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Abstract. An important topic for the image processing and pattern
recognition community is the construction of open source and efficient
libraries. An increasing number of software frameworks are said to be
generic: they allow users to write reusable algorithms compatible with
many input image types. However, this design choice is often made at the
expense of performance. We present an approach to preserve efficiency in
a generic image processing framework, by leveraging data types features.
Variants of generic algorithms taking advantage of image types properties
can be defined, offering an adjustable trade-off between genericity and
efficiency. Our experiments show that these generic optimizations can
match dedicated code in terms of execution times, and even sometimes
perform better than routines optimized by hand.
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1 Introduction

Like many numerical computing fields of computer science, Image Processing
(IP) faces two kinds of issues which are hard to solve at the same time. On the
one hand, the spectrum of data to process is very wide: IP methods can be used
with “classical” 2-dimensional images with square pixels arranged along a reg-
ular grid, containing binary, gray-level, color, vectorial or even tensorial values;
the dimension may also vary: 1D (signals), 3D (volumes), 2D+t (sequences of
images) 3D+t (sequences of volumes); the domain of the image itself may be
non-regular: images can be defined on mathematical structures such as graphs,
simplicial complexes or topological maps.

The ability to handle so many data structures depends on the genericity
of the theoretical framework and on the corresponding software tools as far as
implementation is concerned. A generic algorithm is an algorithm that can be
applied to a variety of inputs [10], as opposed to a specific algorithm, which ap-
plies to a unique data type [6]. Generic Programming (GP) is a field of computer



(a) On a “classical” regular
grid.

(b) On an edged-valued
graph.

(c) On a 3D surface mesh
(implemented as a simpli-
cial complex).

Fig. 1: Results of the same morphological segmentation processing chain code
applied to different input image types (a 2D square-pixel image, a graph, and a
3D surface); this particular example of a generic processing chain is detailed in
[22].

science (and a programming paradigm) which is concerned with issues of gener-
icity in software1. Several software projects dedicated to IP rely on GP: Vigra
[18, 19], ITK [13], Morph-M [3], GIL [1]. Other noteworthy applications of GP to
scientific computing include computational geometry [7] and graph theory [25].

One of the incentives behind GP is the reusability of software, e.g. minimizing
the cost of using existing algorithms with new data structures and vice versa.
Such a cost may lie in bad software engineering practice such as duplicating code
to process various types of inputs; or weakening typing (and most likely impact
run-time efficiency) through generalization (e.g. using double as input type to
also allow the use of bools, ints, or other types of values). Even well-engineered
solutions, such as object-oriented ones, may harbour costs: dynamic dispatch
(virtual methods) can become a prohibitively expensive feature w.r.t. execution
times [12].

1 In this paper, by “generic” we mean “generic with respect to programming”, not
“generic with respect to the approach used to solve an IP issue”. See for instance
the definition of GP by Jazayeri et al. [16].



On the other hand, many IP issues and applications involve large data sets
(either numerous or voluminous) or make use of complex techniques requiring in-
tensive computations. In both cases, practical software solutions have to meet ef-
ficiency constraints, especially regarding processing speed. Unfortunately, gener-
icity and efficiency are often conflicting: efficient IP software is mostly dedicated
to specific image types, methods or domains (and is therefore not generic). Con-
versely, most generic frameworks do not provide performances as good as specific
ones.

In this paper, we investigate the issue of genericity versus efficiency with re-
spect to IP, from the algorithmic point of view (i.e., we do not cover hardware-
based or assembly-level optimizations). We first explain how GP can be applied
to IP, and what are the benefits of this approach (Section 2). Performance con-
siderations in a generic context are addressed in Section 3. We study the causes
of the opposition between genericity and efficiency and propose a trade-off as an
answer to this problem, generic optimizations. The idea of generic optimization
is carried further in Section 4, by not only acting on algorithm implementations,
but by also working on input data types, so as to significantly increase perfor-
mances at the expense of some genericity. Results of numerical experiments are
presented and discussed in Section 5. The proposal of this paper is illustrated
with an example from the field of Mathematical Morphology. The underlying
ideas, are however very general, independent from the context (platform, com-
piler, etc.), and applicable to virtually any IP algorithm.

2 Genericity in Image Processing

A generic IP framework provides algorithms and data structures that have a
single implementation and that can be used together to virtually implement
any (valid) combination. This approach avoids duplication of similar code and
enables a true reusability of algorithms on any compatible data structure (e.g.,
image type) without suffering from the combinatorial explosion. For example,
the result images (right-hand column) presented in Figure 1 have been obtained
using the same segmentation code on three images of very different types.

The simplest (though very limited) form of genericity in IP consists in param-
eterizing the type of values contained in images [24, 17], similarly to C++ stan-
dard containers [14]. However, genuine genericity is based on the GP paradigm.
The key idea of this approach is to design the target framework using concepts,
representing abstract entities of the domain (here, image processing) [21]. Con-
cepts define relationships between the corresponding entity (e.g. an image type)
and other elements (e.g. image point type, image value type), as well as the
minimal set of provided services (e.g. obtaining the value associated to a point).
Generic algorithms are then written using concepts instead of specific concrete
data types. As they expose no detail on the manipulated data types, such algo-
rithms are generic implementations not tied to a specific input type. We have
successfully applied this approach to Mathematical Morphology (MM) [5, 20],
discrete geometry [22], as well as other fields of IP. In particular, one of the



image dilation(const image& input) {
image output(input.nrows(), input.ncols());
for (unsigned r = 0; r < input.nrows(); ++r)
for (unsigned c = 0; c < input.ncols(); ++c) {
unsigned char sup = input(r,c);
if (r != 0 && input(r-1,c) > sup)
sup = input(r-1,c);

if (r != input.nrows()-1 && input(r+1,c) > sup)
sup = input(r+1,c);

if (c != 0 && input(r,c-1) > sup)
sup = input(r,c-1);

if (c != input.ncols()-1 && input(r,c+1) > sup)
sup = input(r,c+1);

output(r, c) = sup;
}

return output;
}

Algorithm 1.1: Non-generic dilation implementation.

template <typename I, typename W>
I dilation(const I& input, const W& win) {
I output; initialize(output, input);
// Iterator on sites of the domain of ‘input’.
mln_piter(I) p(input.domain());
// Iterator on the neighbors of ‘p’ w.r.t. ‘win’.
mln_qiter(W) q(win, p);
for_all(p) {
// Accumulator computing the supremum on ‘win’.
accu::supremum<mln_value(I)> sup;
for_all(q) if (input.has(q))
sup.take(input(q));

output(p) = sup.to_result();
}
return output;

}

Algorithm 1.2: Generic dilation implementation [20].

benefits of the generic approach is to enable user to try and experiment with un-
common and new data structures such as the Tree of Shapes [9, 4, 26, 27], easily
and rapidly.

Let us illustrate the topic using a simple MM algorithm: a morphological di-
lation using a flat structuring element [11]. Algorithm 1.1 shows a simple C++
implementation of this filter. It however includes several implementation details
which bounds the routine to specific inputs (2D image on a regular grid, having
scalar values compatible with unsigned char). Moreover the (4-connected) struc-
turing element cannot be changed. Therefore, we cannot use this algorithm to
process, e.g., a 3D image composed of RGB color values and using 6-connectivity.

On the other hand, Algorithm 1.2 proposes a generic version of the previous
morphological dilation. Input (resp. image and structuring element) types are
now parameters of the algorithm (resp. I, an image type, and W, a window type);
loops on vertical and horizontal ranges have been replaced by a single object
p traversing the domain of the image input, called a site iterator on input’s



domain; likewise, members of the (previously hard-coded) structuring element
w.r.t. p are no longer explicitly mentioned, as a another iterator q on the window
(a qiter) is used for this purpose; and instead of a hand-made computation of
the maximum value, an accumulator object is used to iteratively compute the
supremum from the values within the sliding window.

3 Efficiency vs Genericity Trade-off

Following the ideas expressed the previous section, we have designed and imple-
mented a generic C++ IP library, Milena3, which is part of the Free Software IP
platform Olena [23]. In addition to providing generic algorithms and data struc-
tures, Milena offers an extensible mechanism to implement efficient and reusable
variants of some routines. In this section, we show how to implement efficient
algorithms displaying a generic nature and how to wholly integrate them in the
generic framework so that their use can be made transparent.

3.1 The Cost of Abstraction

Figures from Table 1 exhibit an important run time overhead in the generic case
(Algorithm 1.2), which is about ten times longer to execute than the non-generic
one (Algorithm 1.1). This is not a consequence of the GP paradigm per se. It is
actually because of the highly abstract style of Algorithm 1.2, which in return
makes the routine very versatile with respect to the context of use. The non-
generic version is faster than the generic one because it takes advantage of known
features of the input types. For instance the structuring element is “built in the
function”, whereas it is an object taken as a generic input in Algorithm 1.2.
Therefore its contents and size are constant and known at compile-time. Such
implementation traits convey useful static information that compilers can lever-
age to optimize code. Hence, what prevents a code from being generic seems to
be the condition to generate fast code: implementation details.

3.2 Generic Optimizations

The trade-off between genericity and efficiency admittedly depends on the level
of details, but these two aspects are not entirely antagonistic: by carefully choos-
ing the amount of specific traits used in an algorithm, one can create interme-
diate variants showing good run-time performance while keeping many generic
features.

For instance, a means to speed up Algorithm 1.2 is to avoid using site iterators
to browse the domain common to the input and output images. In Milena, site
iterators can be automatically converted into sites (points), that is, locations in
the domain of one (or several) image(s). Such location information is not tied
to a given image: in the case of a regular 2D image, a site point2d(row, column)

3 Our library is available online from http://olena.lrde.epita.fr



template <typename I, typename W>
I dilation(const I& input, const W& win) {
I output; initialize(output, input);
// Iterator on the pixels of ‘input’.
mln_pixter(const I) pi(input);
// Iterator on the pixels of ‘output’.
mln_pixter(I) po(output);
// Iterator on the neighbor pixels of ‘pi’.
mln_qixter(const I, W) q(pi, win);
for_all_2(pi, po) {
accu::supremum<mln_value(I)> sup;
for_all(q)
sup.take(q.val());

po.val() = sup.to_result();
}
return output;

}

Algorithm 1.3: Partially generic optimized dilation.

is compatible with every regular, 2D, integer coordinate-based domain of the
library (including toric spaces, non-rectangular 2D subspaces of Z2, etc.). This
is why iterator p is used to refer to the same location in both input and output

in Algorithm 1.2.

The price to pay for such a general expression is usually a run-time overhead:
computations have to be performed each time a site iterator is used to access
data from an image. However, this flexibility is not always needed when the data
to process exhibit certain properties. For instance, an image whose values are
stored in a contiguous, linear memory space, can be browsed using a pointer,
directly accessing values in a sequential manner using their memory addresses,
instead of computing a location at each access. In Milena, such pointers are
encapsulated in small objects called pixel iterators or pixters where a pixel refers
to an image’s (site, value) pair. A pixter is bound to one image and cannot be
used to iterate any other image. Pixters can also be used to browse spatially-
invariant structuring elements (windows) as long as the underlying image domain
is regular.

Algorithm 1.3 shows a reimplementation of Algorithm 1.2 where site itera-
tors have been replaced by pixel iterators. The code is very similar, except that
images input and output are now browsed with two different pixel iterators, each
of them holding a pointer to the corresponding data. Such an implementation
of the morphological dilation is less generic than the one of Algorithm 1.2. Even
so, it can still be used with a wide variety of image types, as long as their data
present a regular organization, which comprises any-dimension classical images
using a single linear buffer to store their values. Besides, it is compatible with
any spatially-invariant structuring element (or in other words, any constant win-
dow). Thus it remains much more generic than Algorithm 1.1. As for efficiency,
Algorithm 1.3 matches almost Algorithm 1.1 in terms of speed (see Table 1),
so it is a good alternative to the generic dilation, when the trade-off between
genericity and efficiency can be shifted towards the latter.



The approach presented here can be applied to other algorithms of the IP
literature for which optimized implementations have been proposed. These op-
timizations are in practice compatible with a large set of input types, so their
implementations can be considered as generic optimizations since they are not
tied to a specific type.

4 Extra Generic Optimizations

The approach exposed in this paper can be carried further to improve the ef-
ficiency of generic optimizations. The idea is to involve data structures in the
optimization effort: instead of acting only on algorithms, we can implement new
optimized variants by working on their inputs as well.

For instance, in place of a window containing a dynamic array of vectors –
the size of which is known at run time – we can implement and use a static
window containing a static array carrying the same data, but whose size and
contents are known at compile time. Modern compilers make use of this addi-
tional information to perform efficient optimizations (e.g, replace the loop over
the elements of the window by an equivalent unrolled code). In this particu-
lar case, the implementation requires only the creation of two new, simple data
types (static window, static pixel iterator). No additional implementation of the
dilation is needed: Algorithm 1.3 is already compatible with this new window
type. The resulting code delivers run times which are not only faster than the
non-generic version of Algorithm 1.1, but which may also be faster than a hand-
made, pointer-based optimized (hence even less generic) version of the dilation,
as shown in the next section.

5 Results

Table 1 shows execution times of various implementations of the morphological
dilation with a 4-connected structuring element (window) applied to images of
growing sizes (512 × 512, 1024 × 1024 and 2048 × 2048 pixels) . Times shown
correspond to 10 iterative invocations. Tests were conducted on a PC running
Debian GNU/Linux, featuring an Intel Pentium 4 CPU running at 3.4 GHz with
2 GB of RAM clocked at 400 MHz, using the C++ compiler g++ (GCC) version
4.4.5 with optimization options ‘-03’ and ‘-DNDEBUG’.

In addition to the implementations shown in this paper, an additional non-
generic version using pointer-based optimizations has been added to the test
suite, so as to further compare non-generic code – mostly optimized by hand –
and generic code – mostly optimized by the compiler.

The overhead of the most generic algorithm is important: about ten times
longer than Algorithm 1.1. The highly adaptable code of Algorithm 1.2 is free of
implementation detail that the compiler could use to generate fast code (image
values access with no indirection, statically-known structuring element). Algo-
rithm 1.3 proposes a trade-off between genericity and efficiency: it is about 30%



Implementation Time (s) per image (px)
5122 10242 20482

Non generic (Alg. 1.1) 0.10 0.39 1.53

Non generic, pointer-based2 0.07 0.33 1.27

Generic (Alg. 1.2) 0.99 4.07 16.23

Fast, partly generic (Alg. 1.3) 0.13 0.54 1.95

Alg. 1.3 with a static window 0.06 0.28 1.03

Table 1: Execution times of various dilation implementations.

times slower than Algorithm 1.1, but is generic enough to work on many regu-
lar image types (as a matter of fact, the most common ones). The case of the
dilation with a static window is even more interesting: reusing the same code
(Algorithm 1.3) with a less generic input (a static window representing a fixed
and spatially-invariant structuring element) makes the code twice faster, to the
point that it outperforms the manually optimized pointer-based implementation.
Therefore, having several implementations (namely Algorithms 1.2 and 1.3) is
useful when flexibility and efficiency are sought.

6 Conclusion

This paper proposes an approach to reconcile genericity and efficiency in IP
software. The key idea relies on generic optimizations expressed as algorithm
specializations of the general case for a subspace of the acceptable input types.

The addition of less generic but more efficient versions of an algorithm should
not alter the motivation for designing an IP framework as generic as possible.
We believe the most generic version of an algorithm should always be defined
first, and then complemented by faster implementations. Firstly, having a generic
version of an algorithm means having (at least) one implementation for each valid
input type. Secondly, generic implementations are usually simpler, shorter and
faster to write, provided the framework features entities supporting a generic
programming style. Finally, generic implementations constitute a good basis to
implement specializations, as their codes often share a similar structure.

The results presented in this paper are representative of the general outcomes
of our proposal and are essentially independent from the compiler or platform
used. In addition, we have already applied this strategy and observed the same
conclusions regarding many other (and also more complex) algorithms that the
one shown in this paper. Finally, we are not aware of any similar initiative
regarding the efficiency of algorithms in generic IP libraries.

The Milena library, used to implement this paper’s examples, is available in
the Olena platform, a Free Software project released under the GNU General
Public License that can be downloaded from our Web site [23], as part of a
reproducible research effort [2, 8, 15]. This library is also a proof of concept of

2 This 26-line implementation is not shown in this paper for space reasons.



the work presented in this paper. It features a collection of different image types
along with many generic and efficient algorithms.
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10. Géraud, T., Fabre, Y., Duret-Lutz, A., Papadopoulos-Orfanos, D., Mangin, J.F.:
Obtaining genericity for image processing and pattern recognition algorithms. In:
Proceedings of the 15th International Conference on Pattern Recognition (ICPR).
vol. 4, pp. 816–819 (2000)
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