property to
understand this algorithm is to realize that this regional maximum of g is related to a regional
maximum of f . During the process of browsing S, a forest of trees is created that progressively
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spans the image domain.
In the final phase (find), we differently handle the points such as g > f , that receive the

maximum value of f in the connected component containing the local regional maximum of g, and
the points such as g = f , whose value is kept unchanged.

Eventually f has been dilated under the constraint of g and the result is the expected recon-
struction.

Details

During the union stage, the output image o is used as auxiliary data to store the state of all
components/trees: either max(f) when dilating is effective (f < g locally) or MAX when the
constraint applies. o only takes its final values during the last step of the algorithm.

For every flat zones where it is sure that we will get o = g, no tree is computed and the flat
zone points are all singletons.

The deja vu function can be evaluated on the fly so this auxiliary structure can be saved.
If g is an image with low-quantized values (for instance an 8-bit image), one can sort points in

linear time thanks to a radix sort (a distributed sort based on histogram computation).

Complexity

In this chapter, a very particular version of the union-find based algorithm is presented (Fig-
ure 12.7). It relies on a path compression technique, embedded in the find root routine (line 145),
so that the number of recursive calls to this routine is reduced. Yet it is not sufficient to get the
best complexity of the union-find algorithm. To minimize the number of recursive calls, it is also
necessary to keep all trees as most balanced as possible. For that, one has to add to the version
presented here the “union-by-rank” technique. We have voluntarily eluded this technique to make
this algorithm more “readable”.

Actually, the union-find based reconstruction is quasi-linear in the case of g being a low-
quantized image [TAR 75]; otherwise, for floating data for instance, the complexity is O(N log(N))
due to the sorting step.

Comparison with previous versions

Although the union-find algorithm is more efficient in theory than the other presented versions,
in practice it is not always faster than the hybrid algorithm. However it is emblematic of mod-
ern implementations of connected operators: algebraic attribute openings and closings, levellings,
watershed transforms [BRE 96, JON 99, MEI 02, GÉR 05]. The representation of image con-
tents as a tree forest allows for a exceptionally rich theoretical description of connected opera-
tors [FAL 04, NAJ 06]. See also Chapters 7 and 9.

With the parallel and sequential approaches, the limiting factor w.r.t. complexity was the num-
ber of passes to perform to reach convergence. With the queue-based and the hybrid approaches,
the risk came from the queue structure becoming too huge. In the case of the union-find algorithm,
the bottleneck is located in the tree root search.

12.4.6 Algorithm comparison

In order to compare the five algorithms described earlier, we shall reuse some of the criteria laid
out in section 12.3.1. The table below illustrates on the one hand the large diversity of algorithms
available to translate a single operator, and on the other hand the difficulty in using the criteria
effectively. Indeed, some of these algorithms are not monolithic: they correspond to several criteria
at once. The hybrid algorithm, for instance, is only “half-sequential”: it uses both video passes on
the image and a propagation front. Regarding the Union-Find algorithm, we could classify it as
“sequential” as between the initialization (the sorting pass) and the two other passes, every image
pixel is considered exactly three times. However, the order in which they are considered are not
the usual video and anti-video sequences.
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algorithm name algorithm class pixel order data structures
parallel parallel video passes none extra
sequential sequential video passes none extra
queue-based queue-based front standard queue
hybrid 1/2 sequential 2 passes + front standard queue
Union-Find pseudo-sequential 3 passes array and tree

To compare the performance of these five algorithms for the geodesic reconstruction by dilation,
we took as g the standard lena 512×512 pixels gray-level image, and for f the pixelwise maximum
of g and g rotated 90 degrees clockwise. The neighborhood relation is the 4-connectivity. As
we seek a comparison amongst algorithms, we did not perform any compiler-level optimization
or used particular techniques such as pointer arithmetic, although they could have resulted in
significantly improved running times. The algorithm performance order would have remained the
same, however.

algorithm running time
(in sec.)

parallel 25.28
sequential 3.18
queue-based 0.65
hybrid 0.34
Union-Find 0.34

This table illustrates, with performance ranging within a rough factor of 100 to 1, that trans-
lating in practice a mathematical operator into actual code can result in widely different results.
Producing a “good” algorithm with properties in accordance with what the practitioner expects
is indeed an art and a science in itself.

12.5 Historical perspectives and bibliography notes

The history of various algorithms and their links to mathematical morphology as well as other
related disciplines would require a book by itself. We lay out in the next section a few, hopefully
useful notes.

12.5.1 Before and around morphology

Like all scientific endeavors, mathematical morphology was not born, and neither does it evolve in
a scientific vacuum. It represents a step toward a better understanding of spatial representations
pertaining to physical or virtual objects. Before Matheron and Serra named their discipline in
1962 [MAT 02], image analysis already existed and many algorithms had already been developed
in comparable disciplines. As well, morphology continued to evolve in a moving context. It is
perhaps useful to specify some algorithmic markers in this creative broth.

Graph-based algorithms

Images are most often represented on regular graphs. As such it is not really surprising that
so many mathematical morphology algorithm derive from classical graph algorithms. We may
mention Dijkstra’s minimal paths [DIJ 59], the minimum spanning tree problem [JOS 56, PRI 57],
and the classical Union-Find algorithm [TAR 75]. A good source on many important algorithms
is the Cormen et al. book [COR 09].

It is more than likely that not all the classical or recent literature on algorithm on graphs has
been fully exploited in the context of mathematical morphology. It is probably a very good source
of future results.
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Discrete geometry and discrete topology algorithms

Discrete geometry is an active field of research very closely linked to mathematical morphology.
The goal of discrete geometry is to redefine and algorithmically exploit the objects and operators
of classical geometry, in a purely discrete framework. For instance, lines, planes, intersections,
vectors and so on have been partially redefined in such a way [RÉV 91]. Properties of these new
objects, although obviously related to the classical ones, are markedly different and usually much
more amenable to their use in an algorithmic setting. A recent book on the topic is [GOO 04].

Amongst the most useful algorithms in discrete geometry, also used in mathematical mor-
phology, we can mention distance transforms [ROS 66, BOR 84, SHI 92], that are very useful by
themselves, but can also be used to implement binary erosions and dilations [RAG 92].

Discrete topology is a discipline that seek to define topological operators in discrete spaces such
as images, but also on arbitrary graphs, on discrete manifolds such as triangulated surfaces, or on
complexes [KON 89, BER 07]. The link with morphology is very strong especially in the areas of
thinning operators [KON 95] and skeletonization algorithms [MAN 02]. The watershed transform
can also be seen as a topological operator [COU 05, COU 10]. The topological watershed, of grey-
level image I, for instance, is the smallest image, on the lattice of numerical functions, with the
same topology as I. The topological watershed operator is also the most efficient known watershed
algorithm (with quasi-linear complexity).

Continuous-domain algorithms

The continuum is not representable exactly on computers, however, some mathematical objects
are intrinsically continuous, such as partial derivative equations, and can be used to solve image
analysis problems. This approach leads to some interesting algorithms.

Taking as starting point segmentation algorithms such as active contours [KAS 98], it is possible
to find links with skeletonization [LEY 92], as well as generalizations of the watershed transform,
for instance including some curvature constraints [NGU 03].

Fast marching algorithms [SET 96a] are in essence equivalent to a flexible algorithm for com-
puting the geodesic Euclidean distance transform [SOI 91]. This applies to scalar or tensorial
metrics [SET 01]. These algorithms make it possible to propose, in some contexts, a mathematical
morphology formulation in the continuous domain [SAP 93]. It is important to note that the orig-
inal Sethian algorithm is only first-order accurate. A fast method to compute the exact geodesic
Euclidean distance transform is an open problem at the time of writing.

These methods have been used in morphology for instance in connected filtering [MEY 00],
by replacing the dilation operator by a continuous propagation. Formulation of the watershed
transform in the continuous domain have been proposed by several authors [NAJ 93, MAR 96],
and can be solved using fast marching methods.

The principal benefit derived from a continuous formulation is to abstract away the notion of
pixel. Up to an approximation, it is possible to define a dilation of arbitrary, and not only integer
radius. It is also possible to propose morphological operators on arbitrary manifolds, for instance
on triangulated surfaces, although discrete formulation have been proposed in this context as well.

We will explore other links with the continuous domain through algorithms inspired by linear
theories.

Discrete and continuous optimization for segmentation

Active-contour [KAS 98] or level-set [OSH 88, MER 94, SET 96b] types algorithms are compa-
rable in their approach to segmentation. The idea is to propose a gradient-descent optimization
procedure, under some constraints. Common constraints include the necessity of closed contours,
the inclusion and/or exclusion of certain zones, topology preservation, etc. These algorithms work
in 2D or 3D, and are fairly flexible with respect to the kind of cost function they can optimize. For
instance, it is possible to affect costs to region content, motion analysis, regularity, etc. However,
the more complex formulations most often cannot be optimized globally.

More recently the image analysis and computer vision communities have found a renewed
interest in simpler formulation, but that can be optimized globally, for instance using graph
cuts [BOY 04], continuous maximum flows [APP 06], or random walks [GRA 06]. Indeed these
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formulations are less flexible, but are more reliable and less sensitive to noise. There are some
strong links between these techniques and the watershed transform [ALL 07, COU 09].

Linear analysis algorithms

Here linear analysis means the domain of operators linked to linear integral transforms, such as
the Fourier, Radon and wavelets transforms. These historically were adapted to images from
signal processing. In this domain, the basic structure is the classical group, with the addition as
base operator. For signals and for some kinds of images (X-Ray, or tomography images) this makes
perfect sense as superposition of signals is a reasonable hypothesis. For some kinds of problems
this is also a perfectly suited structure. For instance, many sources of noise such as sampling noise
is approximated by Gaussian additive white noise, for which there exists an optimal deconvolution
in the least square sense.

Mathematical morphology is not linear, and the basic structure is the complete lattice, with
infimum and supremum as operators. However there are some links between the two approaches. Of
course this is true at the level of applications, but also some tools and approaches are similar. As an
example we can cite several works on multi-resolution [HEI 00] and scale-space [JAC 96, VAC 01].

To finish, we present a curiosity: it is possible to define the dilation from a convolution operator:

δB [I] = (I ? B) > 0, (12.4)

where I is a binary image and B an arbitrary structuring element. Using the FFT, this algorithm
can be implemented in constant time with respect to B, which is the only known implementation
with this characteristic.

12.5.2 Historical perspective on mathematical morphology algorithmic
developments

From the very beginning, the development of mathematical morphology as both a practical and
theoretical area was linked to software and hardware developments. The texture analyzer was the
first machine implementing morphological operators, and was developed at the Ecole des Mines in
Paris [MAT 02]. Following this, many advances in this field were the result of a constant synergy
between applications, theory, algorithmic and hardware developments.

In the early days, dedicated architectures for image processing were a necessity, due to the
relatively weak computing powers of general-purpose architectures. On dedicated hardware, most
often access to data can only be realized in an ordered, sequential manner, using video passes on
the image. This necessarily also drove the development of corresponding algorithmic techniques.

Parallel algorithms

The use of video passes on the images and the limited memory of early architectures (typically
only three lines could be loaded in main memory at any given time) is a limitation that is still
found today, for instance in embedded architectures such as mobile phones. These limitations,
amongst others, force the use of parallel algorithms. Here this term means a type of processing
such that the result on any arbitrary pixel is independent of the result on other pixels. This
implies order-independence, and does imply that it is relatively easy to implement such algorithms
on massively parallel architectures, but the actual architecture the algorithm is run on does not
matter as such. An illustration of this type of algorithm is given on Fig. 12.5 on the left-hand
side, and is also described in section 12.4.1. In hardware terms, these algorithms are well-suited to
SIMD Single Instruction Multiple Data and to the limit case of the so-called artificial retina, where
each pixel is equipped with its own little processor [MAN 00]. Amongst hardware developments
that were known to use parallel morphological algorithms are the Morpho-Pericolor [BIL 92] and
the Cambridge Instrument Quantimet 570 [KLE 90] as well as the ASIC (Application-Specific
Integrated Circuit) PIMM1 [KLE 89].

The first algorithms implementing the watershed transform, the skeletonization and morpho-
logical filters were described and implemented in a parallel fashion. See for instance [BEU 79,
MON 68].
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Sequential algorithms

Some (but not all) algorithms can be expressed in a sequential manner, which here designates an
implementation that uses the current result to derive the next one, most often adopting a particular
pixel scanning order. This is illustrated on Fig. 12.5 on the right-hand side, and is also described
in section 12.4.2. Sequential algorithms, sometimes also incorrectly called recursive algorithms are
often more efficient than parallel ones, at least on most general-purpose computers, because they
can make use of the local redundancy in many natural images. A typical sequential algorithm
is the classical distance transform of Rosenfeld et al. [ROS 66], that computes the distance
transform in two passes over the image: one in the video scanning order, and the second in the
anti-video order. At the hardware level, few sequential algorithms have been implemented, but
Lemonnier [LEM 96], among others, has proposed a sequential watershed transform algorithm.

Breadth first algorithms

As general-purpose computers became more powerful, the idea of exploring pixels from the border
of objects without necessarily following a scanning order imposed by the hardware (in particular
the memory wiring) took more hold. This is achieved using a suitable data structure. Among
this family of algorithms, we can mention those using boundary paths [SCH 89], queues [VIN 90]
and priority queues [MEY 90a]. A classical algorithm belonging to that class is the watershed
transform from flooding [VIN 91c, MEY 90b]. This kind of algorithm is on the other hand not
well suited to hardware implementations, mostly because the underlying data structure imposes
that memory bandwidth be the limit, not computation speed.

Graph-inspired algorithms

Breadth-first algorithms are a classical approach in graph-based problems. The idea of continuing
in this direction and adapt other class of graph algorithms to image data was therefore natu-
ral. Among graph-inspired morphological algorithm, we can cite the Image Foresting Transform
(IFT) [FAL 04], which is used in segmentation and classification. More recently, the idea of con-
sidering an image truly as a graph and to also assign values to edges imposed itself. This makes it
possible to define a discrete gradient in a natural way: simply by the numerical difference between
two vertices linked by an edge [COU 07]. This had already been proposed earlier by the graph-cut
community [BOY 01, BOY 04]. This notion defines a border between regions as a series of edge
cuts and not a path of vertices, which solves numerous topological problems. It also paved the way
for a unifying framework encompassing many segmentation methods [COU 09].

Topological algorithms

Beyond the essential notion of simple point, which is the starting point for many efficient topology-
preserving algorithms, many works have considered the essential notion of image topology. An
important notion is the component tree (Section 12.4.5.1 and Chapter 7). The component tree,
through its efficient representation of regions and catchment basins, can be used in many interesting
algorithms, involving for instance hierarchical segmentation, levelings and other filters [NAJ 06].
This staple of morphological algorithms, the watershed transform, can also be seen as a topological
transform [BER 05, COU 05]. For details on the topological watershed, see Chapter 3.

Morphological filtering algorithms

Morphological filtering algorithms form an interesting class by themselves. As a starting point,
useful literature on morphological filtering includes the two books by Serra [SER 82, SER 88], an
article on the theory of morphological filtering by Serra and Vincent [SER 92] and the articles by
Heijmans and Ronse [HEI 90, RON 91]. A more introductory article by Heijmans is [HEI 96].
None of these articles discuss algorithmic aspects, which are nonetheless essential. The following
is an incomplete but illustrative list of some problems studied in mathematical morphology.

1. Fast erosions and dilations. The topic of fast implementations of basic morphological op-
erator has been studied by many authors. In spite of this, many libraries of mathematical
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morphology software (including well-known and expensive ones) compute a min or max filter
on a window using O(MN) comparisons, with M the number of pixels in the image and N
the number of pixels in the window. It is often possible to decompose structuring elements
into more readily computable sub-parts [XU 91]. Among the most commonly use SE are
the regular convex polygons in 2D. These can easily be decomposed into operations using
line segments. A significant achievement by the community has been to propose increasingly
efficient algorithms to compute the basic morphological operators in arbitrary 1D segment
windows, including arbitrary orientation [HER 92, BRE 93, GIL 02, Van 05]. As a result, the
computation of all four basic morphological operators with convex regular polygonal windows
can be achieved in constant time with respect to N in 2D. Note that at the time of writing,
an equivalent result in 3D or more is still an open problem, except for some particular cases.

Regarding arbitrary structuring elements in nD, there exists an algorithm with complexity
O(

n
n−1
√
NM) [VAN 96]. A faster algorithm for 2D but extensible to more has been pro-

posed [URB 08]. Several algorithms have been proposed in the binary case [JI 89, VIN 91b],
with complexity asymptotically linear with respect to M . The FFT-based algorithm men-
tioned in section 12.5.1.5 has complexity M logM .

2. Algebraic openings and thinnings . Filtering in mathematical morphology tends to rely more
on openings and closings than erosions and dilations. It is common to define a notion of
opening or closing that is not directly related to that of structuring element, but is rather
based on the concepts of attribute and connectivity [CRE 93, CRE 97, HEI 99]. These ideas
are close to the notion of reconstruction seen in this chapter, and were also presented in
Chapter 1.

Thanks to connected and attribute filtering, many very effective operators were proposed in
the last decade. Historically, from the algorithmic point of view, the first implementation of a
connected filter is due to Vincent [VIN 92, VIN 93a, VIN 94], with the area filter. The gen-
eral notion was extended to attributes [BRE 96] that are not necessarily increasing, leading
to operators that were no longer openings or closings, but algebraic thinnings, however using
very similar principles. An efficient implementation was proposed in [MEI 02], followed by a
generalization using the component tree and the Union-Find in [GÉR 05]. More recently, the
notion of connectivity was extended to hyper-connectivity [WIL 06] to account for overlaps.

Path connectivity is also both a topological and a connectivity notion. By adding constraints
to acceptable paths, from straight line segments [SOI 01] to more flexible paths [HEI 05,
TAL 07], it is possible to enable the filtering of notoriously difficult thin objects in various
applications [VAL 09b, VAL 09a].

3. Spatially variant filtering. More recently, efficient operators using filtering by non translation-
invariant (or spatially variant) filters have been proposed. From the theoretical point of view,
spatially variant filters have been known at least since Serra [SER 82], but were recently
given some more theoretical treatment [CHA 94, BOU 08a, BOU 08b]. This kind of filtering
method is adaptive in the sense that a different structuring element is used at each point,
depending on the local content of the image (for instance depending on the orientation,
perspective, or texture) [LER 06, VER 08]. These filters can be effective in the context of
inverse filtering, for thin feature extrapolation [TAN 09a, TAN 09b].

4. Extension to nD. Mathematical morphology is, from the theoretical point of view, largely
dimensional-agnostic, meaning most operators can be defined irrespective of the dimension
of the underlying space [GES 90, GRA 93]. However there are some practical difficulties
as dimension increases. For instance, from the geometrical and topological point of view,
while the hexagonal grid is a useful vertices arrangement in 2D that is naturally relatively
isotropic and self-dual with respect to connectivity, no such arrangement exist in 3D, and
little is known of higher dimensions. From the direction sampling point of view, which is
often used in orientation-based filtering, it is possible to sample the 2D plane directionally
in such a way that is both regular and of arbitrary resolution (say every degree or more
or less). This is impossible in 3D and more: a result which is known since Platon and
Euclid [HEA 56]. Of course 3D (and more) filtering requires more resources, but thanks to
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recent advances in sensors, instruments and computers, it has become increasingly common
and important. Application fields include medical imaging, materials science, biological and
bio-molecular imaging.

12.6 Conclusions

In this chapter, we have sought to express the distance that exists between the mathematical
formulation of an operator and its actual algorithmic translation. From a simple but representative
example, we have also shown that in general there does not exist a single best way to express the
implementation of an operator, but several, for which characteristics can be markedly different.

Algorithmic research, dedicated to mathematical morphology or not, remains a wide open field.
As time progresses, increasingly sophisticated operators are being proposed, with correspondingly
demanding computation loads. Together with the ever increasing size and complexity of the data
itself. This can only mean that it becomes increasingly more important to devote sufficient time
and resources to the development of efficient implementations of image analysis operators, whether
this implementation be in hardware or software.

We can also anticipate a few fresh challenges on the algorithmic frontier:
First, external and internal observers (for instance users, but also article reviewers), have

noticed increasing difficulties in reproducing methods and results presented in the scientific com-
munity. From a scientific article, the way leading to an actual piece of working code can be very
long. At the understanding of the proposed operators and algorithms can be added the difficult
and painful programming and debugging tasks. As a direct consequence, a loss of information
capital and of knowledge can be observed. Many, if not most, solutions proposed in the literature
are simply abandoned or ignored, and few articles propose comparison with a significant number
of solutions. In our opinion, the morphological community should make the effort to endow the
public at large with a working library of computer code implementing its efforts. This could take
the form of a mutual, open platform for code repository.

A second challenge concerns the implementation of algorithms. Algorithms are by their nature
abstract. Indeed in this chapter we have kept an abstract presentation as much as possible,
reflecting the fact that they might work just as well on 1D signal as on 3D volume data, irrespective
of sampling, grid and topology issues, unless specified. Unfortunately, the actual translation of
algorithms to code is almost inevitably accompanied by a loss of generality: such library of code
will only work on 2D, gray-level, square grid images. Another will be devoted to satellite images,
yet another to 3D medical volumes, and so on. Most libraries do not accept arbitrary-shaped
structuring elements for instance. Even a “simple” dilation as given by algorithm (3) on Fig. 12.2
become, once implemented, a dilation restricted to a limited number of cases. We note, however,
that generic solutions exist, allowing users to apply algorithms to vastly different datasets without
necessarily sacrificing efficiency [LEV 09].

A third challenge concerns community effort. It is increasingly understood, that to be ac-
ceptable during and after publication, to be reviewed effectively and to be cited, an algorithm
description should be accompanied by an implementation, freely accessible to the researcher or
individual user. Indeed, re-implementation efforts are usually simply duplicated work. In other
communities, like computer vision, discrete geometry or computational geometry, active repository
of code exist. This is not yet the case with mathematical morphology, although various attempts
have been made, and it is the personal belief of the authors of this chapter that this has hindered
the adoption of many effective algorithm in the larger community of researchers and users of im-
age analysis. Of course, making code freely available does not always sit nicely with intellectual
property demands of funding agencies and institutions, so this is yet another challenge for which
solution have been proposed, such as dual licensing.

Finally, a last challenge is in the evolution of computer architectures. We are now in the era
of generalized multi-processors and cheaply available massively parallel co-processors and clusters.
This means that the tools of image analysis and in particular algorithms, must yet again adapt
themselves to this changing environment.
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d’Etat, Université Louis Pasteur, Strasbourg, 1991.

[RON 91] Ronse C., and Heijmans H., ”The algebraic basis of mathematical morphology: II.
Openings and closings”, Computer Vision, Graphics, and Image Processing: Image Understand-
ing, Vol. 54, Num. 1, Pp. 74-97, 1991.

[ROS 66] Rosenfeld A., and Pfaltz J., ”Sequential operations in digital picture processing”,
Journal of the ACM, Vol. 13, Num. 4, Pp. 471-494, 1966.

[SAL 92] Salembier P., and Serra J., ”Morphological Multiscale Image Segmentation”,
In Maragos P., Ed., Visual Communications and Image Processing, Vol. SPIE-1818, Pp.
620-631, 1992.

[SAP 93] Sapiro G., Kimmel R., Shaked D., Kimia B., and Bruckstein A., ”Implement-
ing continuous-scale morphology via curve evolution”, Pattern Recognition, Vol. 26, Num. 9,
Pp. 1363-1372, 1993.

[SCH 89] Schmitt M., Des algorithmes morphologiques à l’intelligence artificielle, Thèse de doc-
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