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Abstract. Connected filtering is a popular strategy that relies on tree-
based image representations: for example, one can compute an attribute
on each node of the tree and keep only the nodes for which the attribute
is sufficiently strong. This operation can be seen as a thresholding of
the tree, seen as a graph whose nodes are weighted by the attribute.
Rather than being satisfied with a mere thresholding, we propose to ex-
pand on this idea, and to apply connected filters on this latest graph.
Consequently, the filtering is done not in the space of the image, but
on the space of shapes built from the image. Such a processing, that
we called shape-based morphology [30], is a generalization of the existing
tree-based connected operators. In this paper, two different applications
are studied: in the first one, we apply our framework to blood vessels
segmentation in retinal images. In the second one, we propose an exten-
sion of constrained connectivity. In both cases, quantitative evaluations
demonstrate that shape-based filtering, a mere filtering step that we
compare to more evolved processings, achieves state-of-the-art results.

1 Introduction

Mathematical morphology, as originally developed by Matheron and Serra [23],
proposes a set of morphological operators based on structuring elements. Later,
Salembier and Serra [21], followed by Breen and Jones [3], proposed morpholog-
ical operators based on attributes, rather than on elements. Such operators rely
on transforming the image into an equivalent representation, generally a tree of
components (e.g., level sets) of the image; such trees are equivalent to the orig-
inal image in the sense that the image can be reconstructed from its associated
tree. Filtering then involves the design of a shape attribute that weights how
much a node of the tree fits a given shape. Two different approaches for filtering
the tree (and hence the image) have been proposed: the more evolved approach
consists in pruning the tree by removing whole branches of the tree, and is easy
to apply if the attribute is increasing on the tree (i.e., if the attribute is always
stronger for the ancestors of a node). This process is depicted in the black path
in Fig. 1.
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Fig. 1. Classical connected operators (black path) and our proposed shape-based mor-
phology (black+red path).

However, most shape attributes are not increasing. When the attribute is not
increasing, three strategies have been proposed (min, max, Viterbi; see [22] for
more details). They all choose a particular node on which to take the decision,
and remove the whole subtree rooted at this node. While it may give interesting
results in some cases, it does not take into account the possibility that several
relevant objects can have some inclusion relationship, meaning that they are on
the same branch of the tree (e.g., a ring object in a tree of shapes, see Fig. 3.a).

In the simplest approach, one simply removes the nodes of the tree for which
the attribute is lower than a given threshold [27]. Such a thresholding does not
take into account the intrinsic parenthood relationship of the tree. Moreover it is
often impossible to retrieve all expected objects with one unique threshold. Fig. 2
shows the evolution of a shape attribute, the circularity, along two branches of the
tree of shapes [15]. The light round shape and the dark one are both meaningful
round objects compared to their context. However, their attribute values are
very different. In order to obtain the light one, a higher threshold is applied, but
some non-desired shapes appear, the ones in the background in Fig. 2.f.

The founding idea of shape-based morphology is to apply connected filters
on the space of all the components of the image, such space being structured
into a graph by the parenthood relationship (i.e., the neighbors of a node are
its children and its parent). This process is illustrated by the black+red path of
Fig. 1. This surprising and simple idea has several deep consequences that were
first exposed in [30], where it is shown that this framework encompasses the usual
attribute filtering operators [30]. Novel connected filters based on non-increasing
criterion can also be proposed. When the first tree T is respectively a Min-tree or
a Max-tree, such filters are new morphological lower or upper levelings. When
the first tree T is the tree of shapes, we introduce a novel family of self-dual
connected filters that we call morphological shapings. The proposed framework
can also be used to produce extinction-based [28] saliency maps [18,16].
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Fig. 2. (a) Evolution of “circularity” on two branches of T ; (b to e): Some shapes; (f)
Attribute thresholding; (g) Shaping.

In general, shape-based morphological operators provide better results than
threshold-based approaches. As stated above, when we want to process both
upper and lower level sets at the same time, we use as T the tree of shapes, and
the such created operator is called a morphological shaping. In both Fig. 2 and
Fig. 3, the attribute A is the circularity. The result of the shaping on Fig. 2.a,
shown in Fig. 2.g, looks indeed better than the one of Fig. 2.f. In Fig. 3, we
compare this extinction-based self-dual shaping approach with a variant of the
state-of-the-art thresholding approach [27]. When the threshold of A is low, some
objects do not appear (Fig. 3.b). To get all the expected objects, we have to set
a high threshold; however, in this case, too many unwanted objects are present
(Fig. 3.c). With our shaping filter, all the expected objects can be found, as
depicted in Fig. 3.d.

(a) Input image. (b) Low threshold. (c) Higher threshold. (d) Our shaping.

Fig. 3. Comparison of extinction-based shapings with attribute thresholding.



In this paper, we propose to detail how the framework can be used for two
different types of applications. The rest of this paper is organized as follows.
An application of our proposed shape-based upper levelings to blood vessels
segmentation in retinal images is explained in Section 2. In Section 3, we detail
how to extend the constraint connectivity framework first introduced in [24].
Finally we discuss and conclude in Section 4.

2 Blood vessels segmentation in retinal images

Blood vessels segmentation is a very important task in retinal images analysis.
Unlike classical linear filters, connected operators perfectly preserve the location
and the shape of the contours, which provides a motivation for using them.

Many existing methods work on the green channel of the color retinal image.
To improve the visibility of the blood vessels, for each color retinal image fc, a
black top-hat transform is applied to the green channel fg. When a mask of eye
fundus is available, we combine it with the black top-hat ft. We thus obtain an
image fi in which the blood vessels are visible: indeed, the main structures of the
blood vessels are present in the Max-tree T of fi (the connected components of
the upper level sets of fi, [22]). .

For each connected component represented by some node Nk of the Max-tree
T , we compute a shape attribute A characterizing the blood vessels, which are
usually long and thin structures. The attribute used here is the elongation Ae:

Ae(Nk) = |Nk|/(π × l2max), (1)

where |.| denotes the cardinality and lmax denotes the length of the largest axis
of the best fitting ellipse for the connected component represented by Nk. Since
the blood vessels are long and thin, nodes having a low attribute Ae correspond
to the blood vessels.

The core of this application is the filtering of the Max-tree T . A mere thresh-
olding of the elongation Ae is not sufficient, often giving unwanted objects
(noise). However, a very low thresholding value tmin on Ae ensures that thresh-
olded nodes are blood vessels. Those initial extracted nodes are used as seeds
in the sequel. We then apply a morphological filtering with a depth criterion:
using the Min-tree T T of the node-weighted graph (T ,Ae), we only preserve
the nodes that have a certain depth d0 in T T and that furthermore contain
the seeds. The connected components represented by the preserved nodes are
considered as the segmented blood vessels. The whole process is one of the many
variants of shape-based upper levelings [30].

An example of this blood vessels segmentation methods is given in Fig. 4. As
compared with the manually segmented blood vessels segmentation (Fig. 4.f),
the elongation-based upper leveling (Fig. 4.e) correctly extracts most of the
blood vessels.

We have tested this specific shape-based upper leveling on the Digital Retinal
Images for Vessel Extraction (DRIVE) database [5], [25] and on the STructured
Analysis of the Retina (STARE) database [26], [8]. DRIVE is a database as-
sembled in the Netherlands from a diabetic retinopathy screening program. It



(a) Input color image fc. (b) Green channel fg. (c) Inversed black top-hat fi.

(d) Inversed filtering result.(e) Segmented blood vessels. (f) Manual segmentation.

Fig. 4. Illustration of the complete process of blood vessels segmentation in retinal
image using elongation-based upper leveling (a-e); (f): Manual segmentation.

includes 40 color fundus images of 584× 565 pixels, captured using a 45◦ field-
of-view fundus camera. The 40 color images are divided into a training set and
a test set, both containing 20 images. For the training images, a single man-
ual segmentation of the vasculature is available. For the test cases, two manual
segmentations are available: one is used as gold standard; the other one can be
used to compare computer generated segmentations with those of an indepen-
dent human observer. The complete database contains seven pathological cases
(four in the test set and three in the training set). The STARE database contains
20 images captured using a TopCon TRV-50 fundus camera at 35◦ FOV, and
digitized to 700× 605 pixels, 8 bits per RGB channel. A manual segmentation is
available for each image of the database. Masks of the eye fundus, derived from
the matched spatial filter [8], are also available. Note that, among the 20 images,
10 images are abnormal.

Fig. 5 and 6 show four segmentation results respectively from the DRIVE
database and the STARE database. Qualitatively, most of the blood vessels are
correctly extracted, although some noise points at the end of the vessels are also
kept, and some very thin blood vessels are missed.

Quantitative assesment is based on three performance measurements named
respectively sensitivity, specificity and accuracy [25]. Sensitivity measures the
true positive rate (TPR), specificity measures the true negative rate (TNR), and
accuracy measures the rate of pixels correctly classified. These measurements are



Fig. 5. Illustration of four segmented blood vessels from the 20 test retinal images
of the DRIVE database. Top: Input color retinal images; Bottom: Corresponding seg-
mented results. (White pixels: true positive; Black pixels: true negative; Blue pixels:
false positive; Red pixels: false negative.)

Fig. 6. Illustration of four segmented blood vessels from the 20 test retinal images of
the STARE database. Top: Input color retinal images; Bottom: Corresponding seg-
mented results. (White pixels: true positive; Black pixels: true negative; Blue pixels:
false positive; Red pixels: false negative.)



DRIVE STARE
Method TPR TNR Accuracy TPR TNR Accuracy

2nd Expert 0.7761 0.9725 0.9473 (0.0048) 0.8949 0.9390 0.9354 (0.0171)
mendonça [14] 0.7344 0.9764 0.9452 (0.0062) 0.6996 0.9730 0.9440 (0.0142)

Staal [25] 0.7193 0.9773 0.9441 (0.0057) - - -
Niemeijer [19] 0.6793 0.9801 0.9416 (0.0065) - - -

Our 0.6924 0.9779 0.9413 (0.0078) 0.7149 0.9749 0.9471 (0.0114)
Zana [31] 0.6696 0.9769 0.9377 (0.0078) - - -

Al-Diri [1] - - - 0.9258 (0.0126) - - -
Jiang [9] 0.6478 0.9625 0.9222 (0.0070) - - 0.9513
Perez [12] 0.7086 0.9496 0.9181 (0.0240) - - -
Hoover [8] - - - 0.6751 0.9567 0.9267 (0.0099)

Table 1. Benchmark of different blood vessels segmentation approaches on DRIVE
and the STARE database.

defined below as:

sensitivity = TPR =
TP

P
=

TP

TP + FN
(2)

specificity = TNR =
TN

N
=

TN

TN + FP
(3)

accuracy =
TP + TN

TP + TN + FP + FN
, (4)

where TP stands for true positive, FP for false positive, TN for true negative
and FN for false negative.

A benchmark of different approaches (including ours) is provided in Table 1.
It shows the good performance of our proposed elongation-based upper leveling
for both databases. In the case of the DRIVE database, our result is slightly
under the best results given by the method of Mendonça [14]. Note also that
the approaches of Staal [25] and Niemeijer [19] are supervised approaches. On
the STARE database, our proposed method performs also very well, and is even
better than the method of Mendoņca [14]. Both methods give results that are
very close to one of the second human observer. Table 2 shows that our method
is more robust than others, in the sense that it performs equivalently on both
abnormal and normal images.

Last, note that the proposed elongation-based upper leveling is only a “sim-
ple” filtering step, whereas other approaches are more complicated. Besides, our
process is not complete, since further post-processing can improve the results.

3 Extending constrained connectivity

From an algorithmic point of view, constrained connectivity [24] is the applica-
tion of an increasing criterion (e.g., the range) on the Min-tree T of the minimum
spanning tree (MST) [16,17]. In the litterature, this tree T has been called the



Method Sensitivity Specificity Accuracy
Normal cases

2nd human observer 0.9646 0.9236 0.9283 (0.0100)
Shape-based upper leveling 0.7178 0.9802 0.9493 (0.117)

mendonça [14] 0.7258 0.9791 0.9492 (0.0122)
Hoover [8] 0.6766 0.9662 0.9324 (0.0072)

Abnormal cases

2nd human observer 0.0.8252 0.9544 0.9425
Shape-based upper leveling 0.7120 0.9696 0.9447 (0.0106)

mendonça [14] 0.6733 0.9669 0.9388 (0.0150)
Hoover [8] 0.6736 0.9472 0.9211 (0.0091)

Table 2. Benchmark of vessels segmentation methods (STARE images - Normal versus
abnormal cases).

α-tree [20]. In this section, we apply our framework with a non-increasing crite-
rion A derived from a popular work [6]. Precisely, we use for T a binary Min-tree
of the MST [17]. The dissimilarity used for the MST is the maximal distance of
the red, blue, and green channels taken independently.

The attribute A is derived from [6], where the authors propose a region
merging process that follows the edges of the MST by increasing order of the
weights (dissimilarity). When an edge {x, y} is considered, they search for the
regions X and Y that respectively contain the points x and y. The regions X
and Y are merged if

Diff(X,Y ) < min{ Int(X) +
k

|X|
, Int(Y ) +

k

|Y |
}, (5)

where |.| denotes the cardinality, Diff(X,Y ) is the minimum weight of the edge
connecting the two regions X and Y , Int(X) is the largest weight in the MST
of the region X, and k is a parameter favouring the merging of small regions
(a large k causes a preference for larger components). However, k is not a scale
parameter in the sense of the causality principle: as shown in [7] a contour
present at a scale k1 is not always present at a scale k2 < k1. The merging
criterion defined by Eq. (5) depends on the parameter k at which the regions
X and Y are observed. So let us consider the attribute A as the k defined by

k = max
{(

Diff(X,Y )− Int(X)
)
× |X|,

(
Diff(X,Y )− Int(Y )

)
× |Y |

}
. That is to

say, for each node Nk, let N c1
k and N c2

k be the two children of Nk in T , then
the attribute A for node Nk is given by

A(Nk) = max
{ (

Diff(N c1
k ,N c2

k )− Int(N c1
k )
)
× |N c1

k |,(
Diff(N c1

k ,N c2
k )− Int(N c2

k )
)
× |N c2

k |
}
. (6)

The maxima of the attribute A correspond to meaningful regions. We thus
compute a Max-tree T T on the node-weigthed graph (T ,A), with which we can



Method
GT Covering Prob. Rand. Index

ODS OIS Best ODS OIS
FH [6] 0.43 0.53 0.68 0.76 0.79

Guimarães [7] 0.46 0.53 0.60 0.76 0.81
Ours 0.50 0.57 0.66 0.77 0.82

Table 3. Preliminary region benchmarks on the BSDS500.

filter this graph. The contours of the flat zones of one level of filtering of (T T ,A)
provides a segmentation of the original image. Computing all levels of filtering
produces a hierarchy of segmentations. A good representation of such a hierarchy
is a saliency map [18,16], which is equal to the sum of all the contours of ev-
ery filtered image. An efficient algorithm for computing the saliency map in our
framework, based on the notion of extinction value [28], will be provided in an
extend version of this paper. The saliency map defines a duality between closed,
non-self intersecting weighted contours and a hierarchy of regions. Low levels of
the hierarchy correspond to weak contours, thus to over-segmentations. High lev-
els of the hierarchy correspond to strong contours, hence to under-segmentations.
Moving between levels gives a continuous trade-off between those two extremes.
A given level can be seen as an observation scale at which we consider the image.

We have tested our extended constrained connectivity framework on the
Berkeley Segmentation Dataset BSDS500 [2], an extension of the BSDS300 [13].
The dataset consists of 500 natural images divided into 200 test images, 200 im-
ages for training, and 100 validation images, together with human annotations.
Each image is segmented by an average of five different subjects. Fig. 7 and 8
show some saliency maps computed on some images from the BSDS500 dataset.
Two evaluation schemes are also provided by the authors. In the first one, the
same fixed threshold level (observation scale) is used for all saliency maps in the
dataset; we refer to it as the optimal dataset scale (ODS). In the second one, we
evaluate the performance using an image-dependent threshold for each saliency
map; we refer to this choice as the optimal image scale (OIS).

Quantitative evaluation is performed using the region-based performance
measurements described in [2], in terms of Ground-Truth Covering criterion and
Probabilistic Rand Index. Here, we compare our results with the graph-based
image segmentation (Felz-Hutt) [6], and with another method named hierar-
chical graph based image segmentation (Guimarães et al.) [7], also relying on
the same criterion popularized by [6]. The comparison is given in Table 3. Our
method ranks first, for both the optimal dataset scale (ODS) and for optimal
image scale (OIS).

4 Discussion and conclusion

This paper has presented two applications of shape-based morphology, a general-
ization of existing tree-based connected operators. The first application uses one
of the many shape-based upper levelings. Althought such a filter is but a “sim-
ple” filtering step, it gives results almost as good as the second human observer



Fig. 7. Hierarchical segmentation results on the BSDS500. From left to right: Input
image, saliency map, and segmentations at the optimal dataset scale (ODS) and at the
optimal image scale (OIS).

in the case of blood vessels segmentation. The second application is an exten-
sion of the constrainted connectivity framework to non-increasing constraints. A
quantitative evaluation based on a criterion given in [6] shows that our approach
compares favorably to previous works.

The potential of shape-based morphology is tremendous. In this paper, we
have hardly skimmed the surface of what this theory has to offer to the scientific
community. In [29], we have also used this framework to achieve object segmenta-
tion on the tree of shapes. The key idea was to propose an efficient context-based
energy estimator whose minima correspond to meaningful objects. Some other
criterions that can be used are, for example an energy derived from the number
of false alarms [4] or some snake energy [10]. A practical problem is that many
minima of such energies do not correspond to meaningful components of the in-
put image. In [29], a morphological closing in the space of shapes helps to filter
those spurious minima.

Implementations of shape-based filters are easy thanks to the open-source
Milena library [11]. A demonstration is available online from http://olena.

lrde.epita.fr/ICPR2012 (see also http://olena.lrde.epita.fr/ICIP2012).
More applications will be studied in a forthcoming paper. Properties of those
filters, such as conditions for idempotence, will be also studied.

Acknowledgements. This work received funding from the Agence Nationale
de la Recherche, contract ANR-2010-BLAN-0205-03 and through “Programme
d’Investissements d’Avenir” (LabEx BEZOUT n◦ANR-10-LABX-58).
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Fig. 8. Additional hierarchical segmentation results on the BSDS500. From top to
bottom: Input mage, saliency map, and segmentations at the optimal dataset scale
(ODS) and at the optimal image scale (OIS).
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