
Writing Reusable Digital Geometry Algorithms in a Generic

Image Processing Framework

Roland Levillain1,2, Thierry Géraud1,2, Laurent Najman2

1 EPITA Research and Development Laboratory (LRDE)
2 Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, Équipe A3SI, ESIEE Paris

roland.levillain@lrde.epita.fr, thierry.geraud@lrde.epita.fr, l.najman@esiee.fr

Abstract Digital Geometry software should reflect the generality of the underlying mathe-
matics: mapping the latter to the former requires genericity. By designing generic solutions,
one can effectively reuse digital geometry data structures and algorithms. We propose an
image processing framework focused on the Generic Programming paradigm in which an al-
gorithm on the paper can be turned into a single code, written once and usable with various
input types. This approach enables users to design and implement new methods at a lower
cost, try cross-domain experiments and help generalize results1.

Keywords Generic Programming, Interface, Skeleton, Complex

1 Introduction

Like Mathematical Morphology (MM), Digital Geometry (DG) has many applications in image
analysis and processing. Both present sound mathematical foundations to handle many types of
discrete images. In fact, most methods from digital geometry or mathematical morphology are
not tied to a specific context (image type, neighborhood, topology): they are most often described
in abstract and general terms, thus not limiting their field of application. However, software
packages for MM and DG rarely take (enough) advantage of this generality: an algorithm is
sometimes reimplemented for each image and/or value type, or worse, written for a single input
type. Such implementations are not reusable because of their lack of genericity. These limitations
often come from the implementation framework, which prohibits a generic design of algorithms.

Thanks to the Generic Programming (GP) paradigm, provided in particular by the C++ lan-
guage, one can design and implement generic frameworks, in particular in the field of scientific
applications where the efficiency, widespread availability and standardization of C++ are real as-
sets. To this end, we have designed a paradigm dedicated to generic and efficient scientific software
[4] and applied the idea of generic algorithms to MM in Image Processing (IP) [6], as suggested by
d’Ornellas and van den Boomgaard [3]. The result of our experiments is a generic library, Milena,
part of the Olena image processing platform.

Lamy proposes to implement digital topology in IP libraries [5]. The suggested solution, applied
to the ITK library “works for any image dimension”. In this paper, we present a framework for
the generic implementation of DG methods within the Milena library, working for any image type
supporting the required notions (value types, geometric and topological properties, etc.). Such a
generic framework requires the definition of concepts from the domain (in particular, of an image)
to organize data structures and algorithms (see Section 2). Given these concepts one can write
generic algorithms, like homotopic skeletonizations based on various definitions of the notion of
simple point, as illustrated in Section 3. Section 4 concludes on the extensibility of this work along
different axes: existing algorithms, new data structures and efficiency.

1This work has been conducted in the context of the SCRIBO project (http://www.scribo.ws/) of the Free
Software Thematic Group, part of the “System@tic Paris-Région” Cluster (France). This project is partially
funded by the French Government, its economic development agencies, and by the Paris-Région institutions.

http://www.scribo.ws/


2 Genericity in Image Processing

In order to design a generic framework for image processing, we have proposed the following
definition of an image [6]: An image I is a function from a domain D to a set of values V ; the
elements of D are called the sites of I, while the elements of V are its values. For the sake of
generality, we use the term site instead of point ; e.g. sites could represents the triangle of surface
mesh used as the domain of an image. Classical site sets used as image domains encompass
hyperrectangles (boxes) on regular n-dimensional grids, graphs and complexes (see Section 3).

In the GP paradigm, these essential notions (image, site set, site, value) must be translated into
interfaces called concepts in Milena (Image, Site Set, etc.) [7]. These interfaces contain the list of
services provided by each type belonging to the concept, as well its associated types. For instance,
a type satisfying the Image concept must provide a domain() routine (to retrieve D), as well as
a domain t type (i.e. the type of D) satisfying the Site Set concept. Concepts act as contracts
between providers (types satisfying the concept) and users (algorithms expressing requirements on
their inputs and outputs through concepts). For instance, the breadth first thinning routine
from Algorithm 3 expects the type I (of input) to fulfill the requirements of the Image concept.
Likewise nbh must be a Neighborhood; and is simple and constraint, functions taking a value
of arbitrary type and returning a Boolean value (Function v2b concept).

3 Generic Implementation of Digital Geometry

Let us consider the example of a homotopic skeletonization by thinning. Such an operation can be
obtained by the removal of simple points (or simple sites in the Milena parlance) using Algorithm 1
[1]. A point of an object is said to be simple if its deletion does not change the topology of the
object. This algorithm takes an object X and a constraint K (a set of points that must not be
removed) and iteratively deletes simple points of X\K until stability is reached. Algorithm 1 is
an example of an algorithm with a general definition that could be applied to many input types
in theory. But in practice, software tools often allow a limited set of such input types (or even
just a single one), because some operations (like “is simple”) are bound to the definition of the
algorithm [6].

Algorithm 2 shows a more general version of Algorithm 1, where implementation-specific ele-
ments have been replaced by mutable parts: a predicate stating whether a point A is simple with
respect to a set X (is simple); a routine “detaching” a (simple) point A from a set X (detach);
and a predicate declaring whether a condition (or a set of conditions) on A is satisfied before
considering it for removal (constraint). The algorithm takes these three functions as arguments
in addition to the input X. Algorithm 2 is a good candidate for a generic C++ implementation
of the breadth-first thinning strategy and has been implemented as Algorithm 3 in Milena. The
set X is represented by a binary image (V = {>,⊥}), that must be compatible with operations
performed within the algorithm. Inputs is simple, detach and constraint have been turned into
function objects (also called functors).

There are local characterizations of simple points in 2D, 3D and 4D, which can lead to look-up
table (LTU) based implementations [2]. However, since the number of configurations of simple and

non-simple points in Zd is 23
d−1, this approach can only be used in practice in 2D (256 configura-

tions, requiring a LTU of 32 bytes) and possibly in 3D (67,108,864 configurations, requiring a LTU
of 8 megabytes). The 4D case exhibits 280 configurations, which is intractable using a LTU, as it
would need 128 zettabytes (128 billions of terabytes). Couprie and Bertrand have proposed a more
general framework for checking for simple points using complexes [2] and the collapse operation.
Intuitively, complexes can be seen as a generalization of graphs. An informal definition of a simpli-
cial complex (or simplicial d-complex) is “a set of simplices” (plural of simplex), where a simplex
or n-simplex is the simplest manifold that can be created using n points (with 0 ≤ n ≤ d). A
0-simplex is a point, a 1-simplex a line segment, a 2-simplex a triangle, a 3-simplex a tetrahedron.
A graph is indeed a 1-complex. Figure 1(a) shows an example of a simplicial complex. Likewise,
a cubical complex or cubical d-complex can be thought as a set of n-faces (with 0 ≤ n ≤ d) in



Algorithm 1: Breadth-First Thinning.

Data : E (a set of points/sites),
X ⊆ E (initial set of points),
K ⊆ X (a set of points (constraint) that
cannot be removed)
Result : X
P ← {A ∈ X|A is simple for X}
while P 6= ∅ do
Q ← ∅
for each A ∈ P do

if A 6∈ K and A is simple for X then
X ← X\A
for each B ∈ N(A) ∩X do
Q ← Q ∪ {B}

P ← ∅
for each A ∈ Q do

if A is simple for X then P ← P ∪A

Algorithm 2: A generic version of Algorithm 1.

Data : E, X ⊆ E, N (neighborhood),
is simple (a function saying if a point is simple),
detach (a routine detaching a point from X),
constraint (a function representing a constraint)
Result : X
P ← {A ∈ X| is simple(A, X) }
while P 6= ∅ do
Q ← ∅
for each A ∈ P do

if constraint(A) and is simple(A, X) then
X ← detach(X, A)
for each B ∈ N(A) ∩X do
Q ← Q ∪ {B}

P ← ∅
for each A ∈ Q do

if is simple (A, X) then P ← P ∪A

Algorithm 3: A generic C++ implementation of Algorithm 2 in Milena. Functors are highlighted.

template <typename I, typename N, typename F, typename G, typename H>

mln_concrete(I)

breadth_first_thinning(const Image<I>& input, const Neighborhood<N>& nbh,

Function_v2b<F>& is_simple, G detach,

const Function_v2b<H>& constraint) {

mln_concrete(I) output = duplicate(input);

is_simple.set_image(output); // Have ‘output’ be the subject of ‘is simple’.

typedef p_set<mln_psite(I)> set_t; // Type of a set of points (sites).

set_t set;

mln_piter(I) p(output.domain());

for_all(p) // ∀ ‘p’ ∈ ‘output.domain()’...

if (output(p) && constraint(p) && is_simple(p))

set.insert(p); // Initialize ‘set’ with simple points from the border.

while (!set.is_empty()) {

set_t next_set;

mln_piter(set_t) p(set);

for_all (p)

if (constraint(p) && is_simple(p)) {

detach(p, output); // ‘p’ is simple, passes the constraint: remove it.

mln_niter(N) n(nbh, p);

for_all(n) // ∀ ‘n’ in the neighborhood of ‘p’...

if (output.domain().has(n) // Prevent out-of-bound accesses.

&& output(n) && constraint(n) && is_simple(n))

next_set.insert(n); // Add neighbor ‘n’ to the next candidate set.

}

set.clear(); swap(set, next_set);

}

return output;

}



(a) A simplicial 3-complex.

f2

e3

f3

f1

e1

e2

v

(b) A cubical 2-complex.

Figure 1: Complexes.

Zd, like points (0-faces), edges (1-faces), squares (2-faces), cubes (3-faces) or hypercubes (4-faces).
Figure 1(b) depicts a cubical complex sample.

Complexes support a topology-preserving transformation called collapse. An elementary col-
lapse removes a free pair of faces of a complex, like the square face f1 and its top edge e1, or
the edge e2 and its top vertex v, in Figure 1(b). The pair (f2, e3) cannot be removed, since e3
also belongs to f3. Successive elementary collapses form a collapse sequence that can be used to
remove simple points. Collapse-based implementations of simple-point deletion can be always be
used in 2D, 3D and 4D, though they are less efficient than their LTU-based counterparts. On
the other hand, they provide some genericity as the collapse operation can have a single generic
implementation on complexes regardless of their structure.

Illustrations

Using this generic approach, Algorithm 3 can be used to compute the skeleton of a complex-based
surface, as in Figure 2:

skel = breadth_first_thinning(surf, nbh, is_simple_cell(), detach(), tautology());

In the previous code, surf is a triangle-mesh surface representing X and nbh represents an ad-
jacency relationship between triangles sharing a common edge. Function objects is simple cell

and detach are operations compatible with surf’s type; they are generic routines based on the
collapse operation working on any complex-based binary image. Finally, tautology() is a functor
always returning the value true, so as to materialize a lack of constraint. Other input types (e.g.
a 2D image on a regular square grid) can be processed similarly, by using compatible definitions
for nbh (e.g. a 4-connectivity neighborhood), for is simple (e.g. a 2D mask-based predicate) and
for other arguments.

4 Conclusion

We have presented building blocks to implement reusable Digital Geometry algorithms in an image
processing framework, Milena. Given a set of theoretical constraints on its inputs, an algorithm
can be written once and reused with many compatible input types. This design has previously
been proposed for Mathematical Morphology, and can be applied to virtually any image processing
field. Milena is Free Software released under the GNU General Public License, and can be freely
downloaded at http://olena.lrde.epita.fr/Download.

A strength of generic designs is their ability to extend and scale easily and efficiently. First,
generic algorithms are extensible because of their parameterization. For instance, the behavior of
Algorithm 3 can be significantly changed by acting on the simple point definition or the set of
constraints. Secondly, the framework can be extended with respect to data structures. Milena

http://olena.lrde.epita.fr/Download


(a) Triangle mesh surface. (b) Surface curvature. (c) Surface skeleton.

Figure 2: Computation of a skeleton using breadth-first thinning. The triangle mesh surface 2(a)
is seen as a simplicial 2-complex. The image of curvature 2(b) is computed on the edges of the
mesh, and simplified using an area opening filter. All curvature regional minima are then removed
from the mesh, and the skeleton 2(c) is obtained with Algorithm 3 using the collapse operation.

provides site sets based on boxes, graphs and complexes, but more can be added to the library
(e.g. combinatorial maps, orders, etc.) and benefit from existing algorithms and tools. Finally,
our approach can take advantage of properties of input types (regularity of the site set, isotropic
adjacency relationship, etc.) and allow users to write specialized versions of their algorithms for
such subsets of data types, leading to faster or less memory-consuming implementations.

Acknowledgments The authors thank Benôıt Sigoure and the anonymous reviewers for their
helpful comments on this paper.

References

[1] G. Bertrand and M. Couprie. Transformations topologiques discrètes. In D. Coeurjolly,
A. Montanvert, and J.-M. Chassery, editors, Géométrie discrète et images numériques, chap-
ter 8, pages 187–209. Hermes Sciences Publications, 2007.

[2] M. Couprie and G. Bertrand. New characterizations of simple points in 2D, 3D, and 4D discrete
spaces. IEEE Trans. on Pattern Analysis and Machine Intelligence, 31(4):637–648, Apr. 2009.

[3] M. C. d’Ornellas and R. van den Boomgaard. The state of art and future development of mor-
phological software towards generic algorithms. International Journal of Pattern Recognition
and Artificial Intelligence, 17(2):231—255, Mar. 2003.

[4] Th. Géraud and R. Levillain. Semantics-driven genericity: A sequel to the static C++ object-
oriented programming paradigm (SCOOP 2). In Proceedings of the 6th International Workshop
on Multiparadigm Programming with Object-Oriented Languages, Paphos, Cyprus, July 2008.

[5] J. Lamy. Integrating digital topology in image-processing libraries. Computer Methods and
Programs in Biomedicine, 85(1):51–58, 2007.

[6] R. Levillain, Th. Géraud, and L. Najman. Milena: Write generic morphological algorithms
once, run on many kinds of images. In Springer-Verlag, editor, Proceedings of the Ninth
International Symposium on Mathematical Morphology (ISMM), Lecture Notes in Computer
Science Series, pages 295–306, Groningen, The Netherlands, Aug. 2009.

[7] R. Levillain, Th. Géraud, and L. Najman. Why and how to design a generic and efficient image
processing framework: The case of the Milena library. In Proceedings of the IEEE International
Conference on Image Processing (ICIP), Hong Kong, Sept. 2010. To appear.


	1 Introduction
	2 Genericity in Image Processing
	3 Generic Implementation of Digital Geometry
	4 Conclusion

