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Abstract. The minimum barrier (MB) distance is defined as the min-
imal interval of gray-level values in an image along a path between two
points, where the image is considered as a vertex-valued graph. Yet this
definition does not fit with the interpretation of an image as an elevation
map, i.e. a somehow continuous landscape. In this paper, based on the
discrete set-valued continuity setting, we present a new discrete defini-
tion for this distance, which is compatible with this interpretation, while
being free from digital topology issues. Amazingly, we show that the pro-
posed distance is related to the morphological tree of shapes, which in
addition allows for a fast and exact computation of this distance. That
contrasts with the classical definition of the MB distance, where its fast
computation is only an approximation.

Keywords: discrete topology · minimal path · minimum barrier dis-
tance · set-valued maps · tree of shapes.

1 Introduction
Que la montagne de pixels est belle. Jean Serrat.

The minimum barrier (MB) distance [20] is defined as the minimal interval
of gray-level values in an image along a path between two points.
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(a) A simple image...
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0 0 0
(b) as a graph... (c) or as a surface.

Fig. 1. Two different minimal barrier distances: (b) gives 2, while (c) gives 1.

For instance, the image of Fig. 1(a) can be seen as a graph depicted in 1(b),
and the path between the red points which is depicted in blue is minimal: the
sequence of values is 〈1, 0, 0, 0, 2〉 so the interval is [0, 2] and the distance is 2.
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Yet, if we consider that the discrete function describes a surface such as the
one of Fig. 1(c), the blue path depicted in this figure is such that the MB-like
distance between the two red dots is now 1. This paper elaborates on how to
define properly this variant of the MB distance which considers that the elevation
map is a continuous function.

The MB distance is interesting for several reasons. First, it is an “original”
distance which contrasts with classical path-length distances, because it only
relies on the dynamics of the function. Second, it has already successfully been
applied to perform salient object segmentation [25,21]. Last, as we will see, its
continuous version presented here is related to mathematical morphology. In
the example of Fig. 1(c), considering an image as a landscape, we can see that
a path can be defined on a steep hillside. We thus have decided to name this
particular distance after the legendary (or not [18]) Dahu creature: a mountain
goat-like animal with legs of different sides having differing lengths to fit the
craggy mountain’s side.

To be able to define this continuous version of the MB distance, and to show
how to compute it efficiently, we will rely on several tools: set-valued maps, cu-
bical complexes, and the morphological tree of shapes (ToS for short), described
in Section 2. In Section 3, we will start by giving a naive definition of this dis-
tance; we will see that it raises some digital topology issue, and we will propose a
definition (closely related to the discrete set-valued continuity setting [17]) that
overcomes this issue.

Although the definition of the Dahu distance is highly combinatorial, we will
see in Section 4 that this distance can be efficiently computed thanks to the
tree of shapes of an interval-valued map. A remarkable property is that we can
efficiently compute the exact distance, whereas the only efficient computation of
the MB distance remains approximate. Eventually, an illustration relying on the
Dahu distance, precisely document image segmentation, is given in Section 5.

Actually, this paper mainly focus on the new distance definition, on the
discrete topology issues related to this distance, and on a method to compute it
efficiently. These three subjects are the main contributions detailed hereafter 4.

2 Theoretical Background

This section gives a short tour on the theoretical tools needed in Sec. 3 and 4.

2.1 Basic Notions

Let us consider a discrete finite set X. The set of all subsets of X is denoted by
P(X), so E ∈ P(X) means E ⊆ X. X is endowed with a discrete neighborhood

4 As a consequence (and despite how frustrating it might be for the reader), due to
limited space, this paper does not address the following aspects of our work: practical
applications that follow from this new distance definition, a quantitative comparison
with the MB distance, implementation details and execution times; last, some proofs
have also been omitted.



relation; the set of neighbors of x ∈ X is denoted by NX(x) ⊂ X, and satisfies:
x′ ∈ NX(x) iff x′ 6= x and x ∈ NX(x′).

A discrete path π of X is a sequence π = 〈π1, .., πi, .., πk〉, where k is the
length of the sequence, such as πi ∈ X and πi+1 ∈ NX(πi). A sequence 〈x, .., x′〉
is called a path between x and x′; the set of all paths between x and x′ is denoted
by Π(x, x′), and we use π(x, x′) to denote an element of Π(x, x′).

A connected component Γ of E ⊂ X is a subset of E which is path-connected
(∀x 6= x′ ∈ Γ, Π(x, x′) 6= ∅) and maximal (∀x ∈ Γ, ∀x′ ∈ E\Γ, Π(x, x′) = ∅).
The set of the connected components of E is denoted by CC(E), and given x ∈ X,
the connected component of E containing x is denoted by C(E, x) ∈ CC(E)—by
convention, if x 6∈ E then C(E, x) = ∅. Given a particular element x∞ ∈ X, the
cavity-fill-in operator (in 2D, hole-filling operator) is denoted by Sat and defined
by: Sat(E, x∞) = X \ C(X\E, x∞).

Throughout this paper, we will only consider functions having for domain a
set X being discrete, finite, and path-connected.

2.2 Scalar vs. Set-Valued Maps

A gray-level image is typically a bounded scalar function such as X is a subset
D ⊂ Zn with n ≥ 2, and its codomain is Z or R. It is the case of the image
depicted in 1(a). Now, if we look at the surface of Fig. 1(c), its elevation cannot
be defined by a scalar function. Yet it can be a mapping in R2 → IR, where
IY denotes the space of the intervals of Y . Given two intervals a = [ya, y

′
a] and

b = [yb, y
′
b], the interval [min(ya, yb),max(y′a, y

′
b)] is denoted by span{a, b}. Now

let us recall some definitions related to set-valued maps.
A set-valued map u : X → P(Y ) is characterized by its graph, Gra(u) =

{(x, y) ∈ X×Y ; y ∈ u(x)} [1]. One definition of the inverse by a set-valued map
u of a subset M ⊂ Y is u	(M) = {x ∈ X; u(x) ⊂M}, and it is called the core of
M by u. Let us assume that X and Y are metric spaces. The “natural” extension
of the continuity of single-valued functions to set-valued maps is characterized
by the following property: u is continuous iff the core of any open subset of Y is
an open set of X.

In [14], the authors have defined the notion of level sets for set-valued maps;
at λ ∈ Y , the lower and upper level sets of u are respectively:

[uC λ] = {x ∈ X; ∀ y ∈ u(x), y < λ} and [uB λ] = {x ∈ X; ∀ y ∈ u(x), y > λ}.
(1)

Such definitions are fundamental because they are some means to build some
morphological tools on set-valued maps (we will use them later in this paper in
Sec. 2.4 and 4.1).

A scalar function u : X → Y can be simply translated into a set-valued map
•
u : X → IY with ∀x ∈ X,

•
u(x) = {u(x)}. Between set-valued maps of X →

P(Y ) we can define the relation <− by: u1<− u2 ⇔ ∀x ∈ X, u1(x) ⊆ u2(x). By

abuse of notation, we will write u<− u to state that
•
u<− u, meaning that we have

∀x ∈ X, u(x) ∈ u(x). An illustration can be seen later: the map u of Fig. 3(d)
and the map ũ of Fig. 3(c) are such that u<− ũ. In the following, we will only
consider interval-valued maps, that is, maps of X → IY .
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(a) Faces of Hn (from [15]).
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(b) An image u and its tree of shapes.

Fig. 2. A cubical complex for space X (left) and a tree of shapes for u (right).

2.3 Cubical Complexes

From the sets H1
0 = {{a}; a ∈ Z} and H1

1 = {{a, a+ 1}; a ∈ Z}, we can define
H1 = H1

0 ∪H1
1 and the set Hn as the n-ary Cartesian power of H1. If an element

h ⊂ Zn is the Cartesian product of d elements of H1
1 and n−d elements of H1

0 , we
say that h is a d-face of Hn and that d is the dimension of h; it is denoted dim(h).
The set of all faces, Hn, is called the nD space of cubical complexes. Figure 2(a)
depicts a set of faces {h, h′, h′′} ⊂ H2 where h = {0}×{1}, h′ = {1}×{0, 1}, and
h′′ = {0, 1}×{0, 1}, the dimension of these faces being respectively 0, 1, and 2;
they are depicted as subsets of Z2 (left) and as geometrical objects (right).

The pair (Hn,⊆) forms a poset, from which can be derived a T0-Alexandroff
topology on Hn. The closure operator on subsets of Hn is denoted by cl . The
n-faces are the minimal open sets of Hn, and the set of n-faces, denoted by Hn

1 ,
is the n-Cartesian product of H1. The faces of Hn can be arranged onto a grid,
called Khalimsky’s grid, and the inclusion between faces leads to a neighbor-
hood relationship between them, depicted in orange in Figure 2(a) (right). This
neighborhood relationship will be used in Sec. 3.2 in order to define paths in Hn.

2.4 Tree of Shapes

Given a gray-level image u : X → Y and any scalar λ ∈ Y , the lower level
sets are defined as [u < λ] = {x ∈ X; u(x) < λ}, and the upper level sets as
[u ≥ λ] = {x ∈ X; u(x) ≥ λ}. Considering the connected components of these
sets, and using the cavity-fill-in operator, the tree of shapes (ToS) of an image
u is classically [16] defined by:

S(u) = { Sat(Γ ); Γ ∈ CC([u < λ]) ∪ CC([u ≥ λ]) }λ. (2)

An image and its tree of shapes are depicted in Fig. 2. An element of S(u)
is called a shape; it is a connected component of X with no cavity, and its
boundary is a level line of u. Every shape corresponds to a node of the tree; for
instance, in Fig. 2(b) (right), the sub-tree rooted at node “B” corresponds to the
shape B∪D∪E. Keeping the level of every node—such as displayed in Fig. 2(b)
(right)—allows to reconstruct the image from its tree. The tree of shapes of an
image u is a morphological representation of u which makes it easier to deal with
the image contents [10]. Storing [6] and computing [14,11] the tree of shapes can



be done very efficiently. Last, let us mention that the tree of shapes is a versatile
tool to perform image filtering [23], and a very relevant structure to perform
some computer vision tasks [9,5,22].

Let us now recall some results from [17] about defining the tree of shapes on
set-valued maps. Given an interval-valued map u : Hn → IY , using Eq. 1, its
set of level sets is defined by T(u) =

⋃
λ CC([uC λ]) ∪ CC([uB λ]). The set of

connected components of X defined by:

S(u) = {Sat(Γ ); Γ ∈ T(u) } (3)

can be arranged into a tree for some very particular maps u. Every interval-
valued maps u does not have a tree of shapes. Yet, if all the level sets of u are
“well-composed” [3], then the tree exists.

2.5 Minimum Barrier Distance

As defined in [20], the barrier of a path π in a gray-level image u is τu(π) =
maxπi∈π u(πi) − minπi∈π u(πi), and the minimum barrier distance between x
and x′ in u is:

dMB

u (x, x′) = min
π∈Π(x,x′)

τu(π). (4)

It is actually a pseudo-distance since, ∀u and ∀x, x′, x′′ ∈ X, it verifies:
dMB
u (x) ≥ 0 (non-negativity); dMB

u (x, x) = 0 (identity); dMB
u (x, x′) = dMB

u (x′, x)
(symmetry); and dMB

u (x, x′′) ≤ dMB
u (x, x′) + dMB

u (x′, x′′) (subadditivity). Yet it is
not a distance because the positivity property (x′ 6= x ⇒ dMB

u (x, x′) > 0) does
not hold. Indeed we can have dMB

u (x, x′) = 0 for some x 6= x′, e.g., in flat zones.
This pseudo-distance have been recently used in [25] and [21] to perform

salient object segmentation, and it allows to achieve some leading performance
(in terms of efficiency and accuracy) as compared to state-of-the-art methods.

3 The Dahu Pseudo-Distance

To tackle the issue explained in the introduction, we need to map a discrete
image into a continuous representation such as 1(c); yet for computations to
remain tractable we want to stay in a discrete setting.

3.1 A Convenient Continuous Yet Discrete Representation

This section explain how to represent a gray-value image u : D ⊂ Zn → Y by
an interval-valued map ũ : DH ⊂ Hn → IY , and by a new tree of shapes S(ũ).

First, to every x = (x(1), ..., x(n)) ∈ D, let us associate the n-face hx =
{(x(1), x(1) + 1) × ... × (x(n), x(n) + 1)} ∈ Hn

1 . DH ⊂ Hn is the domain defined
by DH = cl({hx; x ∈ D}), which will correspond to D in Hn. From u we define
ũ by:

∀h ∈ DH , ũ(h) = span{u(x); x ∈ D and h ⊂ hx }. (5)
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(a) Scalar image u. (b) 3D version of both u and ũ.
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(c) Set-valued image ũ.
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(d) A minimal path in a u<− ũ.

Fig. 3. From a gray-scale image (a) to a discrete but continuous representation (c).

A simple example of a transform of a gray-level image u, given in Fig. 3(a),
into an interval-valued map ũ is given in Fig. 3(c). As a result of Eq. 5, we can see

that ũ|Hn
1

(the pinkish part) looks like the set-valued version
•
u of the original

image u). The span computation is displayed by the gray and olive triangles,
respectively for the dimensions d = 1 and d = 0. Eventually, only faces with a
dimension less than n can be non-degenerated intervals (they are then displayed
in orange).

A 3D version of the discrete interval-valued representation ũ is depicted in
Fig. 3(b); one can easily see that it is a discrete equivalent of the continuous
surface of Fig. 1(c). We will define the tree of shapes of such ũ maps in Sec. 4.1.

3.2 Definition of the Naive Dahu Pseudo-Distance

Relying on an interval-valued representation ũ : DH ⊂ Hn → IY of a scalar
image u : D ⊂ Zn → Y , we define the Dahu pseudo-distance by:

â naive

u (x, x′) = min
u<− ũ

dMB

u (hx, hx′). (6)

Let us just recall that the notation u<− ũ means that ∀x, u(x) ∈ ũ(x), so the
argument of the minimum operator is a scalar function u : DH ⊂ Hn → Y. It
means that we actually search for a minimal path in the cubical complex DH (not
in D), with the classical definition of the minimum barrier distance dMB (that is,
a distance defined on scalar functions), and considering all the possible scalar
functions u that are “included” in the interval-valued map ũ. The definition of
the Dahu pseudo-distance is thus combinatorial w.r.t. all the scalar images u
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(d) ub <− ũ.

Fig. 4. The saddle case in 2D as a symptom of a discrete topology issue with ũ.

“included” in ũ (see the parts highlighted in blue in Eq. 6). The Dahu pseudo-
distance can be interpreted as the best minimum barrier distance that we can
have considering that the input function is continuous.

The Dahu function is a pseudo-distance since it verifies the non-negativity,
identity, symmetry, and subadditivity properties. In addition, we have the prop-
erty: ∀u, ∀ x, x′, â naive

u (x, x′) ≤ dMB
u (x, x′).

An example is given in Fig. 3(a) for an input function u, in Fig. 3(c) for its
“continuous” representation ũ, and in Fig. 3(d) for a scalar function u<− ũ. A
minimal Dahu path between two original points of u is depicted in blue Fig. 3(d);
it is actually the same path as the one depicted on the continuous 3D surface in
Fig. 1(c).

3.3 Solving a Discrete Topology Issue

In 2D discrete images, we can have saddle points. An example is given in
Fig. 4(a), from which we deduce the continuous representation (given in Fig. 4(b))
in order to compute some minimal paths. We have â naive

u (xa, x
′
a) = 0 which is

obtained with ua (Fig. 4(c)), and â naive

u (xb, x
′
b) = 2 which is obtained with ub

(Fig. 4(d)). An interpretation of this situation “in the continuous world” is the
following. On one hand, having â naive

u (xa, x
′
a) = 0 implies not only that the level

in ua of the saddle point (the 0-face) is 0, but also that there is a 0-level line join-
ing xa and x′a in ũ. On the other hand, since we have u(xb) = 4 and u(xb) = 6,
ub considers that the level 5 exists between xb and x′b, which is in contradiction
with the previous conclusion. We thus end up with some inconsistencies, if we
consider two distinct discrete paths in u, and if we try to interpret these paths
in a continuous way in ũ. The main issue here is that, in 2D, the representation
ũ cannot prevent level lines having different levels to cross, which is the case at
saddle points. From this example, we can draw a negative conclusion:

The representation ũ, as defined in Eq. 5, cannot give us a continuous
interpretation of the set of all paths in u without topological flaws.

A solution to this problem is to add an intermediate step which computes an
“interpolation” of u that has no pathological parts such as the saddle points as in
the 2D case. In the general nD case, these parts are called critical configurations,
and an image without any critical configuration is said “digitally well-composed”
(DWC) [2].
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Fig. 5. Interpolation-based interval-valued maps which are path-consistent.

Let us denote by u
�

an interpolation of the scalar image u : Zn → Y , defined

on the subdivided space
(Z
2

)n
, and taking its values either in Y or in another

scalar space Y ′. A continuous yet discrete representation of u is now ũ
�

:

(u : Zn→ Y )
step 1−−−−→ (u

�
:

(
Z
2

)n
→ Y ′)

step 2−−−−→ (ũ
�

:

(
H
2

)n
→ IY ′). (7)

Under the assumption of u
�

being digitally well-composed, the interval-valued
image ũ

�
allows for representing u in a continuous yet discrete way, and without

any topological inconsistency. We will say that such maps ũ
�

are path-consistent.
Now we can provide a new definition of the Dahu pseudo-distance, given any

image u:

∀x, x′ ∈ Zn, âu(x, x′) = min
u<− ũ

�

dMB

u (hx, hx′). (8)

As compared with the initial (naive) definition given by Eq. 6, we have just
replaced ũ by ũ

�
.

Several subdivision-based interpolations of nD scalar images are known to
produce DWC images. It is the case of the interpolation with the max operator,
used in [13] for the quasi-linear computation of the tree of shapes of a scalar
image, as defined by Eq. 2. In the 2D case—and not in nD with n > 2—the
only self-dual local interpolation verifying strong invariant properties leading to
DWC images is obtained with the median operator [13]. It is depicted in Fig. 5(a)
(after the step 2 u

�
→ ũ

�
being applied); Fig. 5(b) shows that the level lines do

not cross each other. For the general nD case, a self-dual non-local interpolation
has been defined [3], which is illustrated in Fig. 5(c) (again, after applying the
step 2 to get an interval-valued representation).

4 Computing the Dahu Pseudo-Distance

The tree of shapes of an image is also called topographic map. Since the Dahu
distance is related to the notion of topography, the tree of shapes may be a good
candidate tool to compute any Dahu distance âu(x, x′).



4.1 Tree of Shapes of Interval-Valued Maps

Since the scalar interpolations u
�

are digitally well-composed, the tree of shapes
of the interval-valued maps ũ

�
, namely S(ũ

�
), as defined by Eq. 3, exists. One

can easily understand that it is due to the fact that ũ
�

is path-consistent: re-
minding that a level line is the boundary of a shape, since two level lines at
different levels cannot cross each other, it implies that shapes are either disjoint
or nested. Actually, the set S(ũ

�
) verifies the following properties:

– Every element of this set is a connected component of Hn, having no cavity,
and being a regular open set.

– The set S(ũ
�

) is a self-dual decomposition of Hn with respect to u.

– The boundary of every component is an iso-level line of u, that is:

∀S ∈ S(ũ
�

), ∃µ ∈ Y ′ such that ∀h ∈ cl(S) \S, µ ∈ ũ
�

(h).

– A mapping that associates a level, denoted by µ(S), to every element S ∈
S(ũ

�
) makes this set being a representation of ũ

�
. We will say that µ(S) is

the level of the shape S (we will use this mapping in the next section).

4.2 When the Dahu Pseudo-Distance and the Tree of Shapes Meet

Intuitively it is easy to understand that the minimal path between two points of
an image u, w.r.t. the Dahu pseudo-distance, corresponds to a path of nodes on
the tree of shapes S(ũ

�
). If we look back at Fig. 2(b) (left), the path between

the two points (x, x′) indicated by red bullets in u starts from region B, then
goes through A and C, and finally ends in region F. When considering the tree of
shapes, in Fig. 2(b) (right), this path is exactly the same, and it crosses the level
lines, depicted by dashed lines both in the image and on the tree. Such a path
is minimal because every path in Π(x, x′) should at least cross this same set of
level lines to go from x to x′. So the Dahu pseudo-distance corresponds to the
level dynamics of this set of lines. In both the continuous version in Fig. 1(c) and
its discrete representation in Fig. 3(b), we can directly read that the distance
between the red points is 1 (the level lines are the dashed green lines).

Given a node t of a tree, let us denote by par(t) the parent node of t in
the tree, and by lca(t, t′) the lowest common ancestor of the nodes t and t′.
Let us denote by tx the node of S(ũ

�
) corresponding to x ∈ X; this node

corresponds to the smallest shape of S(ũ
�

) containing hx. We can concate-
nate the two sequences of nodes πx = 〈tx, par(tx), par2(tx), ..., lca(tx, tx′)〉 and
πx′ = 〈tx′ , par(tx′), par2(tx′), ..., lca(tx, tx′)〉, to form the new sequence:

π(tx, tx′) = π _
x π−1x′ = 〈tx, par(tx), ..., lca(tx, tx′), ..., par(tx′), tx′〉. (9)

In the case of the example of Fig. 2(b), the l.c.a. of the nodes tB and tF is tA, and
the sequence of nodes is 〈tB, tA, tC, tF〉 (depicted on the right), and it corresponds
on the tree to the minimal path in the image space (depicted on the left).

To every shape S ∈ S(ũ
�

) corresponds a node, say tS , of the tree of shapes.
Let us then write abusively µ(tS) = µ(S), where µ(S) is the level of the shape



(a) Input image u. (b) Level lines of u (every 5 levels).

(c) Distance map âu((0, 0), x). (d) Saliency map.

Fig. 6. Using the Dahu pseudo-distance on an actual application.

as defined in Sec. 4.1. Eventually, the Dahu pseudo-distance can then be re-
expressed by:

âu(x, x′) = max
t∈π(tx,tx′ )

µ(t) − min
t∈π(tx,tx′ )

µ(t), (10)

where the nodes considered and the mapping µ are related to the tree S(ũ
�

).
Practically, to compute âu(x, x′) we just have to update the interval values

(min and max of µ) starting respectively from the nodes of x and of x′, up to
their l.c.a. For instance, on πx we iteratively compute:

µmin(〈tx, ...,pari+1(tx)〉) = min( µmin(〈tx, ...,pari(tx)〉), µ(pari+1(tx)) ),

and likewise for µmax. Eventually, âu(x, x′) is the length of the span of both inter-
vals, that is: âu(x, x′) = max(µmax(πx), µmax(πx′) ) − min(µmin(πx), µmin(πx′) ).

5 Illustration on Document Image Segmentation

Figure 6 gives an illustration on a camera-based document image taken from the
SmartDoc competition organized at ICDAR 2015 [4]. Let us first recall that the
tree of shapes has already been used to such an application [8,22].

From a scalar image u (Fig. 6(a)), we compute its tree of shapes S(ũ
�

)
(Fig. 6(b)), which allows for computing very efficiently a distance map (Fig. 6(c))
using the Dahu distance. One can see that the document is now well contrasted
vis-a-vis its environment. A saliency map corresponding to the Dahu distance is
depicted in Fig. 6(d).



6 Related Works

In addition to the references given throughout the paper, related either to the
context of our work or to its theoretical background, several other works shall
be mentioned. Actually the notion of path on tree nodes also appear in [7] to
assign to each node a label and then perform some scribble-based segmentation,
in [8] to count level lines and build a multi-variate tree of shapes, and in [12] to
compute some curvilinear variation and separate an object from its background.
The notion of barrier used on the tree of shapes is also close to the one of
shape saliency used in [24]. Last, about distance transforms and minimal path
approaches, the reader can refer to the recent survey [19].

7 Conclusion

We have presented a new pseudo-distance, the Dahu distance, which is a vari-
ant of the minimum barrier (MB) distance on a continuous—yet discrete—
representation of images. There are two major advantages of this distance as
compared to the “classical” MB distance:

– It considers that the input discrete images are actually defined in a contin-
uous world, that is, that their elevation map is a surface.

– Computing the Dahu distance for many couples of points (x, x′) is very
efficient, thanks the pre-computation of a tree of shapes; furthermore, the
distances âu(x, x′) obtained using this tree are exact. That contrasts with
the efficient but approximate computation of the MB distance given in [21].

Some other practical interests of this new distance over its classical definition
remain to be proved. Yet we believe that there are numerous perspectives for
applications, which are made possible thanks to the fast tree-based computation.
Another perspective is to adapt this distance to color images; that can be done
using the multi-variate tree of shapes (MToS) defined in [8].
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24. Xu, Y., Géraud, T., Najman, L.: Hierarchical image simplification and segmen-

tation based on Mumford-Shah-salient level line selection. Pattern Recognition
Letters 83, 278–286 (2016)

25. Zhang, J., Sclaroff, S., Lin, Z., Shen, X., Price, B., Mech, R.: Minimum barrier
salient object detection at 80 FPS. In: Proc. of ICCV. pp. 1404–1412 (2015)


	Introducing the Dahu Pseudo-Distance

