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Abstract—In mathematical morphology the tree of shapes of
a gray level image is a versatile representation that allows for
multiple powerful applications. That structure is highly interest-
ing because it is a self-dual representation invariant by contrast
changes and since many authors state that object contours are
well described by level lines. Such a representation has not yet
been defined (thus used) on color images because a priori a total
order on colors is required that really make sense on data. In
this paper we propose a solution to obtain a tree of shapes on
color images without resorting to an ordering of colors. To that
aim we relax the definition of shapes and we show that relevant
applications follow from our proposal.

Keywords—Mathematical morphology, color images, tree of
shapes, connected filters.

I. INTRODUCTION

Mathematical morphology operators can be divided into
two large classes: the most known operators make use of struc-
turing elements, whereas connected operators [1] are based
on neighborhoods and connected components. The proeminent
property of the latter is that they do not shift contours. Many
connected filters on gray level images are dual, for instance,
algebraic openings and closings [2], and can be defined from
the min-tree and/or the max-tree. This couple of dual trees
represent the image and encodes that connected components
of respectively lower and upper thresholds cuts (also called
cuts [3]) form a tree w.r.t. component inclusion. A self-dual
tree has been defined by Monasse and Guichard [4], called
tree of shapes. It describes the image contents in a unique
way; such a tree can be understood as the result of merging
the dual trees components. Some new connected operators can
be derived from that tree, that make no assumption about the
contrast of image components: the inclusion relationship can
be due either to light objects surrounded by darker ones, or
to the contrary. As a consequence self-dual operators process
light and dark objects in the same way.

The tree of shapes is a morphological tool with a strong
potential, that has been underexploited. Though its applications
are numerous: image filtering [5, 6], simplification [7], and
segmentation [8, 9, 10], and also texture indexing [11] and
object recognition [12] (additional references about applica-
tions can be found in [13]). The reason why the tree of
shapes is interesting is reported by several authors who claim
that, in gray level images, object contours coincide with level
lines [14, 15, 16]. Indeed, in [17] we have shown that object

detection based on the tree of shapes can outperform the Chan
and Vese method.

Yet obtaining a tree of shapes for color images is challeng-
ing. In a gray level image f , shape contours are level lines; they
thus correspond to connected components of {x | f(x) = λ},
where λ is a gray level. Transposing that definition to a color
image means that we expect every objects contained in this
image to be surrounded by a curve which has a constant color
λ. Of course that hardly happens in images, which makes
this definition of shapes unusable in practice. Another idea
to construct a tree of color shapes is to rely on the classical
approaches of adapting a gray-level-based method or operator
to color images, as performed in [10] and [18]. Unfortunately
we will see that the trees obtained that way are not so well
formed since a posteriori applications (noise removal and
segmentation) do not lead to proper results.

To the authors knowledge the present paper is the first

(a) Denoising (self-dual grain removal).

(b) Shape Filtering (keeping round objects) [6].

(c) Object Detection (energy-based method) [17].

Fig. 1. Sample uses of gray-level tree of shapes (left column: input images;
right column: state-of-the-art results).



attempt to define a tree of shapes for color images without
imposing some arbitrary or questionable ordering of colors.
This paper is organized as follows. In section II we take a
tour of the classical approaches for processing color images
that can be used to construct trees of shapes. In section III we
detail our proposal and we present, compare and discuss the
results in section IV. Finally in section V we conclude and
give some perspectives of our work.

II. STATE OF THE ART

When dealing with hierarchical representations of images,
we can distinguish two classes of trees: hierarchies of segmen-
tation and morphological trees. The first approach is directly
linked to hierarchical clustering. It aims at either growing
and merging regions in a bottom-up fashion or splitting
regions in a top-down fashion. Among some well-known
hierarchical segmentation trees [19], ultrametric wathersheds
[20], binary partition trees [21], or alpha-trees [22] have been
successfully applied to segmentation, object detection, image
matching [6, 23]. . . The force of those methods when dealing
with colors lies in that they only require a distance function
between values. Any norm on colors has sense (even if some
colorspace or norms may be closer from human perception
than others), whereas an ordering of the colorspace is less
obvious. Unfortunately, a total ordering is required to compute
the second class of trees. While hierarchical segmentation
trees consider clustering of adjacent region, morphological
trees focus on the inclusion relationship of components. The
components result from thresholding the image at different
levels, and a total order on the image levels ensure the level sets
inclusion. In what follows, we present the classical approaches
to deal with the absence of a natural total order.

A. Marginal Processing

A common and simple approach when dealing with mul-
tivariate data is split each component and process them inde-
pendently. In our case, it would result in computing trees of
shapes for the red, green, and blue channels of the original
image and filter each of them. Red, blue and green images
are reconstructed from the three trees of shapes and merged
back to give the final result. Although this simple method gives
visually good results when the objective remains filtering or
image simplification, it suffers from two majors drawbacks.
First, algebraic properties of grain filters are not preserved.
Filtering red, blue and green images with a grain of size λ
implies that extreme components have an area greater than
λ. However, since these components do not share the same
location, the merge procedure introduces component overlap
and noise in large flat zones. Second, this method remains
useless for computer vision purposes. Since it does not build
a single hierarchical representation of the image but rather
three trees, computer vision methods that relies on node
identification in a single tree cannot be applied.

B. Imposing a Total (Pre-)Order

A classification of ordering relations can rely on their
algebraic properties (totality, anti-symmetry. . . ) or with respect
to the way these relations are built. Barnett [24] proposed
to classify them into four groups: marginal ordering (M-
ordering), conditional ordering (C-ordering), partial ordering
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Fig. 2. An image (a), and its morphological component trees (b) to (d).

(P-ordering) and reduced ordering (R-ordering). M-ordering,
is a component-wise ordering that deals separately with each
channel. Since it is a partial order, it is out of scope of the
current section.

In C-ordering, vectors are ordered by mean of one, several,
or all of their marginal components. The most well-known C-
ordering is the lexicographical ordering, that is a total order.
If only some components participate in the comparison, it
yields to a total-pre-order. For example let v, w ∈ Rn, the
lexicographical ordering ≤ using only the first two components
defined as v ≤L w iff. (v1 < w1) ∨ (v1 = w1 ∧ v2 ≤ w2)
is a total-preorder. Colors (1, 1, 2) and (1, 1, 3) are considered
as equivalent by the above relation. The main pitfall of the C-
ordering resides in the importance given to first components.
In the case of the RGB space, it implies for example that
the red component is more relevant than the others. Several
workarounds have been proposed [25, 26] like changing the
color space (LSH is commonly used) or sub-quantization of
first components (known as α-lexicographical ordering). This
enables to lower the importance given to the first dimension
but still introduce some color artifacts.

In R-ordering, vectors are reduced to scalar values using a
mapping h : Rn → R. Then, for two vectors v, w ∈ Rn a new
relation ≤R is defined as v ≤R w iff. h(v) ≤ h(w). If h is
injective then each index is mapped to a unique color and the
relation is a total order, otherwise it is a total pre-order. Typical
examples of R-ordering are distance-based orderings [27].
It consists in choosing a reference vector (or a reference
set of vectors) vref and the order relation is built upon a
distance to vref , i.e., v ≤R w iff d(v, vref ) ≤ d(w, vref ).
The main drawback of distance-based orders lies in the choice
of a reference vector (or a set of reference vectors).More
sophisticated methods can use statistical learning to rank colors
[28, 29] but actually they are yet another kind of R-ordering.

C. Other Approaches

Since the natural order on colors is partial and forms a
lattice, Passat and Naegel [30, 31] proposed an extension of
min trees (resp. max-trees) to lattice representing inclusion of
lower cuts (resp. upper cuts). Since this representation is not
self-dual, it is out of scope of this topic and the study of a
self-dual lattice of shapes is postponed as a further work.

III. PROPOSED METHOD

A. Basic Notions

Let an image f : Ω → (E,≤) and λ ∈ E. We note
[f ≤ λ] (resp. [f ≥ λ]) a lower cut (resp. upper cut) of f
defined as [f ≤ λ] = {x, f(x) ≤ λ}. Let CC (X), X ∈ P(E),
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Fig. 3. Scheme of the proposed method.

denote the set of connected components of X . If ≤ is a total
relation, any two connected components X,Y ∈ CC ([f < λ])
are either disjoint or nested, thus the set CC ([f < λ])
endowed with the inclusion relation forms a tree called the
min-tree (see fig. 2b). Its dual tree, defined on upper cuts, is
called the max-tree (see fig. 2c). Let the saturation operator
Sat : P(E)→ P(E), defined as Sat(X) = X ∪ Y with Y
hole of X , s.t. Y ∈ CC ((Ω\x)c), Y ⊂ X . We call a shape
any element of Sat([f ≤ λ])∪Sat([f ≥ λ]). If ≤ is total, any
two shapes are either disjoints or nested, hence form a tree
called the tree of shapes (see fig. 2d).

B. Method Description

The method relies on the simple observations that marginal
filtering described in the previous section gives visually good
results while methods introducing a total order introduce
color artifacts as well. As, we require a unique hierarchical
representation, we aim at merging the three trees of shapes
from marginal processing in a single tree T while preserving
the following three algebraic properties of trees of shapes:

• a node is a connected component without holes (a shape);
• removing a node boils down to merging some flat zones;
• parent relationship of nodes reflects shape inclusion in f .

The proposed method consists in the following five steps,
also depicted in fig. 3:

Step 1. Decompose the color image into its three (red, green,
and blue) channels images.

Step 2. Independently compute their respective trees of shapes
(Tr, Tg, Tb).

Step 3. Compute area attributes as images (Ar,Ag,Ab). To
that aim, each node is valuated with its area, e.g., the
number of pixels of the shape it represents[32]; attribute
images are reconstructed from trees, with each pixel
getting its value from the corresponding node’s area.

Step 4. Merge attribute images using a point-wise operator; the
result is Amerge.

Step 5. Compute the trees of shapes of Amerge, that is, our
tree of shapes of the color input image.

Before explaining the rationale behind this method, let
us recall that any tree T valuated with a strictly increasing
attribute a can be rebuilt by computing the min-tree of the
attribute image A. Indeed, any cut CC ([A < λ]) matches in
the same time a single node in T (because a is increasing) and
a node of in the min-tree of A (by lower cuts based definition
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Fig. 4. Illustration of the proposed method on a multi-channel image where
chrominance holds geometry.

of min-trees). As a result, instead of merging nodes in the
original color space that would lead to overlapping compo-
nents, merge takes place in an attribute space. The final tree
of shapes is recovered from the tree of shapes of the attribute
image. Area attribute is a simple algebraic criterion—hence
totally uncorrelated with the color space—that preserves shape
inclusion semantics, e.g., a shape s1 can only be included
in s2 if A(s1) < A(s2). Let us now explain, how attribute
images are merged together. For each point p, we need to
select a scalar value from the triplet (Ar(p),Ag(p),Ab(p)).
While being purely algebraic, an order on the area values
is meaningless, since a large area is not necessarily a good
criterion to render shape significance. Since most problems
arise when choosing the most significant channel on contours,
we propose to merge the trees with gradient guidance. The
red, blue, green gradients of each original images are denoted
∇r,∇g and ∇b. The resulting attribute image is composed
from the pixels of the attributes images with the highest
gradient magnitude:

Amerge(p) =


Ar(p) if |∇r(p)| ≥ max(|∇g(p)|, |∇b(p)|)
Ag(p) if |∇g(p)| ≥ max(|∇r(p)|, |∇b(p)|)
Ab(p) if |∇b(p)| ≥ max(|∇r(p)|, |∇g(p)|)

In order to have the Amerge image suitable for the final tree
construction, we need a kind of spatial coherence between the
shapes taken from the three trees. This is due to the fact that
attribute values are set back in the original image space before
the final tree computation. The red, green and blue channels
being highly correlated, the marginal trees of shapes are similar
in terms of shapes and the merged attribute values are thus
spatially coherent. The marginal trees of shapes computed on
the CIELAB space for example are very different, so merging
their attribute values is not very appropriate.

Figure 4 shows a simple case where geometry information
are held by the chrominance. It shows two regions A and B
that belongs respectively to red and green channels. If we
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Fig. 5. Illustration of the proposed method on a multi-channel image where
each channel taken independently holds incomplete information.

computed the tree of shapes using achromatic information
only, it would detect A ∪ B as a single shape, but neither
A nor B. Using nodes from the trees of shapes computed
independently, we get three possible area values λ1, λ2, λ3
that relate to regions Ω (the full domain), A and B (we
assume λ1 > λ2 > λ3). To merge the attribute images, we
rely on the gradient which is null everywhere except on the
regions’ boundaries. The image arg max{|∇r|, |∇g|} shows
in red (resp. green) the location where the maximal gradient
comes from the red (resp. green) channel and in white the
location where red and green gradient are equals. Thus, pixels
of the fusion attribute image Amerge in white regions can be
computed in two ways: using area values coming either from
red or green channel. Computing the tree of shapes of those
images afterward results in two different trees but both trees
are able to distinct A and B regions.

Figure 5 shows a more complex case where geometry
information is split across the channels of the image. The main
object, a triangle, is composed by the regions A, B and C.
The red channel of the image misses the C region, while the
green channel misses the A region. Thus, the trees of shapes
computed on those channels independently are not able to fully
detect the object. When computing the area of each node, we
get three possible values λ1, λ2 and λ3 (λ1 > λ2 > λ3)
that relates to regions Ω (the full domain), A ∪B and B ∪C
respectively. The same reasoning then holds as for the previous
example. Afterward, computing the tree of shapes Amerge

results in a tree holding a node that fully matches the triangle
(the level line λ2).

IV. RESULTS

In the following, we compare an object detection method
from Xu et al. [17] on both the tree of shapes of the luminance
of the image and the tree of shapes of the color image
computed with our proposed method. This method consists
in computing a contextual energy composing three terms: the
curvature that renders the regularity of a shape, a distance term

(a) Original image. (b) Saliency map.

(d) Fine to coarse segmentations.

Fig. 6. Hierachical image simplification using saliency maps built by the
proposed method. Thresholding the saliency map with increasing levels yields
fine to coarse segmentations.

between the internal and the external distribution around shape
boundaries that measures how meaningful is a shape boundary
and a constraint term that penalizes small components. The
method parameters are the same for valuating nodes of the
“gray level” and the color trees of shapes. Afterward, we
select all shapes having local minimum energy value and
we compute their extinction values. Since an extinction value
reflects the persistence of the shape, we can then set this
extinction value on shape boundaries to get a saliency map
as shown in figs. 6 and 7. By thresholding this image, we can
filter out some shapes such that only the most significant
objects remain and leads to a simplification of the original
image. In figs. 6 and 8, the remaining objects are filled with
the mean of the component values.

Authors acknowledge that since most natural images have
geometry information held by the luminance, images have been
chosen such that luminance only does not allow to retrieve
object shapes. Images are taken from the Berkley Segmen-
tation Dataset [33] and from the Barnard’s Color Constancy
Dataset [34].

The calibration image in fig. 7 is a particularly good
sample of images where chrominance matters, as it proves
that using luminance only, some color squares cannot be
distinguished from the background and merge rapidly with it.
The corresponding saliency map does affirm this proposition.
Also, our method tends to improve object detection in real
case examples of natural images (see fig. 8) where still, the
luminance misses geometry information.



(a) Original image. (b) Color-based saliency. (c) Gray-based saliency.

(d) Color-based simplification. (e) Color-based simplification (false colors). (f) Gray-based simplification (false colors).

Fig. 7. Saliency-based image simplification: the first two columns rely on the color tree of shapes; the rightmost column relies on the gray-level tree of shapes.

V. CONCLUSION AND PERSPECTIVES

In this paper we have presented a first proposal to compute
a tree of shapes for color images whereas the equivalent notion
of level lines, iso-color lines, cannot drive anymore the tree
definition. The key idea behind our proposal is first to maintain
some algebraic properties of shapes and second, to work in the
attribute space instead of the original value space.

To obtain the tree of color shapes, we need to compute the
trees of shapes on every image channels (Step 2, described
in section III-B); for that we can rely on a quasi-linear
algorithm given in [3]. Eventually the proposed method has a
quasi-linear complexity, which makes it very usable in practice.
It has been implemented within our C++ image processing
library Olena [35] and it will be available in the next release.

The perspectives of the work presented here are related
to the many applications relying on the tree of shapes. The
preliminary experiments that we have performed show that
the color tree of shapes is well-suited to applications such
as filtering, simplifying, and segmenting color images. Some
quantitative evaluations of the relevancy of the proposed tree
will be the subject of a forthcoming extended paper.
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