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Abstract—This paper introduces a topological approach to
local invariant feature detection motivated by Morse theory.
We use the critical points of the graph of the intensity image,
revealing directly the topology information as initial “interest”
points. Critical points are selected from what we call a tree-
based shape-space. Specifically, they are selected from both the
connected components of the upper level sets of the image (the
Max-tree) and those of the lower level sets (the Min-tree). They
correspond to specific nodes on those two trees: (1) to the leaves
(extrema) and (2) to the nodes having bifurcation (saddle points).
We then associate to each critical point the largest region that
contains it and is topologically equivalent in its tree. We call such
largest regions the Tree-Based Morse Regions (TBMR).

TBMR can be seen as a variant of MSER, which are contrasted
regions. Contrarily to MSER, TBMR relies only on topological
information and thus fully inherit the invariance properties of the
space of shapes (e.g., invariance to affine contrast changes and
covariance to continuous transformations). In particular, TBMR
extracts the regions independently of the contrast, which makes
it truly contrast invariant. Furthermore, it is quasi parameter-
free. TBMR extraction is fast, having the same complexity as
MSER. Experimentally, TBMR achieves a repeatability on par
with state-of-the-art methods, but obtains a significantly higher
number of features. Both the accuracy and the robustness of
TBMR are demonstrated by applications to image registration
and 3D reconstruction.

Index Terms—Min/Max tree, local features, affine region de-
tectors, image registration, 3D reconstruction.

I. INTRODUCTION

LOCAL invariant feature detection [1, 2, 3, 4, 5, 6, 7, 8]
is an important step in a number of applications such as

wide baseline matching, object and image retrieval, tracking,
recognition, image registration and 3D reconstruction. The
classical process to obtain the features consists in detecting
a specific class of interest points, such as corners, together
with an associated scale generally obtained from a scale-space.
Typical examples of such key locations are the local extrema
of the result of difference of Gaussians (DoG) applied in
scale-space to a series of smoothed and resampled images.
Several crucial invariance properties are required for using
such points in applications, such as invariance to image
translation, scaling, and rotation, to illumination changes or
to local geometric distortion.

In this paper, we propose a topological approach to extract
the local invariant features. We first extract some initial
“critical” points, based on ideas from the Morse theory [11]:
minima, maxima, and saddle points. More precisely, follow-
ing [12], we propose to choose critical regions in the two trees
(called Min-tree and Max-tree [13]) made by the connected
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(a) Four among 76 used multi-view images.

(b) Incomplete reconstructed 3D facades using DoG.

(c) The four facades of the 3D reconstruction using TBMR.

Fig. 1. An example of 3D reconstruction using local invariant features. Top:
4 among 76 used multi-view images. Four facades of the PMVS [9] densified
sparse 3D reconstruction from the SfM pipeline [10] using DoG (middle: only
62 images are calibrated, and the back facade of the building is missing.) and
the proposed TBMR (down: all the 76 images are calibrated, and the whole
mansion is reconstructed).

components of lower and upper level sets: those critical
regions are the leaves and the regions resulting from a fork.
For each critical region a scale is selected. Instead of using a
scale-space, the scale comes from the tree-based shape space
which is built from the image f using the Max-tree and Min-
tree: we associate to a critical region Rc the largest region
containing it and topologically equivalent in its tree. We call
our method Tree-Based Morse Regions (TBMR).

As detailed in Section III-A, the tree-based shape space
is invariant to affine contrast changes and to continuous
(topological) transformations such as translation, scaling or
rotation. As TBMR uses only topological information, TBMR
inherit from this shape space, and is thus independent of
the image contrast and covariant to these same continuous
transformations. As demonstrated in this paper, TBMR is
also robust to local geometric distortion. Furthermore, it is
essentially parameter-free: only two non-significant parameters
are applied, so that we ignore regions that are either too small
or too large. Besides, the maximum area parameter is actually
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not important: large shapes are few and do not influence much
the results. And last, but not the least, efficient algorithms with
a quasi-linear or a linear complexity are available to compute
the TBMR [13, 14, 15].

Qualitative experiments (Section V-A) show the better dis-
tribution of TBMR compared to other state-of-the-art methods.
Quantitative evaluation, based on the image coverage mea-
surement in Section V-B, confirms the qualitative evaluation.
Tests in Section V-C demonstrate that TBMR achieves re-
peatability score comparable to other state-of-the-art methods
with a significantly higher number of correspondences. We
evaluate TBMR on two applications in which many matched
features are required: image registration (Section V-D) and 3D
reconstruction (Section V-E). For these two applications, and
as illustrated in Fig. 1, results attest that TBMR improves over
the commonly used DoG [16].

II. RELATED WORK

There exist a variety of local invariant feature detectors
having relatively good performance, as assessed by several
evaluation frameworks [5, 6, 7, 8]. The first type is based on
scale-space. Harris corners, Hessian based detectors, and the
Difference of Gaussians (DoG) are such instances. The Harris
corner detector [17] finds the extrema of a corner measure
based on the second moment matrix at some fixed scale. A
scale-adapted Harris corner detector and its extension Harris-
Laplace [18] with scale selection find extrema of the Laplacian
of Gaussian (LoG) filter. The Hessian detector [3] extracts the
extrema of a feature measure based on the Hessian matrix. Its
extension Hessian-Laplace [18] uses the same scale selection
as Harris-Laplace. The affine versions of both Harris and
Hessian are based on the affine shape estimation using the
second moment matrix. Harris based detectors tend to extract
corner-like structures, while Hessian based detectors tend to
find blobs and ridges. DoG [16] is similar to the Hessian
detector in the sense that it approximates LoG by the trace
of the Hessian matrix. DoG tends to extract points at isotropic
blob structures.

Some recent feature detectors also based on scale space
are FAST [19, 20] and its variants: AGAST [21], ORB [22],
BRISK [23], and FREAK [24]. The FAST method in [19, 20]
proposed an efficient approach for corner detection, based on
the comparison of pixel values on a ring centered at a feature
point. The AGAST [21] detector is an improved version
for accelerated performance of FAST. The recent ORB [22]
detector is a rotation-invariant extension of FAST. The detector
used in BRISK [23] is a multi-scale AGAST. It searches for
maxima in scale-space using the FAST score as a measure
of saliency, and estimates the scale of each keypoint in the
continuous scale-space. The FREAK [24] method uses the
same detector as the one used in BRISK.

The second type of feature detectors is based on tree-based
shape space. Although its original definition is quite different,
the Maximally Stable Extremal Regions (MSER) [1] are
easily understandable using Min-tree and Max-Tree. Indeed,
as shown in [25], the MSER algorithm extracts the regions
(nodes) that correspond to local minima of a stability function

along the path to the root of the tree. The stability function
Aq of a given node N is given by the difference between the
area of some (grand-)parent N+

∆ and some (grand-)child N−∆ ,
divided by the area of the node itself. It is given by:

Aq(N ) = (|N+
∆ | − |N

−
∆ |)/|N |, (1)

where |·| denotes the cardinality, N+
∆ and N−∆ are respectively

the lowest ancestor and the highest descendant such that
|f(N+

∆ )− f(N )| ≥ ∆ and |f(N )− f(N−∆ )| ≥ ∆, and ∆ is
a stability range parameter that fixes the intensity level differ-
ence. It is reported in [6] that MSER achieves state-of-the-art
repeatabilities and regions accuracies. It is also very efficient.
However, the number of detected features are comparatively
small, which limits its ability for some applications like image
registration and 3D reconstruction. Perdoch et al. [26] propose
the Stable Affine Frame (SAF), for which only local stability is
required. Many more features are obtained with a comparable
repeatability score. However, it is much slower than MSER.

A complete review of invariant feature detectors is out of
scope of this paper. The interested reader is referred to Tuyte-
laars and Mikolajczyk’s survey [27]. Although these detectors
are widely used in many applications in the computer-vision
community, direct application of these detectors to other fields
can be difficult. For example, surgical navigation has shown
significant difficulties due to the free-form tissue deformation
and changes of visual appearance of surgical scenes, and
alternate solutions have been proposed [28].

III. TREE-BASED MORSE REGIONS

In this section, we describe our proposed topology-based
local invariant features detector called the Tree-Based Morse
Regions (TBMR). The TBMRs are extracted from the shape
space built from the image using the Max-tree TM and
Min-tree Tm. In Section III-A, we briefly review the Morse
theory [11, 12] and the original notion of space of shapes. In
Section III-B, we show how to extract “interest” regions from
these shape spaces. The algorithm of TBMRs extraction based
on component trees is described in Section III-C.

A. Tree-based Morse Theory and Shape Spaces

The aim of Morse theory is to describe the topological
changes of the (iso)level sets of a real-valued function in terms
of its critical points. Recall that a Morse function is a smooth
function f whose critical points (i.e., points where ∇f = 0)
are isolated. Critical points are minima, maxima, and saddle
points of f . The topology of f is directly linked to the analysis
of those critical points.

The use of Morse theory is not new in computer vision:
see, e.g. the use of the contour tree [29, 30] and the Reeb
graph [31, 32] for shape matching. However, the Morse
function is not an adequate model for an image, as it prevents
the existence of plateaux for example. A consequence is that
we want to deal with regional extrema and saddle regions
instead of isolated points. The chapter 4 of [12] describes
several notions of critical values and prove that they are
equivalent to the critical points of Morse theory. In R2, the
Morse structure of an image is extracted from its upper and
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Fig. 2. A synthetic image and the corresponding Min-tree (middle) and Max-
tree (right) representation. The critical regions are represented by red circles:
(1) nodes having more than on child, and (2) leave-nodes. The filled regions
are the TBMRs.

lower level sets, and is equivalent to the notion of critical value
used in Morse theory.

For any λ ∈ R, the upper level sets Xλ and lower level
sets X λ of an image f : R2 → R are defined respectively
by Xλ(f) = {p ∈ R2 | f(p) ≥ λ} and X λ(f) = {p ∈
R2 | f(p) ≤ λ}. Thanks to the inclusion relationship, the
connected components of upper (resp. lower) level sets can be
organized into a tree structure, that is called the Max-tree TM
(resp. Min-tree Tm).

Let us intuitively describe the building of the Max-tree along
with the topological changes in the level sets. Imagine that
the surface is completely covered by water, and that the level
of water slowly decreases. Islands (regional maxima) appear.
These islands form the leafs of the Max-tree. As the level of
water decreases further, islands grow, building the branches
of the Max-tree. Sometimes, at a given level, several islands
merge into one connected piece. Such pieces are the forks of
the Max-tree, i.e., the nodes of the tree with several children.
We stop when all the water has disappeared. The emerged area
forms a unique component: the root of the tree representing
the whole image.

Following this intuitive descrition, the critical regions we
consider in this paper are the extrema of f , corresponding to
the leaves of the Max-tree TM and of the Min-tree Tm of f ,
and the saddle points of f , corresponding to the nodes of these
trees having several children.

According to Morse theory, critical points provide essential
geometric information. This would lead us to consider extrema
and saddle points. Indeed, these are invariant under any
increasing contrast change. Unfortunately, critical points are
difficult to use directly: (i) many of them are due to noise, and
(ii) there is a crucial absence of information about their scale.
Typically, most extrema are single pixels, which do not provide
a clue about an adapted neighborhood to use as descriptor.
Notice that applying a grain filter to the image does not solve
the problem. Most regional extrema will then have the size
of the grain filter, which is an artifact of the method. For this
reason, and as we detail in the next section III-B, we are led to
use the largest regions containing the critical region without a
topological change. In other words, we are associating scales
to critical regions, corresponding to the components containing
them just before their merge. However, in this paper, the exact
positions of the critical points are ignored, since at the end the
centroids of the components are used as feature points.

An example of a synthetic image, together with its Max-
tree and its Min-tree, is shown in Fig. 2. In this figure, critical

regions are highlighted with a red circle.
Such types of tree-based image representations feature sev-

eral interesting properties. Specifically, they are invariant to
affine contrast changes and covariant to continuous (topolog-
ical) transformations. Furthermore, efficient algorithms with
linear or quasi-linear complexity are available [13, 14, 15].

As described in section II, many feature detection methods
are based on a scale-space. The causality principle is certainly
the most fundamental principle of multi-scale analysis [33].
From this principle, for any couple of scales λ2 > λ1, the
“structures” found at scale λ2 should find a “cause” at scale λ1.
Both TM and Tm share such a property: indeed, an extremum
that appears at a given level λ1 gives rise to a whole branch of
the tree, which corresponds to a region from very fine to the
whole image. Thus, both TM and Tm can be seen as a multi-
scale image representation, that we call a shape-space. Such
shape-spaces have another interesting property: contrary to
scale-space, the contours of a given shape (connected compo-
nent) correspond to actual contours in the image, without any
“blurring” due to convolution with a kernel. These properties
of the tree-based image representations make the shape space
very appropriate for local invariant features detection. Indeed,
these interesting properties of the shape-space made from the
connected components of both upper and lower level sets,
coupled with an attractive criterion for regions selection (see
Section II), are the reasons of the success of MSER. However,
the MSER criterion, based on Eq. (1), is not invariant to
contrast changes (contrarily to the TBMR topological criterion
detailed in the next section).

B. Feature extraction based on Morse theory and shape space

The next stage is to associate a scale to each critical region.
A critical region corresponds to a change of topology in its
tree: either an apparition (leaves corresponding to extrema) or
a merge (region resulting from a fork). Thus, on a branch of
the tree between two critical regions, there is no topological
change in the tree. In other words, a region that is not
critical is topologically equivalent to the first critical region
we encounter going from the region to the leaves of the tree.
Conversely, a critical region Rc is topologically equivalent to
any region that contains Rc but no other disjoint critical re-
gion. As we want as much context as reasonable to encode the
region, a good “scale” choice for representing a critical region
is the largest region to which it is topologically equivalent in
its tree. We call such a region a Tree-based Morse Region
(TBMR).

In practice, we do not consider the TBMRs that are either
too small or too big. Discarding small regions is performed
before analyzing the tree structure, which means that they do
not contribute to the topological changes of the tree structure.
Discarding them eliminates also some noise without modifying
other components. In our experiments, we always set this
lower bound at 30 pixels. In addition, regions that meet the
image border are considered truncated so we ignore them. In
Fig. 2, the TBMRs are drawn with a red disk. The evolution
of the number of children of a region, starting from a leaf to
the root is illustrated in Fig. 3.
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Fig. 3. An example of TBMR extraction. Left: Front view (top) and 30◦ view (bottom) of “Graffiti” scene [6]. Middle: Evolution of number of children
starting from a leaf to the root and some extracted TBMRs (as well as the corresponding ellipses) along the branch; Right: ellipses of the extracted TBMRs
inside the corresponding red bounding boxes. Note that only the ellipses of the TBMRs extracted from Min-tree are shown.

As in most shape-space-based methods, we compute the
centroids of the selected regions as the final feature points.
The ellipse with the same first and second moments as the
detected region is then used as the local patch upon which a
descriptor is computed.

C. Algorithm of TBMRs extraction

An algorithm that extracts the TBMRs is provided in Algo-
rithm 1. It relies on the computation of the two components
trees Max-tree and Min-Tree [13, 14, 34, 15, 35]. The TBMRs
are extracted from each one of those two trees independently.
We first count the number of children of each node, ignoring
the nodes that are too small. Then, the TBMRs are the nodes
with a unique child and at least one sibling, removing the
nodes that are too big. The corresponding regions provide a
(kind of) scale associated to a given critical point, and are
approximated by an ellipse.

As shown in Algorithm 1, the extraction of TBMRs is
composed of (1) shape space building by Min/Max-tree com-
putation and (2) a linear regions selection from the shape
space. There exist many efficient algorithms to compute the
Min/Max-tree [35]. The union-find-based approach [14] would
take O(nα(n)) time for low quantized image (typically 12 bits
image or less), where n is the total number of pixels inside
an image f and α is a very slow-growing “diagonal inverse”
of the Ackermann’s function. Linear algorithms to compute
the Min/Max-tree are also available [13, 15]. The selection of
TBMRs from the shape would take O(N) time, where N is
the total number of nodes of the tree which is no greater than
n. In consequence, the complexity of the TBMRs computation
algorithm shown in 1 would be O(nα(n)) or O(n).

TBMR Extraction(f , λmin, λmax)
TM ← Compute MaxTree(f)
S ← TBMR Tree Extraction(TM , λmin, λmax)
Tm ← Compute MinTree(f)
S ← S∪ TBMR Tree Extraction(Tm, λmin, λmax)
return S
TBMR Tree Extraction(T , λmin, λmax)
S ← ∅
foreach N in T do numChildren(N )← 0
foreach N in T do

if area(N ) ≥ λmin then
++numChildren(parent(N ))

foreach N in T do
if area(N ) < λmax and numChildren(N ) = 1 and
numChildren(parent(N )) ≥ 2 then
S.insert(N )

return S
Algorithm 1: Extraction of TBMRs. Too small regions (area
less than λmin) do not contribute to topological changes, and
too large regions (area greater than λmax) are discarded.

IV. COMPARISON WITH SOME RELATED WORK

We focus on the comparison with two detector classes, those
based on scale-space and those based on tree-based shape
space, notably MSER.

A. TBMR versus scale-space feature detection

In spirit, TBMR is very similar to those kinds of approaches.
TBMR detects critical points (i.e., extrema and saddle points),
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but does not rely on a scale-space. As described in section III,
it uses the space of shapes provided by the Min-tree and Max-
tree representations. This space has the main property of scale-
space, namely the causality principle [33].

B. TBMR versus MSER

TBMR can be seen as a variant of MSER, since both
rely on Min/Max-tree representations. Indeed, TBMRs are
the children of merge nodes (bifurcation). However, TBMRs
are never MSERs: indeed, at a merge node, the ratio-of-area
criterion proposed in [1] is unstable, and thus the MSER
algorithms ignore those nodes.

In practice, the most fundamental difference between MSER
and TBMR is related to illumination change, a very common
effect in natural images that is reported as an unsolved problem
in the literature [8]. Indeed, the MSER stability function shown
in Eq. (1) depends on a parameter ∆ that fixes the intensity
level difference of the (grand-)parent and of the (grand-)child
actually used for the ratio. That prevents a true invariance
of MSER to illumination change. By contrast, TBMR, being
purely topological, is truly invariant to affine illumination
change. A less fundamental difference concerns the number of
parameters of MSER. As TBMR, MSER uses two parameters
to remove too large and too small regions. But MSER also
requires in the stability function, on top of the parameter ∆
we just described, a threshold to remove unstable regions,
and another parameter to group together detected regions that
are similar in terms of position and size. The latter is very
important, as there are usually too many local minima of the
ratio-of-area criterion, and some of them correspond actually
to the “same” (very similar) stable regions. Especially in the
case of using a very small intensity level difference, which
does not have much sense with respect to the notion of
stability. Grouping those similar regions makes the extracted
regions less accurate (See the registration result presented in
Table II).

Such additional parameters are not needed in TBMR. A last
minor difference is also related to the definition of MSER at
bifurcations: As we mention above, the stability function is
not clearly defined in the presence of bifurcations, i.e., when
a node has more than one child. That raises a difficulty in
trying to reproduce some results: for example, there exist two
public implementations of MSER, one from VLFeat [36], the
other from OpenCV, each one using a similar but different
stability function. The topological definition of TBMR allows
for a perfect reproducibility, whatever the chosen algorithm
implementation.

C. Comparison of time complexities and of running times

We compare the time complexity of TBMR with the similar
method MSER, and the widely used DoG detector. Both
TBMR and MSER rely on a computation of Min-tree and
Max-tree representation whose time complexity is O(nα(n))
or O(n). They differ in the extraction of regions from the
Min-tree and Max-tree. As described in Section III-C, the
TBMR method requires a computation of number of children
which has a time complexity of O(N) and a linear region

Image Run time [ms.]
DoG MSER TBMR

Graffiti (800× 640) 526.6 484.7 471.6
Wall (1000× 700) 1139.1 1122.9 1124.7
Bark (765× 512) 579.5 292.1 290.9

Trees (1000× 700) 1145.4 958.2 1030.4
Leuven (900× 600) 771.7 524.0 519.6

TABLE I. Averaged computation time for the different detectors applied on
several images in the dataset of Mikolajczyk [6]. The corresponding image
size is also shown after the name. See text for a discussion.

selection whose time complexity is also O(N). The MSER
method relies on the stability function given in Eq. (1). For
each node, one have to find its (grand-)parent and the (grand-
)child with a level difference of ∆; the time complexity of
this step is O(∆N). The next step of the MSER method is
to select the local minima of the stability function, this has a
time complexity of O(N). Consequently, TBMR method and
MSER method have a similar time complexity which would be
O(nα(n)) or O(n). The DoG method is mainly composed of
Gaussian blurring, difference of Gaussian, scale-space extrema
detection. Since there are just a few number of scales, the
time complexity of the naive Gaussian blurring is O(ω2n),
where ω is the window size of the kernel of Gaussian blurring.
Linear algorithm for Gaussian blurring is also available thanks
to recursive filtering [37, 38]. The difference of Gaussian
and scale-space extrema detection both have a O(n) time
complexity. Finally, the time complexity of DoG is O(ω2n)
or O(n).

We have implemented the proposed TBMR method using
VLFeat [36]. We compare the running time of TBMR with the
public implementation of MSER and DoG already available in
VLFeat. The comparison is given in Table I. For each image,
each detector is executed 100 times, the average time is shown.
All the measurements have been taken on a 3.4GHz/8MB
cache Intel core i7-2600, 8GB RAM, Debian 7. The code is
compiled with GCC 4.7.2. Note that for the TBMR and MSER
methods, the time for region selection is negligible compared
to that of the computation of Min-tree and Max-tree. So the
two methods have a very similar running time. However,
in this public implementation, the accumulated moments for
computing the approximated ellipse of each TBMR or MSER
region in the Min-tree or Max-tree are computed after the tree
construction step. In a more efficient implementation, these
moments could have been computed incrementally during the
tree construction step. As it is now, the ellipse fitting step
takes about 8% of the time of the whole process, depending
on the number of moments to compute. TBMR is slower
than MSER for the images of Wall and Trees: indeed, TBMR
extracts many more regions than MSER for these two images,
hence the ellipse fitting step takes more time. Both TBMR and
MSER are faster than DoG. Note that many optimizations are
possible for MSER and TBMR. As shown in [39], a more
efficient implementation of MSER is 5.6× faster than DoG.
An optimized TBMR should have a similar performance.

V. RESULTS

Qualitative and quantitative comparison of the distribution
of TBMR with other popular local feature detectors are
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illustrated in Section V-A and Section V-B. In section V-C, the
repeatability assessment of the TBMR is evaluated using the
framework of Mikolajczyk et al. [6]. Two applications using
local invariant features are presented in sections V-D and V-E
to compare TBMR with other widely used detectors. The
application to image registration in Section V-D highlights the
accuracy and the robustness of TBMR. The experiments are
conducted on the Stanford Mobile Visual Search (SMVS) Data
Set [40]. In Section V-E, the application to 3D reconstruction
using structure from motion is first tested on the dataset of
Strecha et al. [41], providing the ground truth of the camera
positions. The baseline error and angular error measurements
reveal the accuracy of TBMR. Then the 3D reconstruction
experiments are conducted on sets of images taken in a
sunny day around some structure. The structure from motion
succeeds in reconstructing a complete 3D model using TBMR,
whereas only part of the scenes are reconstructed in 3D model
when using other detectors.

In all experiments, the parameters of the corresponding
method are set with the recommended values found in the
literature. More specifically, for Harris-Affine, Hessian-Affine
and MSER, we use the Linux binaries1 given in [6]. For the
Harris-Affine detector and the Hessian-Affine detector, the
only parameter is the cornerness threshold which is set to
1000 for Harris-Affine, and to 500 for Hessian-Affine. For the
MSER method, the parameter ∆ in Eq. (1) is set to 10, and the
minimum area and maximum area are set to respectively 30
pixels and 1% of the total number of pixels inside the image
(we use the same area parameters setting for TBMR). For the
DoG method, its public implementation in VLFeat is used.
There are five main parameters: the number of octaves is the
greatest possible one (i.e. roughly log2(min(width,height))).
Each octave is sampled at 3 intermediate scales. The edge
threshold is set to 10, which eliminates peaks of the DoG
scale space whose curvature is smaller than 10. The peak
threshold which filters peaks of the DoG scale space that are
too small is set to 255× 0.04/3. In the following, except the
explicit “DoG octave 0” whose first octave index is set to 0,
the starting octave of DoG method is set to −1. For all the
feature matching used in the experiments of image registration
in Section V-D and 3D reconstruction in Section V-E, the
SIFT descriptors are used. Finally, in all the experiments, the
distance ratio of vector angles from the nearest to second
nearest neighbor used in the SIFT descriptors matching is set
to 0.6.

A. Qualitative features comparison

In this section, we focus on the distribution of the keypoints.
This distribution plays an important role for many applications,
such as image registration and 3D reconstruction using struc-
ture from motion, for which many points covering the object
of interest are required.

We compare TBMR with some state-of-the-art local feature
detectors (Harris-Affine, Hessian-Affine, DoG octave 0, DoG,
and MSER) by visualizing the distribution of the keypoints

1Available on http://www.robots.ox.ac.uk/∼vgg/research/affine

obtained with each method. In this paper, DoG denotes always
DoG starting from octave -1.

For the shape-space-based MSER and TBMR methods, the
centroid of the extracted regions is considered as the detected
keypoints. The qualitative comparison is conducted on two
images taken against the sunlight in a sunny day, and the
keypoints distributions are illustrated respectively in Fig. 4
and 5. We can observe that MSER detects few points, which
explains the defects in the 3D reconstruction based on MSER
in the example shown in Fig. 1. Harris-Affine, Hessian-Affine,
and DoG octave 0 extract a reasonable number of points, but
only a few of them are located on the object of interest of the
scene; that makes them fail in reconstructing the 3D structure
in Fig. 1. Using the default option “octave −1” (image of
doubled dimensions) for the DoG computation significantly
increases the number of detected points. Yet, the additional
points are mostly distributed where there were already many
points, and not on the object of interest. By contrast, TBMR
has a reasonable number of keypoints and they are distributed
more uniformly over the whole image. That contributes to its
success in obtaining a correct 3D reconstruction; see Fig. 1.

In Fig. 6, we show the qualitative comparison of TBMR
with MSER and DoG in the case of a significant change of
contrast. MSER and DoG detects very few points in the area
with low contrast. By increasing the contrast, MSER and DoG
detects some points. On the contrary, TBMRs are perfectly
insensitive to contrast change, up to quantization effects.
This better performance of TBMR with respect to change of
contrast (together with TBMR robustness to viewpoint change,
see section V-D below) is one of the main reason for its success
in 3D reconstruction; see Fig. 1, Fig. 17, and Fig. 18.

B. Image coverage evaluation

In order to assess the uniformity of those keypoint distri-
butions obtained with different methods, we first measure the
distribution of keypoints along the two image dimensions, as
well as the number of extracted points for a set of images
taken around some scene objects. In Fig. 7, we show the dis-
tribution of keypoints position along the horizontal dimension
for the images taken around the objects of scene presented
respectively in Fig. 5, Fig. 17, and Fig. 18. These images are
taken to make the object of interest presented in the middle
(horizontally) of the scene. The distributions shown in Fig. 7
are smoothed by taking the average inside a horizontal window
(size is set to 21). The total number of keypoints for each
coordinate axes can be obtained by multiplying the distribution
score with the average number of keypoints shown in Fig. 7.
In order to better visualize the comparison between different
methods, only DoG, MSER, and TBMR are shown in this
figure. MSER extracts few points; TBMR extracts more points
than MSER; DoG has many more points. However, TBMR has
the largest part of keypoints that cover the objects of interest
in those scenes, which is also one of the reason for its success
in Fig. 17 and 18.

We also evaluate how well the keypoints cover the image.
First, we propose to dilate the extracted keypoints by a 2D
window centered at each point with a certain size (e.g., 31).

http://www.robots.ox.ac.uk/~vgg/research/affine
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(a) Harris-Affine. (b) Hessian-Affine.

(c) DoG octave 0. (d) DoG.

(e) MSER. (f) TBMR.

Fig. 4. Qualitative comparison of TBMR with other widely used local feature
detectors applied on an image taken against the sunlight (used in Figure 1).
Yellow points in the image are the detected keypoints.

Then we compute the rate of area covered by the dilated
region. Note that for two close keypoints, their dilated regions
may have a large part in common, but the common regions
count only once. As shown in Fig. 8, MSER covers a small
part of the image because of a few extracted points. TBMR
covers the image better than the others having a comparable
or much larger number of detected points, which confirms the
qualitative observation in Section V-A.

C. Repeatability evaluation

To assess the performance of TBMR, we compare it with
some other affine detectors: Harris-Affine and Hessian-Affine,
defined on a scale-space, and MSER, defined on the shape
space.

We perform the same tests as in [6], and evaluate the
repeatability score based on the overlap error ε:

ε(RE1
, RE2

) = 1−
RE1

∩RHT
21E2H21

RE1 ∪RHT
21E2H21

, (2)

where RE represents the elliptic region (i.e., local patch of
each extracted feature) defined by xTEx ≤ 1, and H21 is
the ground truth homography between the test and reference
image. The repeatability score for a pair of images is then
defined as the ratio between the number of region-to-region
correspondences established under a certain overlap error (e.g.,
40% is used in this paper) and the smaller number of regions

(a) Harris-Affine. (b) Hessian-Affine.

(c) DoG octave 0. (d) DoG.

(e) MSER. (f) TBMR.

Fig. 5. Qualitative comparison of TBMR with other widely used local feature
detectors applied on an images taken against the sunlight. Yellow points in
the image are the detected keypoints.

in the compared images. Another evaluated measurement is
the absolute number of correspondences. A high repeatability
score and a large number of correspondences are normally
desired.

Some results applied to the sequences Wall (viewpoint
change), Bark (scale change), Trees (blur), Leuven (light
change) [6] are illustrated in Fig. 9. Compared to the
scale-space-based approaches (i.e., Harris-Affine and Hessian-
Affine), the TBMR achieves a competitive repeatability score
and a significantly higher number of correspondences, except
for the blur sequence Trees. The explanation is that the
topology of the image is damaged by the blur. For the same
reason, the performance is poor on the UBC sequence (not
shown here) dedicated for testing robustness to strong JPEG
compression artifacts. Such defects (blur, JPEG artifacts) are
better handled by the scale-space-based methods. Compared
with MSER, which is also based on the shape space, TBMR
has a comparable repeatability score, but a significantly higher
number of correspondences thanks to the contrast independent
property of TBMR. More extensive tests can be found in the
supplementary material accompanying this article.

Some extra experiments on other datasets (such as the
dataset of DTU [8]) that contains more images, will be
considered as a future work.
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(a) Original grayscale image. (b) Contrast-enhanced image.

(c) MSER.

(d) DoG.

(e) TBMR.

Fig. 6. Qualitative comparison of TBMR with MSER and DoG applied on
images with increasing change of contrast. Yellow points in the image are
the detected keypoints. Left: Keypoints extracted from the zoomed part of the
original image (a); Right: Keypoints extracted from the zoomed part of the
contrast-enhanced image (b).

D. Image registration

Image registration methods use the local features to estab-
lish a correspondence between a number of interest points
(e.g., the centroids of the detected elliptical regions) in images.
These one-to-one correspondences are then used to estimate
the transformation, thereby establishing point-by-point corre-
spondence between the reference image and the target image.
Hence, the accuracy and robustness of the local features is
crucial to the quality of image registration results. There
should also be enough pairs of matched points so that the
estimation of the parameters of the transformation between
images is possible.

For these experiments, we use the work of Moisan et
al. [42]. It is based on the Optimized Random Sampling
Algorithm (ORSA) proposed by Moisan and Stival [43], a
variant of RANSAC algorithm introducing an a contrario
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Fig. 7. Horizontal distribution of the keypoints (left) and number of extracted
keypoints (right), for the multi-view images taken around the objects of scene
presented in respectively Fig. 5, Fig. 17, and Fig. 18 (top to bottom).
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criterion [44] to avoid to set thresholds for inlier/outlier
discrimination. ORSA is used to estimate the homography
registering both images. When the homography is assessed,
a panorama is built by stitching the images in the coordinate
frame of the second image.

1) Quantitative benchmark on dataset of Mikolajczyk [6]:
We first benchmark TBMR with MSER, Harris-Affine,
Hessian-Affine, and DoG on the public dataset of Mikolajczyk
et al., where the ground truth of homography H is available.
For each sequence of images in this dataset, the homography
between the first image and the others are provided. We
have conducted the image registration experiments on each
sequence of images in this dataset. The first image is used as
reference image, and the other images with different level of
transformations (e.g. viewpoint change, scale change, etc.) are
considered as target images.

For each point p in the reference image (the first image in
each sequence) which belongs to the inlier matched points
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Fig. 9. Repeatability score (left) and number of correspondences (right) for
the sequences Wall, Bark, Trees, Leuven (top to down).

used to estimate the homography H ′, we measure the eu-
clidean distance between the points H × p and H ′ × p in
the registered image. This distance measures the registration
errors: the smaller the distance, the more precise the registra-
tion.

Distributions of distances in image registration by homogra-
phy on “Graffiti” (viewpoint changes) image pairs are shown
in Fig. 10 (a - e). The average of distances for each image pair
is shown in Fig. 10 (f). In general, TBMR performs better than
the others.

2) Qualitative results: The experiments are conducted on
the CD-covers of the Stanford Mobile Visual Search (SMVS)
Data Set [40]. As the CD-covers are planar scenes, they
are amenable to homography registration. We experimented
Harris-Affine, Hessian-Affine, MSER, DoG, and the proposed
TBMR to compute point correspondences between images
using the SIFT descriptors of Lowe [4]. The point correspon-
dences are the input of ORSA.

For the images of Fig. 11 and Fig. 13, Harris-Affine,
Hessian-Affine and MSER all fail in estimating the homogra-

Method Canon Palm
MSER 65 48

MSER2 93 81
Harris-Affine 92 91

Hessian-Affine 97 88
DoG 98 97

TBMR 97 91

TABLE II. Benchmark of image registration results using different local
feature detectors on images taken with “Canon” and “Palm” cameras in SMVS
dataset; MSER2 represents the MSER method with the margin value set to 2.

phy due to insufficient number of correspondences. DoG also
fails for images in Fig. 13. In Fig. 11, although DoG achieves a
homography, the registration is inaccurate at the top left corner,
whereas the TBMR results in a meaningful homography in
all cases. A chessboard mix of the two registered images for
Fig. 11 and Fig. 13 are given respectively in Fig. 12 and
in Fig. 14, from which the qualitative results can be better
visualized. Note that for these image registration examples,
there is no ground truth for these images and finding a relevant
metric for such poor quality images is a challenge in itself, so
only visual inspection is left to the reader’s appreciation.

There are 100 different CD-covers in the tested dataset.
We have conducted the image registration experiments on the
images taken respectively with “Canon” and “Palm” cameras,
and the images of reference. The images taken with “Canon”
are less blurred than the ones with “Palm”. In Table II,
we show the number of images having a registration result,
obtained using different local feature detectors. MSER with
standard parameters (margin value ∆ is set to 10) fails for
many images; By lowering considerably the margin value
(∆ = 2), the performance gets better; In general, TBMR
performs better than MSER (with the standard parameters and
a very small margin value), Harris-Affine, and Hessian-Affine.
TBMR is on par with DoG when the blur is not very important.
In addition, among the tested images, we observe that for those
images having registration results, the ones using TBMR are
more precise in location than those compared methods. But
when the blur is important, DoG is better, because topology of
the image is damaged by the blur. However, as shown in [45],
the multi-resolution detection improves the performance of
MSER under blur. We would expect the same improvements
by applying a multi-resolution analysis.

E. 3D reconstruction

Structure from Motion (SfM) is a popular process of es-
timating a three-dimensional structure from a sequence of
two-dimensional images. The SfM algorithms take multi-
view stereo images along with the internal camera calibration
information as input, and yield a sparse 3D point cloud, camera
orientations and poses in a common 3D coordinate system.
The feature points are used in the phase of model estimations,
including homography, fundamental and essential matrices,
and camera poses. These estimations are crucial to the quality
of 3D reconstruction. Therefore, the accuracy and robustness
of the local invariant features detectors is a defining aspect of
the 3D reconstruction result.

To assess the performance of the feature detectors in this
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Fig. 10. Distributions of errors in image registration by homography on “Graffiti” image pairs, which comes with a ground truth. DoG fails registering pairs
(1,5) and (1,6); Harris-Affine fails on (1,6). There is a slight advantage for MSER on pair (1,5), while on all other pairs TBMR performs better.

(a) Reference image (left) and target image (right).

(b) DoG-based registration. (c) TBMR-based registration.

Fig. 11. Homographic registration of a pair of images. The result obtained
using DoG (b) is not as accurate as the one based on TBMR (c); see the
zoomed top left corner. Harris-Affine, Hessian-Affine, and MSER all fail in
registering this pair of images.

(a) DoG-based registration.

(b) TBMR-based registration.

Fig. 12. Chessboard mix of the two registered images using respectively
DoG for (a) and TBMR for (b).

application, we use the software of Moulon et al. [10] which
relies on an a contrario criterion [44] instead of setting
thresholds for model estimation in SfM pipelines. In other
respects, their pipeline is similar to the one of the popular
Bundler software [46]: some initial pair of images are selected
and a two-view 3D reconstruction is performed; the other
images are then sequentially added, each time refining the 3D
scene with bundle adjustment, an iterative optimization method
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Fig. 13. Homographic registration of a pair of images. Left: reference image.
Middle: target image. Right: registration result using TBMR. None other tested
detector yields a correct registration.

Fig. 14. Chessboard mix of the two registered images using TBMR.

based on Levenberg-Marquardt algorithm. It is shown in their
work that the adaptive SfM outperforms the state-of-the-art
methods with significant precision improvements. The pipeline
may stop prematurely if not enough point correspondences are
found when adding extra images.

1) Quantitative benchmark: We first benchmark TBMR
with Harris-Affine, Hessian-Affine, MSER, and DoG on the
public dataset of Strecha et al. [41], where the ground truth
of the camera orientations and poses are available. The SIFT
descriptors of Lowe [4] are again used to establish for each
detector the one-to-one correspondences between the feature
points. The quality of the 3D reconstruction is tested in terms
of the precision of estimated camera orientations and poses.
The baseline errors and angular errors compared to the ground
truth are illustrated in Fig. 15. For each sequence, the absence
of the curve corresponding to some detectors means that it fails
to calibrate all the cameras, or that the baseline and angular
errors are too high compared with others. Harris-Affine fails
or the measurements are too high for all the sequences.
Hessian-Affine fails or the measurements are too high for five
sequences, while MSER works for three sequences. DoG and
TBMR succeed for all the sequences. Compared to Harris-
affine, Hessian-affine, and MSER, TBMR is more robust and
behaves better in terms of baseline errors and angular errors.
Compared to DoG, in most cases (especially for the sequences
of Herz-Jesus-P8 and Castle-P19), TBMR performs better
based on the baseline and angular errors. In Fig. 16, we show
also the recall rate of good tracks, the ratio between the amount
of final maintained tracks, and the number of input tracks

1 2 3 4 5 6 7 8
0

0.005

0.01

0.015

0

0.05

0.1

0.15

0.2

MSER
DoG
TBMR

MSER
DoG
TBMR

cameras

ba
se

lin
e 

er
ro

r (
m

)

1 2 3 4 5 6 7 8
cameras

an
gu

la
r e

rr
or

 (d
eg

re
e)

(a) Herz-Jesus-P8.

0

0.005

0.01

0.015

0.02

ba
se

lin
e 

er
ro

r (
m

)

0

0.05

0.1

0.15

0.2

an
gu

la
r e

rr
or

 (d
eg

re
e)

0 5 10 15 20 25
cameras

0 5 10 15 20 25cameras

DoG
TBMR

DoG
TBMR

(b) Herz-Jesus-P25.
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Fig. 15. Evaluation of camera calibration based on baseline error and angular
error applied on the dataset in [41].
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Fig. 16. Recall rate (top) of the tracks and the absolute number (bottom) of
final maintained tracks used to yield the sparse 3D points.

found between the feature points. The absolute number of final
maintained tracks is presented as well. The highest recall rate
and the largest number of 3D points obtained with TBMR also
reveal its robustness.

2) Qualitative results: We have also tested the SfM method
with different detectors on some other set of images taken in
a sunny day. Since the SfM produces a sparse 3D point cloud,
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not a dense 3D reconstruction, the PMVS software [9] is used
to densify the 3D points. Note that PMVS relies on the interest
points of DoG and on the Harris corners to reconstruct the
3D structures based on the estimated model. Consequently,
this may result in a lack of 3D points in a region (e.g. the
surface near the bottom of the 3D structures on the right
side of Fig. 18 using the TBMR). By integrating the TBMR
in PMVS, we would expect the reconstructed 3D structures
to be denser thanks to its contrast independent property. In
Fig. 17, the DoG detector fails to reconstruct the half of
the scene where shadows are present. In Fig. 18, the DoG
detector behaves similarly, whereas TBMR works well in all
cases: the complete 3D structures are reconstructed. Note that
Harris-Affine, Hessian-Affine, and MSER perform even worse
than DoG, so the corresponding results are not presented in
Fig. 17 and 18. Those examples also confirm the importance
of the invariance to illumination changes, as pointed out by
Aanæs et al. [8]. The resulting 3D reconstruction can be
better appreciated in the video in the supplementary material
accompanying this article.

VI. CONCLUSION

We have introduced a topological approach to local feature
detection motivated by Morse theory. It relies on the critical
points (i.e., minima, maxima, saddle points) of the image
and on the shape space given by the Max-tree and the Min-
tree built from the image. More precisely, we use the critical
regions that are the leaves and nodes with bifurcation in the
Max- and Min-trees. To each critical region, we propose to
associate the largest region from the shape space that contains
it but does not contain any disjoint critical region. We have
shown that the proposed method, called TBMR, is truly con-
trast independent and almost parameter-free. Besides, TBMR
is fast to compute with a linear or quasi-linear complexity.

Experimentally, we showed on standard data [6] that the
developed TBMR achieves a reasonable repeatability and a
significantly higher number of features extracted in images.
We have also conducted some experiments on two applica-
tions relying on local features using public data sets. The
homographic registration results and 3D reconstruction results
demonstrated the accuracy and robustness of TBMR compared
to other state-of-the-art detectors. Its contrast-invariance prop-
erty and its robustness to viewpoint change make TBMR a
method of choice in numerous practical situations.

In the future, we plan to explore the choice of the associated
region from the shape space for each critical point. In the
definition of TBMR, instead of extracting the largest region,
we can imagine selecting the most meaningful region based
on some significance measure (e.g. the average of gradient’s
magnitude). Yet such a measure should be designed to be in-
variant to illumination changes and affine transformations. We
also would like to introduce an option to control the number
of extracted TBMRs through the topological persistence [47].
Another future work is to assess the usefulness of TBMR for
applications such as object recognition and tracking.

Supplementary material is available on http://laurentnajman.
org/index.php?page=tbmr. It contains some additional exper-

imental results, a video, and Linux executables. Source code
will be available when the paper is published.
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Complètement Intégrable ou d’une Fonction Numérique,”
Comptes Rendus Acad. Sciences, vol. 222, pp. 847–849,
1946.

[32] S. Takahashi, T. Ikeda, Y. Shinagawa, T. L. Kunii,



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. YY, JANUARY 2014 14

(a) 4 among 14 used multi-view images.

(b) 3D result using DoG, 13 images are calibrated. (c) 3D result using TBMR, 14 images are calibrated.

Fig. 18. Densified 3D reconstruction. (a) Some input images. (b) and (c) show the left and right side of the 3D structures reconstructed using respectively
DoG and TBMR. The use of DoG misses the right side of the scene; the use of TBMR results in a correct 3D reconstruction; other detectors behave worse
than DoG.

and M. Ueda, “Algorithms for extracting correct critical
points and constructing topological graphs from discrete
geographical elevation data,” Comput. Graph. Forum,
vol. 14, no. 3, pp. 181–192, 1995.

[33] J. J. Koenderink, “The structure of images,” Biological
Cybernetics, vol. 50, no. 5, pp. 363–370, 1984.
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