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Abstract. Natural and synthetic discrete images are generally not well-
composed, what leads to many topological issues : the connectivities in
binary images are not equivalent, the Jordan Separation theorem is not
true anymore, and so on. At the converse, making images well-composed
solves those problems and then gives access to many powerful tools al-
ready known in mathematical morphology as the Tree of Shapes which
is of our principal interest. So in this paper, we present two main re-
sults: the characterization of 3D well-composed gray-valued images and
a counter-example showing that no usual local self-dual interpolation
makes well-composed images with one subdivision in 3D as soon as we
choose the mean operator to interpolate in 1D. Then, we briefly discuss
the various constraints it could be interesting to change to make the
problem solvable in nD.

Keywords: Digital topology, gray-level images, well-composed sets, well-
composed images

1 Introduction

Natural and synthetic images are usually not well-composed, that leads to many
topological issues. As an example, the Jordan Separation theorem, stating that
a simple closed curve in R2 separates the space in only two components is not
true anymore in binary 2D discrete images [5]. To solve this problem, we have
to juggle with two complementary connectivities: 4 for the background and 8 for
the foreground, or the inverse, while well-composed binary images have the fun-
damental property to make the 4- and 8-connectivities equivalent, and then this
topological issue vanishes. In the same manner, well-composed nD images, with
n > 2, make 2n- and (3n − 1)-connectivities equivalent [10]. Other advantages
appear with well-composed images like the preservation of the topological prop-
erties by a rigid transformation [9], the simplification of thinning algorithms [7]
and of the resulting graph structures of the skeletons [5]. Also, and it is our most
important goal, making an image well-composed allows to compute its tree of
shapes [8,2] with a quasi-linear algorithm that can be found in [3]. An introduc-
tion to the three of shapes in the continuous case can be found in [1]. In the
same manner, not to favorize bright components on dark background or dark
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components over bright background or the converse, like for the biomedical im-
ages, the process to make images well-composed has to be self-dual, and because
we do not want to deteriorate the initial signal, we use an interpolation method.

Section 2 recalls the definitions of 2D and 3D well-composed sets and gray-
valued images, and introduces a characterization of 3D gray-valued well-composed
images. We present in Section 3 the general scheme that defines recursively
usual ordered local in-between interpolation methods with one subdivision. We
also show that this restrictive scheme applied to self-dual methods imply that
this kind of interpolation methods fail in 3D (and then further) to make well-
composed images. We conclude in Section 4 with some perspectives that could
work in nD even if n > 2 (in a local and a non-local ways).

2 A characterization of 3D well-composed gray-valued
images

2.1 2D WC Sets and Gray-Valued Images

Let us begin by the definitions of a block of Zn, so we will be able to recall the
definition and the characterization of 2D well-composed sets and images.

A block in nD associated to z ∈ Zn is the set Sz defined such that Sz ={
z′ ∈ Zn

∣∣||z − z′||∞ ≤ 1 and ∀i ∈ [1, n], z′i ≥ zi
}

. Moreover, we call blocks of

D ⊆ Zn any element of the set
{
Sz
∣∣∃z ∈ D, Sz ⊆ D}.

Definition 1 (2D WC Sets [5]) A set X is weakly well-composed if any 8-
component of X is a 4-component. X is well-composed if both X and its com-
plement Xc = Z2 \X are weakly well-composed.

Proposition 1 (Local Connectivity and No Critical Configurations [5])
A set X ⊆ Z2 is well-composed iff it is locally 4-connected. Also, a set X is well-

composed if none of the critical configurations

(
1 0
0 1

)
or

(
0 1
1 0

)
appears in X.

Definition 2 (Cuts in nD) For any λ ∈ R and any gray-valued map u : D ⊆
Zn 7→ R, we denote by [u > λ] and [u < λ] the sets [u > λ] =

{
M ∈ D

∣∣u(M) > λ
}

and [u < λ] =
{
M ∈ D

∣∣u(M) < λ
}

. We call them respectively upper strict cuts
and lower strict cuts [3].

We will note that an image u : D ⊆ Z2 7→ R cannot be well-composed if its
domain D is finite and not well-composed (since [u < max(u) + 1] = D).

Definition 3 (Gray-valued WC 2D Maps [5]) A gray-level map u is well-
composed iff for every λ ∈ R, the strict cuts [u > λ] and [u < λ] result in
well-composed sets.

We recall that the interval value of the couple (x, y) ∈ R2 is defined as
intvl(x, y) = [min(x, y),max(x, y)].
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Proposition 2 (Characterization of 2D WC maps [5]) A gray-level image

is well-composed iff for every 2D block S such that u
∣∣
S

=

(
a b
c d

)
, the interval

values satisfy intvl(a, d) ∩ intvl(b, c) 6= ∅.

2.2 3D WC Sets and Gray-Valued Maps

Fig. 1. Illustration of the bdCA of
a set containing a critical configu-
rations of type 1 (left), and of type
2 (right).

Fig. 2. A set locally 6-connected
but not well-composed.

As we will see, for n = 3 we loose the equivalence between the local con-
nectivity and the well-composedness, and for this reason Latecki introduced the
continuous analog.

Definition 4 (CA and bdCA [4]) The continuous analog CA(z) of a point
z ∈ Z3 is the closed unit cube centered at this point with faces parallel to the
coordinate planes, and the continuous analog of a set X ⊆ Z3 is defined as
CA(X) =

⋃{
CA(x)

∣∣x inX}. The (face) boundary of the continuous analog
CA(X) of a set X ⊆ Z3 is noted bdCA(X) and defined as the union of the set
of closed faces each of which is the common face of a cube in CA(X) and a cube
not in CA(X).

Definition 5 (Well-composedness in 3D [4]) A 3D set X ⊆ Z3 is well-
composed iff bdCA(X) is a 2D manifold, i.e., a topological space which is locally
Euclidian.

Proposition 3 (No Critical Configurations [4]) A set X ⊆ Z3 is well-composed
iff the following critical configurations of cubes of type 1 or of type 2 (modulo
reflections and rotations) do not occur in CA(X) or in CA(Xc) (see Figure 1).

One can remark that if a set X ⊆ Z3 is well-composed, then X is locally
6-connected, but the opposite is not true (see Figure 2).

Definition 6 (WC Gray-valued Maps) We say that a 3D real-valued map
u : D ⊆ Z3 7→ R is well-composed if its strict cuts [u > λ] and [u < λ], ∀λ ∈ R,
are well-composed.
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Fig. 3. The restriction
u
∣∣
S

of u to a 3D block S.
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Fig. 4. The ten characteristical relations of well-
composedness of a gray-valued image u restricted
to a 3D block S.

To characterize 3D gray-level well-composed images, we first give two lemmas
concerning the detection of the critical configurations of respectively type 1 and
type 2.

Lemma 1 The strict cuts [u > λ] and [u < λ], λ ∈ R, of a gray-valued image
u defined on a block S, such as depicted in Figure 3, do not contain any critical
configuration of type 1 iff the six following properties hold:
intvl(a, d)

⋂
intvl(b, c) 6= ∅ (P1), intvl(e, h)

⋂
intvl(g, f) 6= ∅ (P2)

intvl(a, f)
⋂

intvl(b, e) 6= ∅ (P3), intvl(c, h)
⋂

intvl(g, d) 6= ∅ (P4)
intvl(a, g)

⋂
intvl(e, c) 6= ∅ (P5), intvl(b, h)

⋂
intvl(f, d) 6= ∅ (P6)

Proof : Let us assume that any of these properties (Pi), i ∈ [1, 6], is false. Let
us say it is the case of (P1). Then two cases are possible: either max(a, d) <
min(b, c), and that means that there exists λ = (max(a, d) + min(b, c))/2 such
that [u < λ] contains the critical configuration of type 1 {a, d}, or min(a, d) >
max(b, c), and there exists λ = (min(a, d) + max(b, c))/2 such that one more
time [u > λ] contains the critical configuration of type 1 {a, d}. The reasoning
is the same for all the other properties. Conversely, let us assume that there
exists λ ∈ R such that either [u > λ] or [u < λ] contains a critical configuration
of type 1. That means immediately that one of the 6 properties Pi, i ∈ [1, 6],
corresponding to each of the six faces of the block S, is false (see Figure 4 for
the faces concerned by the properties).

Let us recall that the span of a set of values E ⊆ R is span(E) = [inf(E), sup(E)].

Lemma 2 The strict cuts [u > λ] and [u < λ], λ ∈ R, of a gray-valued image
u defined on a block S such as depicted in Figure 3, do not contain any critical
configuration of type 2 iff the four following properties are true:
intvl(a, h)

⋂
span{b, c, d, e, f, g} 6= ∅ (P7)

intvl(b, g)
⋂

span{a, c, d, e, f, h} 6= ∅ (P8)
intvl(c, f)

⋂
span{a, b, d, e, g, h} 6= ∅ (P9)

intvl(d, e)
⋂

span{a, b, c, f, g, h} 6= ∅ (P10)

Proof : Let us assume that any of these properties (Pi), i ∈ [7, 10], is false.
Let us say it is the case of (P7). Then two cases are possible: either max(a, h) <
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min(b, c, d, e, f, g), and that means that there exists λ = (max(a, h)+min(b, c, d, e, f, g))/2
such that [u < λ] contains the critical configuration of type 2 {a, h}, or min(a, h) >
max(b, c, d, e, f, g), and there exists λ = (min(a, h) + max(b, c, d, e, f, g))/2 such
that one more time [u > λ] contains the critical configuration of type 2 {a, h}.
The reasoning is the same for all the other properties. Conversely, let us assume
that there exists λ ∈ R such that either [u > λ] or [u < λ] contains a critical
configuration of type 2. That means immediately that one of the 4 properties
Pi, i ∈ [7, 10], corresponding to each of the four diagonals of the block S, is false
(see Figure 4).

We are know ready to the main theorem of this section, characterizing the
well-composedness on a 3D gray-valued image.

Theorem 1 (Characterization of well-composedness in 3D) Let us sup-
pose that D is an hyperrectangle in Z3. A gray-valued 3D image u : D 7→ R
is well-composed on D iff on any block S ⊆ D, u

∣∣
S

satisfies the properties
(Pi), i ∈ [1, 10].

3 Local interpolation Methods

a b

c
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j

j+1
d
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d
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j

j+1
c

ab

cd

ac abcd bd

Fig. 5. Illustration of the subdivision process on
a block S.

(i+½,j+½)

(i,j) (i+1,j) (i,j+1) (i+1,j+1)

(i+½,j) (i+1,j+½)(i,j+½) (i+½,j+1)

Fig. 6. s(S) ⊆
(Z
2

)n
as a

poset.

Using interpolation methods with one subdivision does not deteriorate the
initial signal. The size of the original image is multiplied by a factor of 2n, where
n is the dimension of the space of the image. Figure 5 illustrates this subdivision
process.

3.1 Subdivision of a Domain and
(Z
2

)n
as a poset

Let us introduce the subdivision of a block that allows us to provide an order
on the elements. Using this order, the subdivided space is a poset.

Let z be a point in Zn, and Sz its associated block. Then we define the
subdivision of Sz as s(Sz) = {z′ ∈

(Z
2

)n ∣∣||z − z′||∞ ≤ 1 and ∀i ∈ [1, n], z′i ≥
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zi}. Then, we define the subdivision of a domain D ⊆ Zn as the union of the
subdivisions of the blocks contained in D, i.e., s(D) =

⋃
S⊆D s(S).

Definition 7 (Order of a point of
(Z
2

)n
) Assume ei is a fixed basis of Zn.

We note 1
2 (z) = {i ∈ [1, n]

∣∣zi ∈ Z
2 \Z} (where zi represents the ith coordinate of

z). The sets Ek for k ∈ [0, n], are defined such that Ek = {z ∈
(Z
2

)n ∣∣ ∣∣ 1
2 (z)

∣∣ =

k} (where
∣∣E∣∣ denotes the cardinal of the set E), and represent a partition of(Z

2

)n
. We call order of a point z the value k such that z ∈ Ek and we note it o(z).

Definition 8 (Parents in
(Z
2

)n
) Let z be a point of

(Z
2

)n
. The set of the par-

ents of z ∈
(Z
2

)n
, noted P(z), is defined by P(z) = ∪i∈ 1

2 (z)
{z − ei

2 , z + ei
2 }. The

parents of z ∈
(Z
2

)n
of order 0 are P0(z) = {z} and of order k > 0 are defined

recursively by Pk(z) = Pk−1(P(z)).

Definition 9 (G(z) and A(z)) Let z be a point of
(Z
2

)n
. We define the set

G(z) = ∪k∈[0,o(z)]Pk(z). The ancesters of z ∈
(Z
2

)n
are A(z) = Po(z)(z).

Notice that A(z) ⊆ Zn and that any point z ∈ Ek, k ∈ [1, n], has its parents
in Ek−1. Hence {Ek}k∈[0,n] is a (hierarchical) partition of

(Z
2

)n
, so (

(Z
2

)n
,P) is

a poset (see Figure 6).

Definition 10 (Opposites) Let z be a point of
(Z
2

)n
. The opposites of z ∈(Z

2

)n
, noted opp(z), is the family of pairs of points such that opp(z) = ∪i∈ 1

2 (z)

{
{z−

ei
2 , z + ei

2 }
}

.

3.2 Interpolation methods with one subdivision

Let us recall that the convex hull convhull(Z) of a set ofm points Z = {z1, . . . , zm} ⊆
Zn is:

convhull(Z) =

{
m∑
i=1

αiz
i
∣∣ m∑
i=1

αi = 1 and ∀i ∈ [1,m], αi ≥ 0

}

Definition 11 (Subdivision of edges, faces, and cubes) Let E = {z1, z2}
be an edge in Zn. The subdivision of E is s(E) = {z ∈

(Z
2

)n ∣∣z ∈ convhull(E)}.
The subdivision of a face F = {z1, z2, z3, z4} is s(F) = {z ∈

(Z
2

)n ∣∣z ∈ convhull(F)}.
The subdivision of a cube C = {z1, . . . , z8} is s(C) = {z ∈

(Z
2

)n ∣∣z ∈ convhull(C)}.

3.3 The set of properties that the interpolation method has to
satisfy

The interpolation of a map u : D ⊆ Zn 7→ R to a map I(u) : s(D) ⊆
(Z
2

)n 7→ R
is a transformation such that I(u)

∣∣
S

= u
∣∣
S

for any block S ⊆ D.
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Let u : D ⊆ Z3 7→ R be any 3D gray-valued image. We say that an interpo-
lation method I : u 7→ I(u) is self-dual iff I(−u) = −I(u). The main interest in
the self-duality is that the interpolation method does not overemphasizes bright
components at the expense of the dark ones or the inverse.

An interpolation method I : u 7→ I(u) in 3D is said ordered if the new values
are inserted firstly at the centers of the subdivided edges, secondly at the centers
of the subdivided faces, and finally at the center of the subdivided cube.

An ordered interpolation method is said in between iff it puts the values at
a point z in between the values of its parents P(z).

Finally, we say that an interpolation method is well-composed iff the image
I(u) resulting from the interpolation of u is well-composed for any given image u.

So there is the set of properties that the interpolation method we are inter-
ested in has to verify:

(P)⇔


I is invariant by translations, π

2 ’s rotations and axial symmetries
I is ordered
I is in-between
I is self-dual
I is well-composed

3.4 The scheme of local interpolation methods verifying P

A local interpolation I is an interpolation such as for any block S ⊆ D, I(u)
on s(S) is computed only from its nearest neighbours belonging to E0 (we see
an image as a graph). For convenience, we will write u′ instead of I(u) for local
interpolation methods in the sequel.

Lemma 3 (The scheme for local interpolation methods) Any local inter-
polation method I on

(Z
2

)n
verifying P can be characterized by a set of functions

{fk}k∈[1,n] such that:

∀ z ∈
(
Z
2

)n
, u′(z) =

{
u(z) if z ∈ E0

fk(u
∣∣
A(z)

) if z ∈ Ek, k ∈ [1, n]

We denote such an interpolation method If1,...,fn .

Proof : Because the interpolation process on the subdivided edges depends
only on the values of u at the vertices of the original edges due to the locality
of the method, and because it has to be invariant by axial symmetries and
rotations, there is an unique function f1 characterizing the interpolation method
on the subdivided edges. The reasoning is the same on the faces and the cube
respectively for f2 and f3.

Notice that it is an implication and not an equivalence: an interpolation
method verifying this scheme does not verify all the properties in P.
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3.5 I0, IWC , and Isol for local interpolation methods

Let us introduce some useful sets to express recursively the local interpolation
methods satisfying the properties P we are looking for.

Definition 12 (I0 and definition of a local in-between interpolation method)
Let u : D 7→ R be a gray-valued map, let z be a point of s(D) \E0, and let I be
a given local interpolation method. We define the set I0(u, z) associated to I by:

I0(u, z)
(def)

=
⋂

{z−,z+}∈opp(z)

intvl(u′(z−), u′(z+))

Then, an ordered local interpolation method I is said in-between iff u′(z) ∈
I0(u, z) for any image u : D 7→ R and z ∈ s(D) \E0.

Definition 13 (IWC and Isol) Let u : D 7→ R be a gray-valued image, z be a
point of s(D) \ E0, and I be a given local interpolation method. We define the
set IWC(u, z) associated to I such as for any z ∈ E1, IWC(u, z) = R and for
any z ∈ Ek with k ≥ 2:

IWC(u, z) = { v ∈ R | u′(z) = v ⇒ u′
∣∣
G(z) is well-composed }

Last, let us denote Isol(u, z) = I0(u, z) ∩ IWC(u, z).

Then we obtain the following scheme, necessary (but not sufficient) to satisfy
P.

Theorem 2 Any local interpolation I method satisfying P is such that:

∀z ∈
(Z
2

)n
, u′(z) =

{
u(z) if z ∈ E0

fk(u
∣∣
A(z)

) ∈ Isol(u, z) if z ∈ Ek, k ∈ [1, n]

Notice that such a local interpolation method I is ordered, in-between, well-
composed, but not necessarily self-dual.

3.6 Determining f1 for self-dual local interpolation methods

Let us begin with the study of f1, i.e., the function setting the values at the cen-
ters of the subdivided edges. This function has to be self-dual, symmetrical, and
in-between, that’s why we choose one of the most common function satisfying
these constraints : the mean operator, i.e., f1 : R2 7→ R : (v1, v2) 7→ f1(v1, v2) =
(v1 + v2)/2 (and then we avoided computational approximations by using only
values in 2nZ for the original image u).

We will point out that there exists some other functions satisfying all these
constraints (as (a, b) 7→ med(a, b, 0)) but we are not interested in these other
cases for our applications, the mean operator seeming the most natural choice
for our applications.
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Fig. 7. The 3 possible
configurations in 2D
(modulo reflections and
rotations).

a b

dc

(a+b)/2

(c+d)/2

(a+c)/2 m (b+d)/2

Fig. 8. u′∣∣
G(z)

for z ∈ E2 for any self-dual

local interpolation after the application of
f1 (with m any value ∈ R).

3.7 Equations of f2 for self-dual local interpolation methods

Concerning f2, i.e., the function which sets the values of u′ at the centers of the
subdivided faces, let us compute I0(u, z) and IWC(u, z) for any given z ∈ E2

to deduce Isol(u, z). Their values depend on what we call the configurations of
u
∣∣
A(z)

.

Let us assume that u
∣∣
A(z)

=

(
a b
c d

)
. Then a total of 4! = 24 increasing

orders are possible for these 4 values. Modulo reflections and axial symmetries,
we obtain a total of 3 possible configurations: the α-configurations correspond
to the relation a ≤ d < b ≤ c, the U -configurations to a ≤ b ≤ d ≤ c, and the
Z-configurations to a ≤ b ≤ c ≤ d (see Figure 7).

Lemma 4 Let z be a point in E2. Modulo reflections and symmetries, an α-
configuration implies that u

∣∣
A(z)

is not well-composed, whereas a U - or Z-configuration

implies that u
∣∣
A(z)

is well-composed.

a+c

a+b

b+d

c+d

2

2 2

2

a+c

a+b

b+d

c+d
2

2

2

2

Fig. 9. The Hasse diagrams for the α- and the U -configurations (left) and for the
Z-configuration (right).

Let us begin with the computation of I0(u, z) for any given z ∈ E2. From
the values already set in u′ on P(z) ⊆ E1 by f1 during the recursive process (see
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Figure 8), we can compute I0(u, z) using the Hasse diagram (a mathematical
diagram used to represent finite partially ordered sets with the biggest elements
at the top) for each configuration (see Figure 9). We will obtain finally that
I0(u, z) = intvl(a+c2 , b+d2 ) for the three configurations, with one important prop-
erty: the median value of u

∣∣
A(z)

always belongs to I0(u, z).

Let us follow with the computation of IWC(u, z), where u′
∣∣
G(z) (see Figure 8)

has to satisfy four conditions:

intvl(a,m) ∩ intvl((a+ b)/2, (a+ c)/2) 6= ∅ (1)

intvl((a+ b)/2, (b+ d)/2) ∩ intvl(m, b) 6= ∅ (2)

intvl((a+ c)/2, (c+ d)/2) ∩ intvl(m, c) 6= ∅ (3)

intvl(m, d) ∩ intvl((c+ d)/2, (b+ d)/2) 6= ∅. (4)

In the case of the α-configuration, (2) ⇒ m ≤ b+d
2 and (4) ⇒ m ≥ b+d

2 ,

what implies m = b+d
2 and satisfies (1) and (3) in the same time. Consequently,

IWC(u, z) = {med{u
∣∣
A(z)
}}, and because IWC(u, z) ⊆ I0(u, z), Isol(u, z) =

{med{u
∣∣
A(z)
} in the not well-composed case.

In the cases of the U - and the Z-configurations, we obtain that IWC(u, z) =
[a+b2 , c+d2 ] ⊇ I0(u, z), so we conclude that Isol(u, z) = I0(u, z).

Theorem 3 Given an image u : D 7→ R, any local interpolation method If1,f2,f3
that satisfies P is such that ∀ z ∈ s(D) ∩E2:

f2(u
∣∣
A(z)

) = med{u
∣∣
A(z)
} if u

∣∣
A(z)

is not W.C.,

f2(u
∣∣
A(z)

) ∈ I0(u, z) otherwise.

Let z be a point in s(D) ∩ E2. Among the applications f2 satisfying P,
there exists (at least) the median method, consisting in setting the value of
u′(z) at med{u

∣∣
A(z)
} (in this case f2 is an operator and not only a function),

the mean/median method of Latecki [6] consisting in setting the value u′(z) at
mean{u

∣∣
A(z)
} in the well-composed case and to med{u

∣∣
A(z)
} otherwise, and also

the min/max method, consisting in setting the value u′(z) at 1
2 (min{u

∣∣
A(z)
} +

max{u
∣∣
A(z)
}) in the well-composed case and to med{u

∣∣
A(z)
} otherwise.

3.8 Equations of f3 for local self-dual interpolation methods

Theorem 4 No local interpolation method satisfying P makes well-composed
images for n ≥ 3 with one subdivision.

Proof : Let z be the center of a subdivided cube. We have u′
∣∣
A(z)

as in the

Figure 10 (on the left). We apply the first interpolating function f1 satisfying P,
i.e., we set the values of u′ at the centers of the subdivided edges at the mean of
the values on the vertices. Then we apply the second interpolating function f2,
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Fig. 10. A counter-example proving that any local interpolation method satisfying P
with one subdivision cannot ensure well-composedness (the values of u′ on E0 are in
green, the ones on E1 are in blue, the ones on E2 are in red, and the ones on E3 are
in purple).

which fixes the values of u′ at the centers of the subdivided faces at the median of
the values of u′ at the four corresponding corners (because u is well-composed on
none of the faces of the cube). Finally, referring to the properties that a function
u′ has to satisfy to be well-composed (see theorem 1), f3 must satisfy in the
same time the constraints c ≥ 3 and c ≤ 1 (both are the constraints of type 2)
that are incompatible. So, no local interpolation method with one subdivision
can satisfy the set of constraints P as soon as n ≥ 3.

4 Conclusion

We have presented a characterization of well-composedness for 3D gray-valued
images. We have also proved that an only scheme is possible for local interpola-
tion methods, and that it implies that no local interpolation method satisfying
P with one subdivision is able to make 3D well-composed images as soon as we
choose the mean operator as interpolation method in 1D.

9 11 15

7 1 13

3 5 3

9 10 11 13 15

8 8 6 12 14

7 4 1 7 13

5 4 3 4 8

3 4 5 4 3

9 10 11 13 15

8 7 6 10 14

7 4 1 7 13

5 4 3 4 8

3 4 5 4 3

9 9 9 11 11 15 15

9 9 9 11 11 15 15

7 7 1 1 1 13 13

7 7 1 1 1 13 13

3 3 1 1 1 3 3

3 3 3 5 3 3 3

3 3 3 5 3 3 3

9 9 11 11 15 15 15

9 9 11 11 15 15 15

9 9 11 11 15 15 15

7 7 7 1 13 13 13

7 7 7 5 13 13 13

3 3 5 5 5 3 3

3 3 5 5 5 3 3

Fig. 11. From left to right: an image, then the interpolation results with the median,
the mean/median, the min and the max methods respectively.
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The different interpolation methods exposed in this paper, along with some
other ones, are illustrated in Figure 11. The test image contains two α-, one U -
and one Z- configurations.

We observe that the results of the median and the mean/median methods
seem to be smoother than the others, while the max method overemphasizes
bright components at the expense of the dark ones and the min method overem-
phasizes the dark components at the expense of the bright ones. However the
min/max methods work in nD while the two other methods fail since n ≥ 3 as
it has been proven before.

Finally, two approaches for the future seem important to be tested. The
first is to use an alternative to f1 such as med(a, b, 0) with a local interpolation
method as exposed before. The secund, and it is our most promising results for
the moment, is to use a non-local approach (as a front propagation algorithm),
so we do not have to use any systematic operator f1 anymore, neither to use an
ordered interpolation method.
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3. Géraud, T., Carlinet, E., Crozet, S., Najman, L.: A quasi-linear algorithm to com-
pute the tree of shapes of n-D images. In: Hendriks, C.L., Borgefors, G., Strand,
R. (eds.) Mathematical Morphology and Its Application to Signal and Image Pro-
cessing – Proceedings of the 11th International Symposium on Mathematical Mor-
phology (ISMM). Lecture Notes in Computer Science Series, vol. 7883, pp. 98–110.
Springer, Heidelberg (2013)

4. Latecki, L.: 3D well-composed pictures. Graphical Models and Image Processing
59(3), 164–172 (May 1997)

5. Latecki, L., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Computer Vision
and Image Understanding 61(1), 70–83 (January 1995)

6. Latecki, L.J.: Well-composed sets. In: Advances in Imaging and Electron Physics.
vol. 112, pp. 95–163. Academic Press (2000)

7. Marchadier, J., Arquès, D., Michelin, S.: Thinning grayscale well-composed images.
Pattern Recognition Letters 25, 581–590 (April 2004)
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