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Abstract Due to digitization, usual discrete signals
generally present topological paradoxes, such as the
connectivity paradoxes of Rosenfeld. To get rid of those
paradoxes, and to restore some topological properties to
the objects contained in the image, like manifoldness,
Latecki proposed a new class of images, called well-
composed images, with no topological issues. Further-
more, well-composed images have some other interest-
ing properties: for example, the Euler number is locally
computable, boundaries of objects separate background
from foreground, the tree of shapes is well-defined, and
so on. Last, but not the least, some recent works in
mathematical morphology have shown that very nice
practical results can be obtained thanks to well-com-
posed images. Believing in its prime importance in dig-
ital topology, we then propose this state-of-the-art of
well-composedness, summarizing its different flavours,
the different methods existing to produce well-compo-
sed signals, and the various topics that are related to
well-composedness.
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1 Introduction

In 1979, Rosenfeld [148] studied basic topological pro-
perties of digital images that he called digital topology.
This work was completed in [90] by Kong and himself.
However, Rosenfeld’s framework needs to use a dual
pair of connectivities to get rid of connectivity para-
doxes, leading then to ambiguities: depending on the
chosen dual pair of connectivities, the results are not
always the same, even for elementary algorithms such
as object counting. To overcome this problem, Latecki et
al. [104] introduced in 1995 2D sets free from topologi-
cal paradoxes, called well-composed sets: the connected
components of these sets or of their complement do
not depend on the chosen connectivity. Observing that
the natural extension of this definition is not strong
enough in 3D, Latecki et al [100] proposed in 1997 a
new definition of well-composedness for 3D sets: a set
is said well-composed iff the boundary of its continu-
ous analog is a 2-manifold. In parallel, Wang and Bat-
tacharya [183] proposed an extension of 2D well-compo-
sedness to arbitrary grids. In 1998, Stelldinger proposed
in his book [168] a definition of well-composedness on
polytopal complexes, but this definition seems to be ill-
defined. Fifteen years passed before Najman and Gér-
aud [127] introduced in 2013 the definition of well-com-
posedness in Alexandrov spaces based on discrete sur-
faces; this definition works in n-D and can be applied
to cubical complexes defined on Khalimsky grids [88].
Finally, well-composedness on arbitrary grids has been
extended to n-D in 2016 by N. Boutry [26] in his Ph.D.
thesis.

To avoid ambiguities among these different flavors
of well-composednesses, we need to precise the termi-
nology. In this paper, well-composedness such that the
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2D: EWC ⇔ DWC ⇔ AWC ⇔ CWC ?↔ AGWC
1995 [104] 1997[183]

3D: EWC ⇐ DWC ⇔ AWC ⇔ CWC ?↔ AGWC
1997 [100] 2016[26]

n-D: EWC ⇐ DWC ?↔ AWC ?↔ CWC ?↔ AGWC
2015 [29] 2015 [29] 2013 [127] 2000 [102] 2016[26]

Table 1: The different “flavors” of well-composedness and their relationship on cubical grids.

topological boundary of the continuous analog of a set
is a manifold is named well-composedness in the conti-
nuous sense or CWCness [29]. Well-composedness based
on discrete surfaces in Alexandrov spaces is named well-
composedness in the Alexandrov sense or AWCness [29].
The natural extension in n-D of well-composedness such
that the connected components of a set or of the com-
plementary of this set do not depend on the chosen
connectivity is named well-composedness based on the
equivalence of connectivities or EWCness [29]. Well-
composedness based on critical configurations, i.e., such
that a set is said well-composed iff it does not contain
any critical configuration [29], is named digital well-
composedness or DWCness [29]. Finally, well-compo-
sedness on arbitrary grids is renamed in this paper un-
der the name of AG-well-composedness.

On cubical grids, DWCness has been observed to
be equivalent to CWCness and to AWCness in 2D and
in 3D; however, if these three flavours of well-compo-
sednesses are equivalent to EWCness in 2D, they are
stronger than EWCness in 3D. Furthermore, DWCness,
CWCness and AWCness have not been proved to be
equivalent to each other in n-D, n ≥ 4. Hence it is
useful to see how these different flavors of well-compo-
sedness are related to each other (see Table 1). Observe
that in 2D the X-well-composednesses (X = A, C, D,
E) are equivalent, so a set/image is well-composed iff
it is X-well-composed (X = A, C, D, E). On the other
hand, in 3D, the X-well-composednesses (X = A, C,
D) are equivalent, so a set/image is well-composed iff
it is X-well-composed (X = A, C, D). In n-D, n ≥ 4,
the equivalences are not proved yet, so we need to spec-
ify the type of well-composedness we are dealing with
(AWCness, CWCness, DWCness, or EWCness). Note
that no link between AG-well-composedness and the
other flavours of well-composedness has been published
yet in n-D.

Also, we will note that well-composed sets are coun-
terparts of n-dimensional manifolds in the sense that
they do not have singularities. This means that such
sets can be directly used by algorithms that compute
differential properties from digital data, bypassing the
need for converting them to a continuous representation
in order to compute the same properties; see [97,99]
for instance. Also, continuous representations obtained
from well-composed images are consistent with their
digital counterparts; having two consistent representa-
tions (digital and continuous) allows for algorithms to
choose between the two in order to more effectively per-
form a certain task.

This state-of-art is organized as follow. Section 2
explains the origins of well-composedness. Section 3 re-
calls the definition of the generalization of digital well-
composedness to n-D. Section 4 recalls the definitions
of well-composednesses on complexes. Section 5 recalls
the other flavours in matter of well-composedness. Sec-
tion 6 recalls how well-composedness has been extended
from digital sets to digital gray-level images. Section 7
recalls the different methods to obtain well-composed
sets or images. Section 8 and Section 9 recall the differ-
ent topics and applications that are respectively related
to well-composed sets and well-composed gray-level im-
ages. Finally, Section 10 concludes this paper.

2 Where does well-composedness comes from?

We recall in this section some fundamental notions of
digital topology, some well-known topological paradoxes,
and how these paradoxes led to the birth of a new class
of images called well-composed sets.

2.1 Digital topology in Z2

Here are the basic definitions of digital topology [148,
90] when we work in the digital plane Z2. Let S be
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Fig. 1: Neighborhoods of a point p ∈ Z2.

Fig. 2: Square grids using 4-adjacency on the left and
8-adjacency on the right.

a subset of the digital plane, the points in S will be
termed foreground points, while those of its comple-
ment in the digital plane, Sc ≡ Z2 \ S, will be termed
the background points. Note that the background points
(respectively, the foreground points) will be depicted
using white or black points depending on the context.
The 4-neighbors of a point (x, y) ∈ Z2 are the points
(x + 1, y), (x − 1, y), (x, y + 1) and (x, y − 1). The 8-
neighbors of a point (x, y) ∈ Z2 are its four 4-neighbors
together with its four diagonal neighbors (x+ 1, y+ 1),
(x+ 1, y − 1), (x− 1, y + 1) and (x− 1, y − 1). For n ∈
{4, 8}, the n-neighborhood of a point P = (x, y) ∈ Z2

is the set Nn(P ) consisting of P plus its n-neighbors.
N ∗n(P ) is the set of all n-neighbors of P without P itself:
N ∗n(P ) = Nn(P ) \ {P}. Figure 1 depicts on the left the
4-neighborhood and on the right the 8-neighborhood of
a point p ∈ Z2.

Let P , Q be two points of Z2. We say that a se-
quence of points (P = P1, . . . , Pn = Q) of Z2 is a n-
path, n ∈ {4, 8}, from P to Q iff Pi ∈ N ∗n(Pi−1) for
i ∈ J2, nK, and it is a path if it is a n-path for some
n ∈ {4, 8}. A set X ⊆ Z2 is said n-connected iff for
every pair of points P,Q ∈ X, there exists a n-path
in X from P to Q, and connected if it is connected
for some n ∈ {4, 8}. A n-component of a set S ⊆ Z2

is a maximal n-connected subset of S. Depending on
whether 4- or 8-connectedness is used, we mean 4- or
8-components. A set C ⊂ Z2 is called a simple closed
curve if it is connected and each of its points has ex-
actly two neighbors in C. Depending on whether we use
4- or 8-neighborhoods, we call C either a 4-curve or a
8-curve.

1

2

Fig. 3: Some connectivity paradoxes using 4-adjacency
on the left and 8-adjacency on the right.

Fig. 4: Different square grids based on 6-adjacency.

2.2 Connectivity paradoxes on cubical grids

Let V be the set Z2, and let E ⊂ V × V be the ir-
reflexive symmetric binary relation such that any two
points p, q ∈ V verify (p, q) ∈ E iff p and q are n-
adjacent. We call the points of V the vertices and the
elements of E the edges. We obtain this way a graph
structure G = (V,E) based on the n-adjacency. These
structures representing the digital plane supplied with
the n-adjacency can be observed in Figure 2.

Now, assuming that we have a set of foreground
points S ⊂ Z2 that is given and which depicts a 4- or
a 8-curve in Z2, we could hope that the Jordan Sepa-
ration Theorem which states that a simple closed curve
separates R2 into two components, the interior which is
bounded and the exterior which is not bounded, holds
as in the continuous world. However, when we draw a
4-curve in the digital plane supplied with the 4-adja-
cency as shown on the left of Figure 3, this curve sepa-
rates the digital plane into 3 components, two of them
are bounded and the third is unbounded. In a certain
manner, we have two “interiors”. The Jordan Separa-
tion Theorem does not hold in discrete spaces using
4-adjacency. We can also draw an 8-curve in the digital
plane, as shown on the right of Figure 3, and we ob-
tain that the complement of the 8-curve is an only con-
nected component. The “interior” and the “exterior”
are the same component. Then the Jordan Separation
Theorem fails with 8-adjacency too.

Rosenfeld called these phenomena the connectivity
paradoxes [153,90,104] and explained that this failure
follows from the fact that we use the same adjacency for
the foreground and the background. Effectively, we can
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Fig. 5: A 6-curve does not always separates the digital
plane even if we use 6-adjacency.

Fig. 6: (4, 8)-adjacency on the left and (8, 4)-adjacency
on the right.

remark that when we use 6-adjacency, such as depicted
in Figure 4, a 6-curve does not always satisfy the Jordan
Separation Theorem (see Figure 5): it works using the
first or second grids but not the other.

Note that digital subsets of Z2 are in bijection with
digital binary images: a 2D digital binary image [102]
(p. 102) is a 4-uple denoted by (Z2, X, k, l) where X is
a subset of Z2 such that either X or Xc is finite; X
corresponds to the foreground and is associated with
the k-adjacency, and Xc := Z2 \X corresponds to the
background of the image and is associated with the l-
adjacency. Equivalenty, this image can be interpreted
as the characteristic function of the set X in Z2, that
is, a mapping I from Z2 to {0, 1} such that I(p) = 1 if
p ∈ X and I(p) = 0 if p ∈ Xc. This way, these same
connectivity paradoxes can happen on binary images.

2.3 Using dual pairs of connectivities

Using a dual pair of adjacencies, as recommended in [50]
for the first time, can be helpful. The (8, 4)-adjacency,
meaning that we use 8-adjacency for the foreground and
4-adjacency for the background, or the (4, 8)-ajacency,
meaning that we use 4-adjacency for the foreground
and 8-adjacency for the background, make the Jordan
Separation Theorem (JST) true at the condition that
an 8-curve (respectively, a 4-curve) is made by at least
4 points (respectively, by at least 8 points) to avoid
pathological cases. This is depicted in Figure 6: on the
left, the 4-curve separates the plane into two 8-components,
and on the right, the 8-curve separates the plane into
two 4-components.

Fig. 7: The gray set is made of one or two components
depending on the associated connectivity [118].

Using a dual pair of connectivities is efficient but
has a main drawback: the result of an algorithm often
depends on the chosen pair. In other words, we have
to choose, depending on the application, one particu-
lar pair and we are not always able to know a priori
which one is the best to our needs. Indeed, the set of
connected components of a given set clearly depends on
the chosen pair, and then the consequences can be un-
expected or unstable results in some applications like
object counting [90].

Using digital multi-label images, that is, digital im-
ages with possibly more than two “colors”, we may con-
sider each label as the foreground with one connectiv-
ity, and the union of the other labels as the background
with a dual connectivity. However, this approach can
be problematic: some label can be associated with dif-
ferent connectivities if it is considered as the foreground
or part of the background, leading to ambiguities. For
example, it can be made of one component at a given
time and of two components at another time [118] (see
Figure 7). Furthermore, in this way we consider only
each label relatively to its associated background; the
topological relationship between the different labels is
then lost [142,11,111]. Another approach is to consider
that the multi-label image can be represented with a
connected components tree [114] where the root is the
infinite background, and the rest of the tree represent
the nested relationship between the connected compo-
nents into the image. This way, the new representation
of the image is “isomorphic” to a binary image; this ap-
proach has then been called binary modeling [114,122].
However, this last method assumes that the topological
structure of the connected components of the labels has
no ambiguity, and then can only be applied on “simple
images” [118].

An alternative to these methods is to work directly
with images where we can associate the same connec-
tivity to the foreground and to the background without
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Fig. 8: A set which is weakly well-composed but not
well-composed [104].

(a) (b) (c)

Fig. 9: The (black) sets are well-composed in (a) and
(c), but the (black) set in (b) is neither well-composed
nor weakly well-composed [104].

having any topological paradox, ambiguity, or collision
between sets, they are called well-composed images. The
seminal definition of this class of images, much easier
to manage in practice, is developed below.

2.4 The seminal definition of well-composedness

In 1995, Latecki et al. introduced what they called wea-
kly well-composed sets [104], that is, subsets of Z2 such
that any of their 8-components are also 4-components.
For example, as shown in Figure 8 [104], this set is
weakly well-composed, since it is made of one 8-compo-
nent (in black) which is also a 4-component.

Since this definition is not self-dual, that is, S weakly
well-composed does not imply that its complementary
is well-composed, Latecki strenghtened this definition
in the following manner: a subset S of Z2 is said well-
composed [104] iff S and its complement Sc in Z2 are
both weakly well-composed. As shown in Figure 9, the
(black) set S in Figure 9(a) is made of two 8-components
which are also 4-components. The set in Figure 9(c)
is made of only one 8-component, which is also a 4-
component. On the contrary, the set in Figure 9(b) is
made of only one 8-component, which is made of two 4-
components, and then is neither weakly well-composed
nor well-composed.

Then Latecki reformulated the notion of well-com-
posedness using local 4-connectivity [104]: a set S ⊆ Z2

is said locally 4-connected iff the points of S in the 8-
neighborhood of any point of S are 4-connected, i.e.,

Fig. 10: Forbidden patterns into well-composed
sets [104].

S∩N8(P ) is 4-connected for every point P in S. Notice
that this notion is self-dual: S is locally 4-connected
iff Sc is locally 4-connected. Latecki proposed then the
following theorem [104]: any set S ⊆ Z2 is well-compo-
sed iff it is locally 4-connected. This way, it was clear
that the patterns depicted in Figure 10, that they called
“critical configurations”, and representing two points
which are 8-adjacent but not 4-adjacent, cannot occur
in a well-composed set.

In 2015, Boutry et al. [29] have extended the seminal
definition of well-composedness to n-D, n ≥ 2, in such a
manner that a digital set X ⊂ Zn is said well-composed
based on the equivalence of connectivities (EWC) iff the
set of (3n−1)-connected components X (respectively, of
Xc) is equal to the set of 2n-connected components of
X (respectively, of Xc). This definition will be detailed
in Section 5.

3 Digital well-composedness in n-D

In this section, we recall the basics about digital topol-
ogy extended to n-D, n ≥ 2, and then we recall the
definition and the characterization proposed in [29] of
digital well-composedness.

3.1 Basics of digital topology in Zn

Let n ≥ 2 be a (finite) integer called the dimension.
Now, let B = {e1, . . . , en} be the (orthonormal) canon-
ical basis of Zn. We use the notation xi, where i belongs
to J1, nK, to determine the ith coordinate of the vector
x ∈ Zn. We recall that the L1-norm of a point x ∈ Zn
is denoted by ‖.‖1 and is equal to

∑
i∈J1,nK |xi| where

|.| is the absolute value. Also, the L∞-norm is denoted
by ‖.‖∞ and is equal to maxi∈J1,nK |xi|.

For a given point x ∈ Zn, the 2n-neighborhood in Zn
is notedN2n(x) and is equal to {y ∈ Zn ; ‖x−y‖1 ≤ 1}.
In other words,

N2n(x) = {x} ∪ {x− e1, x+ e1, . . . , x− en, x+ en}.
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Fig. 11: 2D, 3D and 4D blocks.

For a given point x ∈ Zn, the (3n− 1)-neighborhood
in Zn is noted N3n−1(x) and is equal to {y ∈ Zn ; ‖x−
y‖∞ ≤ 1}. In other words, N3n−1(x) equals:x+

∑
i∈J1,nK

λie
i ; λi ∈ {−1, 0, 1},∀i ∈ J1, nK

 .

From now on, let ξ be a value in {2n, 3n − 1}.

The starred ξ-neighborhood of x ∈ Zn is notedN ∗ξ (x)
and is equal to Nξ(x) \ {x}. An element of the starred
ξ-neighborhood of x ∈ Zn is called a ξ-neighbor of x
in Zn. Two points x, y ∈ Zn such that x ∈ N ∗ξ (y) or
equivalently y ∈ N ∗ξ (x) are said to be ξ-adjacent.

Let x, y be two points in Zn and X be a subset of
Zn. A finite sequence (p0, . . . , pk) is a ξ-path if and only
if p0 is ξ-adjacent only to p1, pk is ξ-adjacent only to
pk−1, and if for i ∈ J1, k − 1K, pi is ξ-adjacent only to
pi−1 and to pi+1. Such paths are said to be of length k.

A subset X of Zn such that Card(X) or Card(Zn \
X) is finite is said to be a digital set. A digital set X ⊂
Zn is said ξ-connected iff for any pair of points x, y ∈ X,
there exists a ξ-path joining them into X. A subset C
of X which is ξ-connected and which is maximal in the
inclusion sense, that is, there is no subset of X which
is greater than C and which is ξ-connected, is said to
be a ξ-component of X.

A point x ∈ Zn is said to be ξ-connected to a set
Y ⊆ Zn iff there exists a point y ∈ Y such that x and y
are ξ-neighbors or equal. Two sets X,Y ⊆ Zn are said
to be ξ-connected iff there exists x ∈ X such that x and
Y are ξ-connected.

3.2 Definition of DWCness in n-D

To be able to recall the definition of digital well-compo-
sedness, named this way due to the “digital patterns” on
which it is based, we first have to recall the elementary
notions of block, antagonism, and critical configurations
in Zn.

Fig. 12: In the raster scan order: in this 4D exam-
ple, the white points are 1-antagonists, 2-antagonists,
3-antagonists, and 4-antagonists.

Given a point z ∈ Zn and a family of vectors F =
(f1, . . . , fk) ⊆ B, we define the block associated with
the pair (z,F) in this way:

S(z,F) =

z +
∑

i∈J1,kK

λif
i
∣∣ λi ∈ {0, 1},∀i ∈ J1, kK

 .

A subset S ⊂ Zn is called a block iff there exists a pair
(z,F) ∈ Zn × P(B) such that S = S(z,F). Note that
a block which is associated with a family F ∈ P(B) of
cardinality k ∈ J0, nK is said to be of dimension k, what
will be denoted by dim(S) = k. Figure 11 shows 2D,
3D and 4D blocks. We will denote the set of blocks of
Zn by B(Zn).

Using this notion of blocks, we can define antago-
nism. Two points p, q belonging to a block S ∈ B(Zn)
are said to be antagonists in S iff their distance equals
the maximal distance using the L1-norm between two
points into S. In other words, two points p and q in Zn
are antagonists in S ∈ B(Zn) iff p, q ∈ S such that:

‖p− q‖1 = max{‖x− y‖1 ; x, y ∈ S},

and in this case we write that q = antagS(p) or equiva-
lently p = antagS(q). The antagonist of a point p in
a block S ∈ B(Zn) containing p exists and is unique.
Sometimes we will use the notation S(p, q) where p, q ∈
Zn are (3n−1)-neighbors to indicate the block in B(Zn)
such that p and q are antagonists in this block.

Also, two points which are antagonists in a block
of dimension k ∈ J0, nK are said k-antagonists. In this
case, k of their coordinates differ, and they differ from a
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Fig. 13: The white points on the left draw a 2D primary
critical configuration, and the white points on the right
draw a secondary 2D critical configuration.

Fig. 14: The white points on the left draw a 3D primary
critical configuration, and the white points on the right
draw a secondary 3D critical configuration.

Fig. 15: The white points on the left draw a 4D primary
critical configuration, and the white points on the right
draw a secondary 4D critical configuration.

value 1, the other coordinates being equal. Two points
which are 0-antagonists are equal, two points which are
1-antagonists in a block of Zn are 2n-neighbors in Zn,
and two points which are n-antagonists in a block of Zn
are (3n−1)-neighbors in Zn. See Figure 12 for different
possible pair of antagonists (in white) in a 4D space.

Now, we are able to define critical configurations
of dimension k ∈ J2, nK in a n-D space: let X ⊂ Zn
be a digital set, and let S ∈ B(Zn) be a block of di-
mension k ∈ J2, nK. We say that X contains a primary
critical configuration of dimension k in the block S iff
X ∩ S = {p, p′} with p, p′ ∈ S two points that are an-
tagonists into S. We say that X contains a secondary
critical configuration of dimension k in the block S iff
X ∩ S = S \ {p, p′} with p, p′ ∈ S two points that
are antagonists into S. More generally, a critical con-
figuration of dimension k ∈ J2, nK is either a primary
or a secondary critical configuration of dimension k.

Figures 13, 14 and 15 depict 2D, 3D, and 4D critical
configurations.

There comes the definition of digitally well-compo-
sed sets in Zn: a digital set X ⊂ Zn is said digitally
well-composed or DWC iff it does not contain any crit-
ical configurations, that is, for any block S ∈ B(Zn),
the restriction X ∩ S is neither a primary nor a sec-
ondary critical configuration. Obviously, this definition
is self-dual, since a set X ⊂ Zn contains a primary
(respectively, a secondary) critical configuration in the
block S ∈ B(Zn) iff its complement Xc contains a sec-
ondary (respectively, a primary) critical configuration
in this same block S.

Note that this definition is based on local patterns,
by contrast to EWCness (defined later in Section 5)
which is based on connected components, and then is
global.

A
B

0000

0110

(a) (b)

(c)

(e)

(d)

(f)

0000

0000 0000

0000 0000

1111 1111

11111111

11111111

0011

0010

0010

1011

0111

0011

0001

1010
1011

0010

C

D

Fig. 16: Step-by-step construction of the 2n-path join-
ing the two (red) antagonists into X ∩ S into Zn.

We can reformulate digital well-composedness based
on 2n-paths [29]: a set X ⊂ Zn is digitally well-com-
posed iff, for any block S ∈ B(Zn) and for any pair of
points (p, antagS(p)) such that they belong to X ∩ S
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(resp. S\X), p and antagS(p) are 2n-connected in X∩S
(resp. in S \X).

This reasoning is illustrated in Figure 16: two an-
tagonists, depicted in red in the block S (the tesseract),
are assumed to belong to a digitally well-composed set
X ⊂ Zn, which is shown in Figure 16(a). Since the two
red points (0, 0, 0, 0) and (1, 1, 1, 1) belong to X and are
4-antagonists in S, there exists at least one more point
in the block S belonging to X (in the contrary case, X
contains a critical configuration, which is impossible by
hypothesis). A first possibility is shown in Figure 16(b),
and a second possibility is shown in Figure 16(c), where
the green point depicts this additional point. Let us
treat first the case corresponding to Figure 16(b): since
the points (0, 0, 1, 0) and (1, 1, 1, 1) are 3-antagonists in
the 3D block C depicted in yellow, there must be at
least one more point in this block which belongs to X
(for the same reason as before), and then we obtain
that the blue point (1, 0, 1, 1) belongs to X, which is
shown in Figure 16(d). Applying recursively the reason-
ing until X does not contain any critical configuration,
we obtain that the point (1, 0, 1, 0) also belongs to X,
which is shown in purple in Figure 16(f). Finally, we
obtain a 2n-path joining the two red points (0, 0, 0, 0)
to (1, 1, 1, 1) into X ∩ S. Let us now treat the case cor-
responding to Figure 16(c): if (0, 0, 0, 0) and (0, 0, 1, 1),
which are 2-antagonists, are the only points of X in the
block A, X∩A is a critical configuration, then there ex-
ists an additional point among (0, 0, 1, 0) and (0, 0, 0, 1)
which belongs to X. The same happens in the block B
where at least (0, 0, 1, 1) and (1, 1, 1, 1) belongs to X:
at least (0, 1, 1, 1) or (1, 0, 1, 1) must belong to X. Let
us assume that (0, 0, 0, 1) and (0, 1, 1, 1) belong to X,
we obtain Figure 16(e) where a 2n-path joins the two
red points (0, 0, 0, 0) to (1, 1, 1, 1) in X ∩ S. Obviously,
the reasoning is similar when (0, 0, 0, 0) and (1, 1, 1, 1)
belong to Xc. In this case, we obtain that a 2n-path
joins these two points in Xc ∩ S, thanks to self-duality
of digital well-composedness.

4 Well-composedness on complexes

After having recalled some basics in matter of discrete
topology related to Alexandrov spaces, we recall the def-
inition of well-composedness in the Alexandrov sense or
AWCness introduced in [127] by Najman and Géraud.
Then, we present the most used immersions from Zn
into Khalimsky grids, denoted by Hn, and we will see
the link between DWCness and AWCness into these cu-
bical grids. Finally, we will recall the definition of well-
composed polytopal complexes according to Stelldinger.

α
α

α

β

β

β

θ

θ

θ

Fig. 17: Basic operators in axiomatic digital topology:
α is the combinatorial closure, β is the combinatorial
opening, and θ is the neighborhood.

4.1 WCness on Alexandrov spaces

Let X be any set, and let U be a set of subsets of X
s.t. X, ∅ ∈ U , any union of any family of elements in U
belongs to U , and any finite intersection of any family
of elements in U belongs to U . Then U is a topology [85,
2], and the pair (X,U) is called a topological space. We
abusively say that X is a topological space, assuming
it is supplied with its topology U . The elements of U
are called the open sets of (X,U), and the complement
of an open set is said to be a closed set [2]. A set N
containing an element p of a topological space X s.t.
there exists U ∈ U s.t. p ∈ U ⊆ N is said to be a
neighborhood of p into X. We say that a topological
space (X,U) verifies the T0 axiom of separation [4,85,2]
iff for any two different elements X, at least one of them
admits an open neighborhood not containing the other
element. A topological space which verifies the T0 axiom
of separation is said to be a T0-space, a topological space
X is said discrete [6] iff the intersection of any family
of open sets of X is open in X, and a discrete T0-space
is said to be an Alexandrov space [52].

Let Λ be an arbitrary set. A binary relation [15] R
on Λ is a subset of Λ × Λ, and for any x, y ∈ Λ, we
denote by x R y the fact that (x, y) ∈ R, or equiv-
alently x ∈ R(y). A binary relation R is said reflex-
ive iff, ∀x ∈ Λ, x R x, asymmetric iff, ∀x, y ∈ Λ,
x R y and y R x implies x = y, and transitive iff,
∀x, y, z ∈ Λ, x R y and y R z implies x R z. Also,
we denote by R� the binary relation defined such that,
∀x, y ∈ Λ,

{
x R� y

}
⇔ {x R y and x 6= y}. An order

relation [15] on Λ is a binary relation R s.t. it is reflex-
ive, asymmetric, and transitive, and a set Λ of arbitrary
elements supplied with an order relation R on X is de-
noted (Λ,R) or |Λ| and is called a poset [15]; Λ is called
the domain of |Λ|.

According to Alexandrov (Th. 6.52, p. 28 of [2]), we
can identify any poset |X| = (X,R) with the Alexan-
drov space induced by the order relation R, that is, by
considering that a subset A of X is closed iff for any
x, y ∈ X, x ∈ A ∧ y R x ⇒ y ∈ A. This way, we
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consider equivalently |X| = (X,αX) as a poset and as
an Alexandrov space induced by the order relation αX .
So, let (X,αX) be a poset and p an element of X, we
define the combinatorial closure αX(p) of p in |X| as the
set {q ∈ X ; (q, p) ∈ αX}, the combinatorial opening
βX(p) of p in |X| as the set {q ∈ X ; (p, q) ∈ αX}, and
θX(p) = αX(p)∪βX(p); α(p) is then the smallest closed
set containing {p} and βX(p) is the smallest open set
containing {p} in X. Some examples of the operators
α, β, and θ are depicted in Figure 17. Also, we define,
∀S ⊆ X, αX(S) = ∪p∈SαX(p), βX(S) = ∪p∈SβX(p),
and θX(S) = ∪p∈SθX(p).

Now, let S be a subset of X. The suborder [15] of
|X| relative to S is the poset |S| = (S, αS) s.t. αS =
αX ∩ S × S; we have then, for any x ∈ S, αS(x) ≡
αX(x)∩S, βS(x) ≡ βX(x)∩S, and θS(x) ≡ θX(x)∩S.
For any suborder |S| of |X|, we denote by IntX(S) the
open set {h ∈ X ; βX(h) ⊆ S}. A set S ⊆ X is said
to be a regular open set (resp. a regular closed set) iff
S = IntX(αX(S)) (resp. S = αX(IntX(S))).

We call relative topology [52] induced in S by U the
set of all the sets which can be written U ∩ S where
U ∈ U . A set which is open in the relative topology of
S is said to be a relatively open set [52]. A set S ⊆ X is
then said to be connected iff there is no decomposition
S = T1 ∪ T2 such that T1 ∩ T2 = ∅, both T1, T2 6= ∅,
and relatively open sets with respect to S. The largest
connected set in (X,U) containing p ∈ X is called the
component [2] of the point p in (X,U) and we denote it
CC(X, p). When (X,U) is non-empty, the set of maximal
components of X in the inclusion sense is denoted by
CC(X) and is called the set of connected components
of X. We call path [15] into S ⊆ X a finite sequence
(p0, . . . , pk) such that for all i ∈ J1, kK, pi ∈ θ�X(pi−1),
and we say that a set S ⊆ X is path-connected [15] iff for
any points p, q in S, there exists a path into S joining
them. Since |X| is an Alexandrov space, any subset S
of X is connected iff it is path-connected [52,15].

The rank ρ(x, |X|) of an element x in |X| is 0 if
α�
X(x) = ∅ and is equal to maxy∈α�

X
(x)(ρ(y, |X|)) + 1

otherwise. The rank of a poset |X| is denoted by ρ(|X|)
and is equal to the maximal rank of its elements. An
element x of X such that ρ(x, |X|) = k is called k-
face [15] of X.

Let |X| = (X,αX) be a poset. |X| is said countable
iff its domain X is countable. Also, |X| is said locally
finite iff for any element x ∈ X, the set θX(x) is finite.
A poset which is countable and locally finite is said to
be a CF-order [15]. Now let us recall the definition of
(discrete) n-surfaces [55]. Let |X| = (X,αX) be a CF-
order, the poset |X| is said to be either a (−1)-surface
iff X = ∅, or a 0-surface iff X is made of two different

Fig. 18: On the left, a discrete 1-surface is a simple
closed curve, and on the right a poset which is not a
discrete 1-surface since it contains a pinch circled in
red.

Fig. 19: An example of AWC set on the left, and an
example of a set which is not AWC on the right.

elements x, y ∈ X such that x 6∈ θ�X(y), or an n-surface,
n ≥ 1, iff |X| is connected and for any x ∈ X, |θ�X(x)| is
a (n−1)-surface. Figure 18 shows an example of a poset
which is a 1-surface and an example of poset which is
not a 1-surface (see the “pinch” circled in red).

Then, the boundary [127] of a digital subset S in an
Alexandrov space X of rank n ≥ 1 is the set:

αX(S) ∩ αX(X \ S),

and S is said well-composed in the sense of Alexandrov
(AWC) iff the connected components of its boundary
are discrete (n − 1)-surfaces. Examples of AWC and
not AWC sets are depicted in Figure 19.

4.2 Khalimsky grids

The Khalimsky grid [88] of dimension n is denoted |Hn| ≡
(Hn,⊆) and is defined as the poset such that H1

0 =
{{a} ; a ∈ Z}, H1

1 = {{a, a+ 1} ; a ∈ Z}, H1 = H1
0 ∪

H1
1, and Hn =

{
h1 × · · · × hn ; ∀i ∈ J1, nK, hi ∈ H1}.

For any h ∈ Hn, we have the following equalities: α(h) ≡
αHn(h) = {h′ ∈ Hn ; h′ ⊆ h}, β(h) ≡ βHn(h) = {h′ ∈
Hn ; h ⊆ h′}, and θ(h) ≡ θHn(h) = {h′ ∈ Hn ; h′ ⊆
h or h ⊆ h′}. For any suborder |X| of |Hn|, we obtain
that αX(h) = {h′ ∈ X ; h′ ⊆ h}, βX(h) = {h′ ∈
X ; h ⊆ h′}, and θX(h) = {h′ ∈ X ; h′ ⊆ h or h ⊆ h′}.
Any element h of Hn which is the Cartesian product of
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k elements, with k ∈ J0, nK, of H1
1 and of (n−k) elements

of H1
0 is called a k-face of Hn and is said to be of dimen-

sion k [95], which is denoted by dim(h) = k, and the set
of all the k-faces of Hn is denoted by Hnk . In the Khalim-
sky grids, the dimension is equal to the rank. Further-
more, for any n ≥ 1, |Hn| is an Alexandrov space [15].
Finally, let A,B be two subsets of Hn, we say that A
and B are separated iff (A ∩ (β(B)) ∪ (β(A) ∩ B) = ∅,
or equivalently iff A ∩ θ(B) = ∅.

4.3 Immersions from Zn into Hn

{0} {0,1} {1} {1,2} {2}{-1,0}{-1}

-1/2 0 1/2 1 3/2-1-3/2

ℤ

ℍ

Fig. 20: Bijection between (Z/2) and H1.

Now let us define the bijection between (Z/2)n and
Hn (see Figure 20) on which we will base our immer-
sions into Khalimsky grids. Let H : (Z/2)→ H1 be the
application such that:

∀z ∈ (Z/2),H(z) =
{
{z + 1/2} if z ∈ (Z/2) \ Z,
{z, z + 1} if z ∈ Z, (1)

from which we deduce naturally the applicationHn :(Z
2
)n → Hn such that:

∀z ∈ (Z/2)n ,Hn(z) = ⊗i∈J1,nKH(zi),

where for two arbitrary sets A and B, A ⊗ B := {a ×
b ; a ∈ A, b ∈ B} with × the Cartesian product; note
that elements of Zn are transformed into n-faces of Hn.
In the sequel, we will denote by Zn the inverse of the
bijection Hn.

Note that another “natural” bijection from (Z/2)n

to Hn is possible, transforming elements of Zn into ver-
tices of Hn; however, this transformation is not conve-
nient to define topological boundaries of immersions of
subsets of Zn, and then will not be developed further
in this paper.

The first possible immersion of a given binary im-
age ubin : Zn → {0, 1} (see Figure 21) would be a 1-1
correspondence from Zn to Hn since it is bijective. How-
ever, we can see in Figure 22 that this approach does
not preserve the structure of the initial image by any
opening or closing [131], and then it is not interesting
as a representation of the initial signal. Two other im-
mersions, based on Hn, are well-known in digital topol-
ogy [43]: the miss-transform Int(α(Hn(X))) and the

Fig. 21: A binary 2D digital image ubin, that we can
identify to the digital set X = [ubin = 1] [43] (page 31).

0 {0}

41 2 5 6 7 80
{0} {0,1} {1} {1,2} {2} {2,3} {3} {3,4} {4}

6 {3}

5 {2,3}

4 {2}

3 {1,2}

2 {1}

1 {0,1}

3

Fig. 22: Different immersions [43,26] of X into H2: in
the raster scan order, the direct immersion, the miss-
transform, the hit-transform, and Hn(X).

hit-transform α(Hn(X)), depicted in Figure 22, which
both lead to regular sets. By construction, their con-
nected components are respectively open sets for the
miss-transform, and closed sets for the hit-transform.
The last immersion in Figure 22 has the property to be
bijective and to given open sets, but not regular ones.
Note that we will usually refer to the hit-transforms
and miss-transforms as span-based immersions.

4.4 Relation between DWCness and AWCness

Now, let us recall the well-known relation between DWC-
ness of a set and AWCness of its immersion: for any
digital subset X of Zn, it is well-known [26] that when
n ∈ {2, 3}, the DWCness of X is equivalent to the
AWCness of the span-based immersion, that is, the hit-
or the miss-tranform, of X. Let us recall the reasoning
between these equivalences.

On Figure 23, the middle of the subfigures repre-
sents the restriction of a set to a 2D block in Z2 (the
white points correspond to the foreground), the left of
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Fig. 23: Set of local configurations in 2D.

the subfigures represents the representation in Khalim-
sky grids of this same set up to Hn (the foreground is
depicted by the green squares and the boundary is de-
picted by the yellow edges and the red point), and the
right of the subfigures represents the continuous analog
of the restriction of this set in R2 (the foreground is in
white and the boundary is in red).

In the raster scan order, we observe then the follow-
ing possibilities by comparing the first two columns of
the subfigures:

1. if the restriction of the set is made of four black
points, that is, no point of X belongs to the block,
and then there is no boundary in this part of the
Khalimsky grid, we have then nothing to prove,

2. if the restriction of the set is made of only one point,
we can observe that the red point belonging to the
discrete boundary has only two neighbors into the
boundary: the two yellow edges,

3. if this resctriction is made of two 4-adjacent white
points, the red point belonging to the discrete bound-
ary has one more time two yellow edges as neighbors
into the boundary,

4. if this restriction is made of two white points which
are 8-adjacent but not 4-adjacent, that is, when we
have a critical configuration, then we obtain that the
red point has four neighbors, the four yellow edges.

Then the red points of the boundary of the repre-
sentation of the set in Khalimsky grids admit only two
neighbors iff the set is digitally well-composed. Since
the yellow edges admit always two neighbors, because
a boundary is closed (and then contains its vertices in
the Khalimsky grid) by construction, we obtain finally
that every set which is AWC is DWC and conversely in
2D. Note that Figure 23 also illustrates the equivalence
between DWCness and CWCness in 2D.

Looking at Figure 24, with the same reasoning as
for the 2D case, we can see that there is no critical con-
figurations in the restriction X ∩ S, where S is any 3D
block in Z3, if and only if the boundary ∂I(X) (made
of green squares, yellow edges, and red points) of the
span-based immersion I(X) (such that white points in

Z3 become blue cubes) of X is locally a simple closed
curve. On the contrary, in the cases containing one or
more 2D critical configurations or a 3D critical config-
uration, ∂I(X) is not locally a simple closed curve: it
contains a “pinch” at a yellow edge in the case of a 2D
critical configuration and at a red point in the case of
a 3D critical configuration. Note that the cases that we
can obtain by complementarity have been omitted since
well-composedness is self-dual. This gives the intuition
of why AWCness and DWCness are equivalent in 3D.

Boutry [26] asserted in his Ph.D. thesis that this
equivalence is still true when n ≥ 4 but this still remains
a conjecture.

4.5 Well-composedness on polytopal complexes

As defined in Stelldinger’s book [168], a polytopal com-
plex in Rn is a set of convex polyhedra in Rn, called
polytopes, such that every face of each polytope belongs
to this complex, and such that for any two faces of the
complex, their intersection is a common face of both
these two faces.

The dimension of a polytope is the maximum num-
ber of contained independent vectors after translating
the polytope so that it covers the origin, and a polytope
of dimension m ≥ 0 is called a m-cell. The dimension
of a polytopal complex is the maximal dimension of its
polytopes.

Two polytopes of a complex are said m-adjacent if
their intersection is a m′-polytope with m′ ≥ m. Two
polytopes are adjacent iff they are adjacent for some
m. They are incident iff they are adjacent and of dif-
ferent dimensions (then one polytope is a face of the
other). A complete polytopal complex of dimension m

is a polytopal complex where each polytope of dimen-
sion m′ < m is incident to at least one polytope with
dimension m.

A polytopal complex is called well-composed iff it
is complete, of dimension n, and any two adjacent n-
polytopes are (n − 1)-adjacent. A set in Rn is said
well-composed iff there exists a well-composed poly-
topal complex such that the union of its polytopes is
equal to this set.

According to Stelldinger [168], this definition ex-
tends the ones of Latecki [100,102] and Wang and Bhat-
tacharya [183] for arbitrary cell complexes in any di-
mension.

However, it seems that the polytopal complex such
as depicted in Figure 25 made of three edge-connected
unit squares depicting a “L”, plus their faces, depicts a
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Fig. 24: A set of local configurations in 3D.

p

p'

q

Fig. 25: A polytopal complex which would not be well-
composed according to Stelldinger [168]; see text for
details.

polytopal complex which would be well-composed ac-
cording to Latecki, since the boundary of the complex
is a simple closed curve. It would not be well-composed
according to Stelldinger, since this set contains two
squares p and p′ which share a vertex q, and then are
adjacent, but which do not share any edge. The defi-
nition of Latecki and Stelldinger then seems not to be
equivalent.

A new definition of well-composedness for polytopal
complexes could then follow the one of Boutry [26]
about well-composedness of arbitrary grids in n-D: a
polytopal complex could be said to be well-composed
iff for any two different n-polytopes p and q incident to
a common m-polytope a, 0 ≤ m ≤ n − 1, there exists
a sequence Π = (p = f0

n, . . . , q = fkn), k ≥ 1, of n-faces
such that for any i ∈ J0, k − 1K, f in and f i+1

n share ex-

actly a (n− 1)-face and such that each f in, i ∈ J0, kK, is
incident to a.

However, note that even this way, this definition is
not equivalent to the one of Latecki, since the immer-
sion into the Khalimsky grid of a secondary critical con-
figuration in 3D would be well-composed, this definition
being not self-dual.

5 Other flavours of WCnesses

We have seen definitions of well-composedness in the
digital sense in Zn and in the Alexandrov sense, let us
now present the other definitions of well-composednesses
that exist nowadays: the well-composedness based on
the equivalence of connectivities or EWCness and its
relationship with DWCness, the continuous well-com-
posedness or CWCness and its relationship with DWC-
ness in 3D and with AWCness in n-D, and well-compo-
sedness on arbitrary grids or AG-well-composedness in
n-D.

5.1 Definition of EWCness in n-D

Let us recall the n-D extension of well-composedness
based on the equivalence of connectivities proposed in [29]:
let X be a digital set in Zn, then X is said to be EWC
or well-composed based on the equivalence of its connec-
tivities iff the two following conditions hold:
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Fig. 26: EWCness does not imply DWCness in n-D (n ≥
3).

– any of its 2n-component is also one of its (3n − 1)-
components and vice versa,

– any 2n-component of Xc is also a (3n − 1)-compo-
nent of Xc and vice versa.

We can underline that this definition is clearly self-
dual, and since the connectivity does not matter for
this class of sets, we will sometimes say (when the con-
text is clear) that their connectivities and the ones of
their complement in Zn are “equivalent”. Also, this def-
inition is the natural extension of the one of Latecki
in [104] for 2D sets.

5.2 DWC implies EWC in n-D

Let us recall that EWCness is a global property, since it
is based on connected components, and that DWCness
is based on local properties, that is, there is no crit-
ical configurations. That shows that the link between
DWCness and EWCness is not so obvious. However, as
presented for the first time in n-D in [29] and proved
in [26], for any digital subset X of Zn, if X is DWC,
then X is EWC.

Recall [29,26] that the converse is not true in 3D and
beyond (see Figure 26): a 3D subset of Zn can be EWC
without being DWC, since the (3n−1)-components and
the 2n-components of this set are equal, but it contains
a 2D critical configuration and then is not DWC.

5.3 Definition of CWCness in n-D

The first definition of 3D well-composedness, based on
manifoldness, has been first introduced in 1997 [100].
Then, it has been extended to n-D in 2000 [102], and re-
named as “continuous well-composedness” in 2015 [29]
to distinguish it from EWCness and DWCness. Be-
fore we recall this n-D extension, let us introduce some
mathematical background. According to Latecki et al. [100,

Fig. 27: The continuous analogs of 2D critical configu-
rations in R2.

102], the continuous analog CA(p) of a point p ∈ Zn is
the closed unit cube centered at this point with faces
parallel to the coordinate planes: CA(p) = {q ∈ Rn ; ‖p−
q‖∞ ≤ 1/2}, where ‖x‖∞ ≡ max{xi ; i ∈ J1, nK}
for any x ∈ Rn, and the continuous analog CA(X) of
a digital set X ⊂ Zn is the union of the continuous
analogs of the points belonging to the set X: CA(X) =⋃
p∈X CA(p). This way, a digital subset X ⊂ Zn is

said well-composed in the continuous sense [100,102,
29], or shortly CWC, iff the boundary of the continu-
ous analog bdCA(X) of this set is a (n − 1)-manifold,
that is, if for any point p ∈ X, the (open) neighbor-
hood of p in bdCA(X) is homeomorphic to R(n−1).
Note that this definition is self-dual: for any X ⊂ Zn,
bdCA(X) = bdCA(Xc) and then X is well-composed
iff Xc is well-composed.

In [100], Latecki also introduced a characterization
of 3D continuous well-composedness using m-adjacen-
cies: two points are said 6-adjacent (6-neighbors) iff
their continuous analog share a face, 18-adjacent (18-
neighbors) iff their continuous analogs share a face or
an edge, and 26-adjacent (26-neighbors) iff their con-
tinuous analogs share a face, an edge, or a corner (of a
unit cube centered at a point of Z3). Then, with X a
digital subset of Z3, X1 = X and X0 = Xc, X is CWC
iff the two following conditions hold for κ ∈ {0, 1}:

– for every two 18-adjacent points x and y inXκ, there
exists a 6-path joining x to y into N18(x)∩N18(y)∩
Xκ,

– for every two 26-adjacent points x and y inXκ, there
exists a 6-path joining x to y into N26(x)∩N26(y)∩
Xκ.

This way, we clearly understand that local 18/26-connec-
tivities in CWC sets imply 6-connectivity, and then that
CWCness implies EWCness.

5.4 DWCness is equivalent to CWCness in 2D/3D

As proved by Latecki et al. [104,100], a digital subset

X ⊂ Z2 contains a critical configuration
(

1 0
0 1

)
or its

dual
(

0 1
1 0

)
iff its continuous analog contains the pat-
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Fig. 28: The continuous analogs of primary 2D/3D crit-
ical configurations in R3.

Fig. 29: The six possible configurations [100] at a corner
point in a 3D well-composed set.

tern shown in Figure 27, that is, two squares sharing a
vertex.

In the same manner, in 3D, a digital subset X ⊂ Z3

contains a critical configuration
(

1 0
0 1

)
or
(

0 0 0 1
1 0 0 0

)
iff its continuous analog contains one of the patterns
shown in Figure 28 (modulo 90 degrees rotations and
translations), that is, two cubes sharing a edge or two
cubes sharing a vertex. In other words, DWCness and
CWCness are equivalent in 2D/3D.

The complete proof [100] (pp. 166–167) relies on the
fact that any set containing one of these critical con-
figurations contains a “pinch” such that at these criti-
cal locations, no point of the boundary owns an open
neighborhood homeomorphic to an open disk, and then
to R2. Conversely, if the set S does not contain any
critical configuration of any type, then at each point
belonging to the interior of a face, any neighborhood
which is small enough will be homeomorphic to an open
disk, at any point belonging to the interior of the union
of two adjacent faces of the boundary sharing an edge;
the neighborhood of this point is homeomorphic to an
open disk (whether the two faces are parallel or per-
pendicular). At the corners of the faces included in the
boundary, only 6 configurations are possible (see Fig-
ure 29). In the six cases the corner admits a neighbor-

p

Fig. 30: Definition of 2D well-composedness on 2D ar-
bitrary grids.

hood homeomorphic to an open disk, which concludes
the proof of Latecki. However, we can denote that this
study has been processed case-by-case and then seems
difficult to be extended to higher dimensions.

5.5 AWCness vs. CWCness in n-D

In digital topology, its is generally admitted that in 2D
and 3D a digital set X ⊆ Zn is continuous well-com-
posed, that is, the boundary of its continuous analog
bdCA(X) is a (n − 1)-manifold, iff its span-based im-
mersion in the Khalimsky grids is well-composed in the
sense of Alexandrov, that is, its boundary is a disjoint
union of discrete (n − 1)-surfaces. However, the study
of n-D well-composedness is yet in its infancy, as shown
by the conjecture of Boutry [26] in his thesis, asserting
that CWCness and AWCness are equivalent in n-D.

5.6 Well-composedness on arbitrary grids

According to Wang and Battacharya [183], we can ex-
tend the definition of well-composedness coming from
the rectangular grids to arbitrary grids in 2D in the fol-
lowing manner. We assume that we have a (locally fi-
nite) arbitrary grid system of (closed) pixels paving the
topological space R2 such that the boundary of each
pixel is a simple closed curve (or Jordan curve) as de-
picted in Figure 30.

A set X of pixel is then said well-composed iff for
any point p belonging to the boundary of X, the set of
pixels of X containing p is edge-connected [183], which
means that for any two pixels in this set, there exists
a sequence of pixels of this set going from the first to
the second such that two consecutive elements share
an edge. Figure 30 depicts a well-composed set in dark
gray: at each boundary point p of X, the set made of
the pixels containing p in X is edge-connected (the edge
shared by the two pixels is in blue). Indeed, in the case
of rectangular pixels, we obtain that a set X is well-
composed in the sense of Latecki [104] iff 8-connectivity
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(vertex-connectedness) implies 4-connectivity (edge-con-
nectedness). A particular grid system is the hexagonal
grid where every set of pixels is well-composed [183],
which is obviously not the case of the rectangular grid.

Serra and Kiran [159] worked on this last topic: Rn
is partitioned into a set of regular open sets, called a
tessellation, and the complement in Rn of its union,
called the net. In this framework [159], they recall an
observation of Fedorov [58] which states that the only
possible tessellations inherited from a Voronöı grid sys-
tem such that its elements are identical (up to a trans-
lation) are in 2D the square and the hexagonal grid sys-
tems, and in 3D the cube, the hexagonal prism, the two
elongated and rhombic dodecahedra, and the truncated
octahedron; this last one is the Voronöı polyhedron of
a body-centered cubic grid, also called BCC grid [172],
and is well-known for its guarantees in matter of topol-
ogy preservation.

Among them, only the hexagonal grid system and
the truncated octahedron verify that any two elements
of the tessellation, such that their adherence intersect,
share a face of dimension (n − 1), i.e. an edge in 2D
and a (2D) face in 3D. In other words, any (finite) set
of elements of these tessellations is strongly adjacent:
there exists a small open disk/ball in 2D/3D such that
any intersection of adherences of two adjacent elements
of X contains this disk/ball.

Then the link between the works of Wang and Bat-
tacharya [183] and Serra and Kiran [159] is that strong
adjacency is similar to well-composedness on arbitrary
grids. Effectively, if we consider a tessellation and an ar-
bitrary grid system which are isomorphic in the sense
that they have the same topological structure, every
subset of this tessellation which is strongly adjacent has
its isomorph in the arbitrary grid system which is well-
composed, and conversely. However, remark that strong
adjacency is based on open sets and well-composedness
on arbitrary grids is based on closed sets.

In 2016, Boutry [26] extended this definition of well-
composedness to (locally finite) arbitrary grids, which
justifies our proposition to rename it AG-well-compo-
sedness. Let us assume that we have some partition
{Vi}i∈I of Rn such that the boundary of each Vi for
i ∈ I is a connected (n− 1)-manifold (see [75,110,93,3]
for complements about the Jordan-Brouwer theorem in
n-D). The elements of {Vi}i∈I are then called the voxels.
Then, any set X of voxels is said AG-well-composed
(AGWC) iff for any face f of dimension k ∈ J0, n − 1K
belonging to the boundary of X, the set Y of voxels of
X containing f (respectively, the set Y ′ of voxels not in
X and containing f) are face-connected, which means

Fig. 31: A set X where the set of voxels in X (in red)
containing the boundary point p (at the center of the
cylinder) is face-connected and such that the set of
voxels in the complement of X (in blue) is not face-
connected [26].

Fig. 32: A truncated octahedra (p. 13 [116]).

that for any two voxels in this set Y (respectively, Y ′),
there exists a sequence of voxels of this same set going
from the first to the second such that two consecutive
elements share a face of dimension (n− 1).

Note that self-duality in the n-dimensional case is
ensured because of the double condition, the first rela-
tive to X and the second relative to the complement of
X (see Figure 31). Its equivalence (or not) with CWC-
ness has not yet been studied.

This way, we obtain that, in the grid system made of
truncated octahedra (see Figure 32) covering R3, every
set of voxels is well-composed. Effectively, as stated by
L. Mazo in his thesis [116], two voxels in such a grid
system share either a face of dimension 2 or nothing.
This means that two voxels which belong to a set X and
which are connected in this set X are face-connected in
this same set X, and that the converse is true for Xc.
This way, every set in such a space is well-composed.
This adjacency is known as 2(2n− 1) adjacency in n-D
(6-adjacency in 2D, 14-adjacency in 3D, and so on), but
exhibits a strong anisotropy (see Figure 2.7 into [116])
on the graph of the covered domain.

6 Extending well-composedness to images

In this section, we recall first the seminal definition
of well-composedness for gray-level 2D images. Then,
we show how CWCness, DWCness, and EWCness have
been extended to n-D gray-level images. Then, we re-
call the definition of EWCness, CWCness, DWCness
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and AWCness for interval-valued maps. We conclude
this section by recalling the definition of well-composed
multi-label images.

6.1 Seminal definition of 2D gray-level well-composed
images

A 2D gray-level image is a pair I = (Z2, u) where
u : Z2 → J0, 255K is a mapping from Z2 to J0, 255K
(or more generally from Z2 to any finite set supplied
with a total order relation). This image I is generally
identified with its mapping u since these two concepts
are equivalent. Then, we can apply a very straightfor-
ward operation called binarization of a gray-level image
relatively to a given threshold. Given a gray-level image
u : Z2 → J0, 255K and a threshold λ ∈ Z, the resulting
binarization of u relatively to λ is equal to the binary
image ubin : Z2 → {0, 1} defined for any p ∈ Z2 such
that ubin(p) = 1 if u(p) ≥ λ and ubin(p) = 0 if u(p) < λ.

A 2D gray-level image is said to be well-compo-
sed [102] iff all its binarizations are well-composed. Fur-
thermore, Latecki [102] introduced a characterization of
2D well-composed gray-level images: a gray-level image
I = (Z2, u) is well-composed iff for any restriction of

u to a 2 × 2 square, denoted by
(
a b

c d

)
, the diagonal

intervals have a non-empty intersection:

[min(a, d),max(a, d)] ∩ [min(b, c),max(b, c)] 6= ∅.

Note that this principle of binarization follows the
idea of cross-section topology [120,21,17,18], which has
been showed to be much convenient to extend set oper-
ators to gray-level operators in mathematical morphol-
ogy [25,156,79,80,144,16].

6.2 Well-composed gray-level n-D images

Based on the same principle as binarizations, threshold
sets [120,21,17,18] have allowed to extend well-compo-
sedness from sets to gray-level images. Let D ⊆ Zn be
either Zn (theoretical case) or a bounded hyperrectangu-
lar subdomain of Zn [26] (practical case). Let u : D → R
be a gray-level image, and let λ ∈ R be a given thresh-
old. Then, a large upper threshold set is defined as:

[u ≥ λ] = {x ∈ D ; u(x) ≥ λ},

a strict upper threshold set is defined as:

[u > λ] = {x ∈ D ; u(x) > λ},

a large lower threshold set is defined as:

[u ≤ λ] = {x ∈ D ; u(x) ≤ λ},

and a strict lower threshold set is defined as:

[u < λ] = {x ∈ D ; u(x) < λ}.

Then, a gray-level image u : D ⊆ Zn → R is said X-
WC, where X belongs to {E,D,C}, iff for every thresh-
old λ ∈ R, all the threshold sets of u are X-WC. Obvi-
ously, the relations between these 3 different flavours of
WCnesses for images hold in the same way as for sets,
thanks to cross-section topology.

As noticed in [26], in the case of a gray-level image
defined on a bounded hyperrectangle, we are able to
detect the digital well-composedness of this image us-
ing only the upper (respectively, lower) threshold sets:
a gray-level image u : D → R is digitally well-composed
iff for any λ ∈ R the threshold set [u ≥ λ] is digitally
well-composed or equivalently iff for any λ ∈ R the
threshold set [u ≤ λ] is digitally well-composed. Fur-
thermore, the characterization [29] of gray-level digi-
tally well-composed images holds. A gray-level image
u : D ⊂ Zn → R is digitally well-composed iff for any
block S ∈ B(D) such that dim(S) ≥ 2 and for any pair
of points (p, p′) ∈ S × S such that p′ = antagS(p), the
following relation is true:

intvl(u(p), u(p′)) ∩ Span{u(p′′)
∣∣ p′′ ∈ S\{p, p′} } 6= ∅.

We recall that for any a, b ∈ R,

intvl(a, b) := [min(a, b),max(a, b)],

and that for any set A of real numbers,

Span(A) := [min(A),max(B)].

Also, note that an algorithm able to verify the digital
well-composedness of a gray-level image has been pro-
posed in [26].

6.3 WCnesses for interval-valued maps

Before recalling what is well-composedness for interval-
valued maps, let us reintroduce some mathematical back-
ground related to set-valued theory [8]. A set-valued
map U : D ⊆ X  Y is a function from a topologi-
cal space X to a topological space Y such that for any
p ∈ X, p ∈ D ⇔ U(p) 6= ∅ (D is called the domain of
U) and such that ∀p ∈ D, U(p) ⊆ Y . Then, an interval-
valued map U : D ⊆ X  Y is a set-valued map such
that for any p ∈ D, U(p) is an interval of the topologi-
cal space Y ⊆ R, that is, U(p) can be written [a, b]∩ Y
for some a, b ∈ R such that a ≤ b.
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Fig. 33: A family of (large upper) threshold sets {[U D
λ]}λ of an interval-valued image U : Z2  Z; we can
remark the straightforward inclusion relationship [U D
λ] ⊆ [U D λ− ε] for any λ ∈ R and ε > 0.

Now that we have defined interval-valued maps, we
can recall the definition of their threshold sets (see Fig-
ures 33 and 34). For a given interval-valued map U :
D ⊆ X  R, where X is generally Zn or Hn, and for
any λ ∈ R, the following sets:

[U D λ] = { z ∈ D
∣∣ ∃ v ∈ U(z), v ≥ λ },

[U B λ] = { z ∈ D
∣∣ ∀ v ∈ U(z), v > λ },

.[U C λ] = { z ∈ D
∣∣ ∀ v ∈ U(z), v < λ },

[U E λ] = { z ∈ D
∣∣ ∃ v ∈ U(z), v ≤ λ }

are respectively called the large upper, the strict upper,
the strict lower, and the large lower threshold sets [127,
63].

Let U : D → IR, where IR is the set of intervals
of R, that we will shortly write U : D  R, then, U

[1,3] [2,4] [1,3]

[4,5] [3,6] [4,5]

[1,3] [2,4] [1,3]

U

[U 4]

[U 3]

[U 0]

[U 2]

[U 1]

0 1

1 2 3 4 5 6

Fig. 34: A family of (strict upper) threshold sets {[U B
λ]}λ of an interval-valued image U : Z2  Z; we can
remark the straightforward inclusion relationship [U B
λ] ⊆ [U B λ− ε] for any λ ∈ R and ε > 0.

is said X-WC [127,29], where X ∈ {A,C,D,E}, as an
interval-valued map iff all its threshold sets are X-WC.

Also, for an n-D interval-valued map U : D ⊆ Zn  
R, the upper bound dUe and the lower bound bUc are
defined such that for any p ∈ D, dUe(p) = max(U(p))
and bUc(p) = min(U(p)). Then, it is known [29] that
an interval-valued map U : D ⊆ Zn  R is digitally
well-composed iff dUe : D → R and bUc : D → R are
both digitally well-composed.

Note that we have the same relations between AWC-
ness, CWCness, DWCness and EWCness for sets and
for gray-level images, except that when we speak about
the AWCness of a set, we consider its hit- or miss-
transform (immersion) in the Khalimsky Grids Hn and
when we speak about AWCness of a gray-level image,
we consider its span-based immersion. Let us recall that
the span-based immersion of a gray-level image u :
D ⊆ Zn → Z is the interval-valued map U : D′ ≡
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Fig. 35: The span-based immersion of a 2D image.

α(Hn(D))  Z defined on the Khalimsky grid such
that ∀z ∈ D′:

U(h) =
{
{u(Zn(h))} if h ∈ Hnn,
Span {u(Zn(q)) ; q ∈ β(h) ∩Hnn} otherwise.

An example of span-based immersion is given in Fig-
ure 35.

6.4 Well-composed multi-label n-D images

Now, considering a set {c1, . . . , ck} of arbitrary ele-
ments cm called labels or colors, the most natural defi-
nition of well-composedness for multi-label images, pre-
sented first in its digital version in [163], is the follow-
ing: a multi-label image u : D ⊆ Zn → {c1, . . . , ck}
is said X-WC, X ∈ {A,C,D,E}, iff all the level-sets
[u = cm] ≡ {x ∈ D ; u(x) = cm}, m ∈ J1, kK, are
X-WC.

7 Producing DWC sets/images

In this section, we first introduce the different methods
that exist nowadays to produce well-composed images,
then we develop topological reparations on Zn and on
cubical complexes, and then we recall the main DWC
interpolations for sets and images; we finish by recalling
existing AWC representations of gray-level images in
Khalimsky grids.

7.1 Preamble

Two main approaches exist to make a set or an im-
age well-composed on a cubical grid: topological repara-
tions and well-composed interpolations. The first one is
called topological reparation, because we consider that
we give back to the objects in the image the topologi-
cal properties they had before the digitization process;
mainly, digitized objects should have a boundary which

is a (n− 1)-manifold. The second approach correspond
to interpolations, since their restriction to the initial
domain is then assumed to be exactly the initial im-
age. However, without constraints, there is no guaran-
tee that the interpolation has the same topology as the
initial image. For example, the 1D image • • represents
two connected pixels, valued at 1. One non-constrained
interpolation can then be • ◦ •, where ◦ denotes a
pixel valued at 0. The two black points are then dis-
connected. For this reason, only in-between interpola-
tions are interesting, that is, interpolations such that
the secondary pixels have values that are between the
values of the primary pixels. Such interpolations have
the property of not introducing new extrema in the im-
age. This way, in-between interpolations “preserve” the
topology of the initial image.

7.2 Topological repairing on cubical grids

Digital images resulting from a convenient digitization
of a manifold should be CWC, assuming that the digi-
tization procedure preserves the topology of the initial
object. Effectively, real objects, or most of them, have
a boundary which is a topological manifold.

However, it is well-known that it is not always the
case in image processing: the choice of digitization is
not always adapted to the situation, the resolution of
the digitization can be too large, and so on. Moreover, it
has been shown [171] that even digitization by intersec-
tion, which results in well-composed images in 2D for a
sufficient resolution [76], does not provide bordered 3-
manifolds by reconstruction using cubical voxels, what-
ever the chosen resolution.

It seems then useful to know how to make digi-
tal images CWC in n-D. Latecki [101,102] called this
procedure “topological repairing”, and introduced the
first method in 2D able to do it. As usual, the ones
correspond to the object/foreground and the zeros to
the background. His method proceeds then by chang-
ing the zeros where critical configurations occur into
the binary initial image into ones. Also, depending on
the neighborhood surrounding the critical configuration
and the possible propagation of the critical configura-
tion, a different method is chosen to eliminate the criti-
cal configurations in such a neighborhood. This method
is translation-invariant and 90 degrees rotation invari-
ant, and guarantees that the number of modifications
is minimal.

Then, Siqueira et al. [162,163] proposed a 3D ran-
domized method which produces CWC any 3D binary
image. Since no assumption is made on the topology
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Fig. 36: Hierarchical representation of an image: since
component boundaries are simple closed curves on well-
composed images, two boundaries are either disjoint or
in an inclusion relationship; thus, the delimited regions
naturally form a tree (actually it is a sub-part of the
tree of shapes [63]).

of the initial object, no topological equivalence is en-
sured, but a theoretical bound ensures that the max-
imal number of new critical configurations which will
appear during the elimination of the m initial config-
urations is lower than or equal to m/2. Note that this
method also works on multi-label images [163], assumed
to be the result of a multi-label segmentation; an order
of priorities between the different labels is then neces-
sary to decide how to repair the initial image into a
well-composed multi-label image.

No method able to make sets CWC in 4D or to
make gray-level images CWC in 3D exist nowadays to
the best of our knowledge. However, Boutry et al. [28]
proposed in 2015 a method able to “repair” in n-D any
set or gray-level image in such a manner that the result-
ing signal is DWC, that is, does not contain any critical
configuration; this method is based on an “increasing”
procedure which avoids oscillations and ensures conver-
gence in linear time w.r.t. the size of the domain of the
image. No topological preservation is ensured since no
assumption is made on the initial signal. However, it
has been observed that the zero-crossings of the DWC
reparation of the Laplacian are simple closed curves in
2D, and then provide an hierarchical representation of
the objects in the image [28] (see Figure 36).

Fig. 37: The equivalent in 2D of the repairing method
of Gonzalez-Diaz et al. [67].

Fig. 38: Repairing of a complex containing a critical
edge [67].

Fig. 39: Repairing of a complex containing a critical
vertex [67].

7.3 Topological repairing of cubical complexes

Gonzalez-Diaz et al. [67] introduced in 2011 a method
able to topologically repair a cubical complex associ-
ated with a 3D binary digital image into a polyhe-
dral complex which is homotopy equivalent and well-
composed in the sense that the boundary of its under-
lying polyhedron is a 2-manifold; cohomological infor-
mation [71,72,65,66,70] is then computable directly on
this manifold. The proposed (local) method is homo-
topy preserving, which implies that the resulting coho-
mological informations can be used to recognition or
characterization tasks.

Their method would be this way in 2D: on a 2D
cubical complex, as shown in Figure 37, the area of the
surface of each “critical point” would be “increased”
such that there is no more pinch into the boundary
of the complex (in dark gray), which would lead to
a 2D well-composed polyhedral complex (in dark gray
too) whose boundary (in red) is made of simple closed
curves.

In 3D, the critical faces, that is, the faces in the com-
binatorial structure corresponding to the pinch in the
underlying polyhedron of the complex, are ”stretched”
such that the pinch disappears: Figure 38 shows how
a critical edge shared by two edge-adjacent cubes w1
and w2 is replaced by a face of dimension 2 plus two
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Fig. 40: Repairing of more complex forbidden configu-
rations [67].

Fig. 41: Differents configurations using Majority Inter-
polation [170].

bordering edges, and Figure 39 shows how a critical
vertex, shared by two vertex-adjacent cubes s1 and s2,
is replaced by a combinatorial structure made of one
2-face, two bordering edges, and their common ver-
tices. More complicated structures are used to repair
the other problematic configurations (see Figure 40).
Note that this method is not self-dual since it “expands”
the initial complex.

An efficient coding of this family of polyhedral com-
plexes, called ECM representation [68,69], and using 3D
cubical images, has been developed to store this family
of repaired and well-composed complexes efficiently.

7.4 DWC interpolations on Zn

In 1998, Rosenfeld, Kong and Nakamura [152] devel-
oped the first well-composed 2D interpolation, that is
to say, a method able to compute an image on a larger

domain than the one of the initial image, such that
its restriction to the initial domain equals the original
image and such that the resulting interpolation is well-
composed.

This method can be decomposed in two steps. First
an image magnification [152], which is equivalent to
replacing each pixel of the original image by a set of
(k+1)×(k+1) pixels (where k ≥ 1 is given) of the same
value and which replaces the original pixel. Secondly, a
modification step removes the critical configurations of
the magnified image by changing one of the values of
the 4 points of the critical configuration (from 0 to 1
or the converse). Since the magnification process and
the modifications are simple deformations [152], they
preserve the topology (in the sense that the two images
have the same adjacency tree and the same homotopy
type), and then the final image is a well-composed im-
age topologically equivalent to the initial one.

Then in 2000, Latecki [102] developed an alterna-
tive method to make a 2D binary image well-composed.
This new method is based on the image expansion of
Köthe [94], and consists of doubling the resolution of
the square grid of the initial image by adding new pix-
els (the so-called “secondary” pixels) between the initial
pixels (the “primary” pixels). A secondary pixel added
between two pixels that were edge-connected in the ini-
tial grid will take the value of these primary pixels iff
they have the same value. Otherwise, they will be la-
beled as ”boundary points”. A secondary pixel added
at the center of a square of 4 pixels that were vertex-
connected in the initial grid will take the value of these
pixels iff they all have the same value. Otherwise, they
will be labeled as boundary points. Finally, we obtain 3
sets, a set of zeros, a set of ones, and a set of boundary
points; each of these sets is well-composed.

Then in 2006, Stelldinger proposed a method called
Majority Interpolation [170], shown in Figure 41, which
can be seen as a slightly modified 3D extension of the
method of Latecki [102], since it is based on a similar
counting process. The resulting binary image is always
well-composed in the sense that the resulting bound-
ary in the interpolated image is a 2-manifold, but this
method is not self-dual.

In 2000, Latecki [102] developed the first gray level
well-composed interpolation method in 2D. Using the
same image expansion as the one used for the binary in-
terpolation, the new pixels are valued based on bilinear
interpolation: a pixel added between 2 primary pixels is
valued at the mean of these two pixels, and at the center
of a square of primary pixel, the new pixel is set at the
mean of the values of these 4 pixels if the restriction of
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the image to these four pixels was well-composed, and
at the median of these same values otherwise.

This last method has been slightly modified by Gé-
raud et al. [62] in 2015 where the new pixels added at
the center of a square of 4 pixels is always the median
of these four primary pixels, since the median is a good
solution to make an image well-composed in 2D (and
only in 2D [27]). This method does not create any ex-
trema.

We can notice that these gray-level interpolation
methods are self-dual in the sense that they do not
overemphasize bright components of the dark ones, nor
the converse. The counterpart of this powerful property
is that the initial images having a integer-based value
space, the value space of the new images is Z/4 for the
method of Latecki and Z/2 for the method of Géraud
et al..

As noticed in [27], extending 2D well-composed in-
terpolations to n-D is not so easy when we want to en-
sure self-duality using a local interpolation with usual
constraints. Effectively, Mazo [117] developed a method
able to interpolate any image in n-D into a DWC one [26],
based on the connectivity functions [117] where ε = 1
corresponds to the max interpolation and ε = −1 corre-
sponds to the min interpolation. Even if this method is
initially developed for binary images defined on Khal-
imsky grids, its extension to Zn and to gray level im-
ages is well known and frequently used. However, this
method is not self-dual.

Finally, Boutry et al. [29] introduced in 2015 a n-D
method able to interpolate in a self-dual and non-local
way images into a DWC representation which is “in-
between”, that is, which does not introduce any new
extrema and, in that sense, preserves the contours. This
method first computes a span-based DWC interpolation
U : (Z/2)n  R of the given image u : Z→ R, and ap-
plies on it a front propagation algorithm coming from
the algorithm of computation of the tree of shapes [63]
which preserves DWCness, to obtain the self-dual DWC
representation uDWC : (Z/2)n  R. This algorithm is
linear in time, deterministic (even if based on a ran-
domized handling of a hierarchical queue), and ensures
DWCness in n-D, n ≥ 2. Figure 42 depicts some of the
interpolations we have mentioned in this section.

7.5 AWC representations on Hn

Initially, Géraud and Najman [63,127] proposed in 2013
two dual ways to obtain a continuous representation
(see Figure 43) of a given signal (such as a binary or
a gray-level image) on Hn: they used first the DWC
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Fig. 42: Given an integer-valued function u, depicted
in (a), we have the dual interpolations Imin(u) and
Imax(u) depicted in (b) and (c) respectively, and the
self-dual digitally well-composed interpolation uDWC
depicted in (d); sub-figure (e) depicts a local self-dual
interpolation Imed(u) based on the median operator.

min/max interpolations umin and umax of Mazo [117],
and then they computed their span-based immersions
on Hn, to obtain respectively Umin and Umax.

The resulting representation is then continuous as
an upper semi-continuous map [8], shortly USC map,
in the sense that the strict threshold sets are open and
the large threshold sets are closed. Furthermore, these
representations are AWC in 2D and 3D; according to
Boutry [26], they should also be AWC in n-D, n ≥ 4.
However, these representations are not self-dual: they
overemphasize the bright or the dark components de-
pending on the chosen interpolation.

Then, Boutry et al. proposed a self-dual DWC n-
D self-dual interpolation called uDWC [29], on which
they applied a span-based immersion, to obtain the nu-
merical scheme [26] presented into Figure 44. This rep-
resentation, called UAWC, is continuous, DWC, AWC
(assuming that the conjecture [26] that AWCness and
DWCness are equivalent is true in n-D), and satisfies
the intermediate value theorem. Also, when the closure
of the domain of the representation is unicoherent1, the
set of shapes [127] T of UAWC is a tree, that is, two com-
ponents of T are either nested or disjoint.

1 A topological space is said to be unicoherent iff it is con-
nected and for any two closed connected sets such that their
union equals the whole space, their intersection is also con-
nected.
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Fig. 43: Continuous dual representations Umin and
Umax.
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8 Applications of well-composedness on sets

Well-composed sets are related to many topics in dig-
ital topology: digitization of images leads generally to
digital images that are not well-composed, topology of
a given 2D signal can be preserved by rigid transforma-
tions thanks to well-composedness, topology-preserving
front propagations can lead to well-composed segmen-
tations, Euler numbers of sets can be computed lo-
cally thanks to well-composedness, well-composed Jor-
dan curves separate the digital plane, and the bound-
ary on the continuous analog of a well-composed set
is a manifold. All these relations are developed in the
section below.

8.1 On digitization of regular images

In image analysis, many real objects are assumed to be
smooth. More exactly, they are assumed to be closed in
R2/R3, to have a compact boundary, and such that at
each point of their boundary, their tangent line/plane
is well-defined [76]. This way, these subsets of R2/R3

are r-regular, that is, there exists a value r > 0 such
that, at each point of their boundary, they admit an in-
side (respectively, an outside) open osculating disk/ball
of radius greater than or equal to r lying entirely in
this set (respectively, its complementary). This class of
sets has been introduced in 1982 [140,158] and then
used by Latecki et al. [103,101,104] and by Tajine and
Ronse [175].

Then, by digitization, some topological properties
may be preserved depending on the chosen digitaliza-
tion (as the subset digitization [101], the Gauss digiti-
zation, the intersection digitization, the threshold-based
digitization, and so on). This also depends on the chosen
reconstruction method following the digitization pro-
cess used to reproduce the shape of the original object
as good as possible thanks to continuous analogs like
Voronöı cells, cubes, or balls (centered at the voxels of
the digitization and tessellating Rn).

Then, the real object and its reconstruction can be
homeomorphic (in the sense of the topological equiva-
lence of Pavlidis [140]), or homotopy equivalent, or they
can have the same homotopy tree, they can bee strongly
r-similar (that is their morphing distance [169] is lower
than or equal to r), and so on.

Since a set X ⊂ Zn, n ∈ {2, 3}, is said to be CWC
iff its reconstruction using unitary centered cubic voxels
has a boundary which is made of a 1-manifold in the 2D
case, and is made of a 2-manifold in the 3D case, mani-
foldness of the boundary of a real-object is preserved
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Fig. 45: A reconstruction based on cubical grids in 3D
leads to critical configurations [171].

Fig. 46: Even the digitization of a smooth bordered 3-
manifold can contain a 2D critical configuration [171]:
the two red points at the bottom of the cube lie outside
the object when the two green points at the bottom
of the cube lie inside the object, which leads to a 2D
critical configuration by digitization.

iff its digitization is well-composed, assuming that we
used unitary centered cubes for the reconstruction step.

Let be an object in R2. Now let us assume that R2

is tessellated with squares of diameter r > 0 such that
the barycenters of the squared pixels whose interior in-
tersect this object are set at 1 and the barycenters of
the other pixels are set at 0. This procedure is called
2D digitization by intersection, and its digitization step
is equal to r. According to Gross and Latecki [76], dig-
itizations by intersection of r-regular objects are well-
composed sets when using a digitization step lower than
or equal to r. This way, manifoldness of the object is
preserved using this digitization.

In 3D, it has been shown by Stelldinger et al. in [171,
169] that using cubical grids, whatever the regularity of
the initial object and the digitization step, we cannot
ensure that the reconstructed object is well-composed
(see Figure 45). Effectively, even digitizations of very
regular objects can contain critical configurations, which
result in pinches in the reconstruction using cubic cen-
tered voxels (see Figure 46). The same reasoning can
be extended to greater dimensions.

As r-regularity is a very strong constraint, we could
imagine that some other kinds of geometric or topolog-

Fig. 47: A r-regular object and its reconstructions [171]:
(a) the r-regular object, its reconstruction using (b) a
cubic r

2 -grid, (c) ball union, (d) trilinear interpolation,
(e) Majority Interpolation, (f) MMC (Modified March-
ing Cubes).

ical constraints could allow to obtain well-composed-
ness; however, it has been shown than r-regularity is a
very good assumption to model real objets, since it is
a necessary and sufficient condition for many topology
preserving theorems [169].

The only possibilities seem then to be to change the
grid where the digitization is realized (1), or the digiti-
zation itself (2), or the reconstruction procedure (3). In
the first case, we can refer to the works of Stelldinger
and Strand [172] which show that any digitization on a
body-centered-cubic (BCC) or face-centered-cubic (FCC)
grid ensures topology preservation if the digitization is
dense enough, and then that the boundary of the recon-
struction is a 2-manifold. In the second case, only the
2D digitization by intersection seems promising enough
to ensure well-composedness, while the other digitiza-
tions do not give any guarantees. In the third case,
many efficient techniques exist and ensure that the re-
sulting boundary is a manifold whatever the given in-
put (see Figure 47): majority interpolation [170], ball
union [171], the Marching Cubes algorithm [112] (un-
der some constraints), the trilinear interpolation [171],
the smooth surface representation [171]. Note that this
list may be not exhaustive.

8.2 Rigid transformations and preservation of
well-composedness

In the continuous world, topological properties are pre-
served by rigid transformations, that is, compositions
of a translation and a rotation. They are much used in
remote sensing [166], medical imaging [141,155], image
registration [10], and image warping [57]. This is not
anymore the case in the discrete world [134,135]: start-
ing from a binary image defined on a square grid, it is
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Fig. 48: An image and a possible rotation, i.e., a rigid
transformation [137].

Fig. 49: Forbidden pattern in regular images [137].

Fig. 50: Patterns that are completely destructured by
the rigid transformation [138].

often mandatory to discretize the result of a continu-
ous rigid transformation of this image since its domain
must belong to Z2 (see Figure 48).

This results in the loss of digital topological proper-
ties, especially based on connectivities, like well-compo-
sedness, or in modifications in the adjacency tree [147]
(a tree-based representation of the nested relationship
between the connected components in the image). This
way, the two images cannot be topologically equiva-
lent [152].

Fortunately, Ngo et al. [137,138,136] studied under
which conditions the topology of a 2D digital image
is preserved under discrete rigid transformation (DRT)
and proved that if the initial image is regular (a cri-
terion based on some forbidden patterns described in
Figure 49) including the usual critical configurations of
Latecki [104]), then the resulting DRT is well-composed
and the adjacency trees of the initial and final im-

Fig. 51: Modified patterns whose topology is preserved
under the rigid transformation [138].

ages are isomorphic. In that sense, they are “topolog-
ically equivalent”. Making regular any image is then
straightforward, using for example a super-resolution
strategy [137] able to make any well-composed image
regular. Figure 50 shows letters whose topology is lost
under rigid transformation due to the local critical pat-
terns depicted in red: 4-connected components are de-
composed into several other 4-connected components,
and the 8-components corresponding to the holes are
merged with the background. Figure 51 shows the same
letters, modified such that no critical pattern occurs
and such that the rigid transformation preserves well-
composedness and the adjacency tree. To date, no result
about the preservation of well-composedness using 3D
rigid transformations has been published.

8.3 Front propagation and well-composed
segmentations

Among the family of topology constrained front propa-
gation methods [35,5,174,105,78,157], the works in [78]
and in [157] rely on simple points [13,90,14], that is,
points such that their addition or removal to the com-
ponent will not change the topology of the image. They
start from initial seeds distributed in the areas of inter-
est in the space of the image, and then modify these
components by adding or removing simple points. It
can also be interesting to use multisimple points [157],
that is points such that their addition or removal do
not create or delete handles in the image.

Tustison proposed in [178] a new method based on
two simultaneous criteria: topology and well-compo-
sedness [104,100,101] preservations of the seeds. This
procedure is based on the identification using topolog-
ical numbers [19] of points, which preserve the well-
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Fig. 52: From seeds to well-composed regions [178].

Fig. 53: Glamorous glue [178] applied to regions results
in a well-composed region.

composedness and the topology of the image: these topo-
logical well-composed points are then the only points al-
lowed to be added to the front to make it evolve. This
results in a set of connected components and in an in-
terface which are well-composed (see Figure 52): the
adjacency relations are then (4,4) in 2D and (6,6) in
3D.

Since the interface between two near components
will satisfy the Digital Jordan Separation Theorem [132,
101] (DJST) thanks to their well-composedness, these
components can be iteratively glued together by adding
elegantly the part of the Jordan surface separating them
to constitute a final segmentation which is well-composed
(see Figure 53). Then, they can be visualized using the
MC algorithm [112]: the use of the CCMC (Connectivity-
Consistent Marching Cubes) algorithm [77] generally
used to resolve the ambiguous cases is not required any-
more.

8.4 Locally computable Euler characteristic thanks to
well-composedness

The Euler number [90] or genus is a topological in-
variant used in many applications [113,184]: computer
graphics, image analysis, object counting, visual inspec-
tion [49,192], license plates characters and numbers recog-
nition tasks [1], and real-time thresholding [164].

A subset X of the plane or of the 3D space is said
to be simplicial iff it is expressible as a finite union C

of vertices (0-faces), edges (1-faces), triangles (2-faces),
and tetrahedra (3-faces). We also say that C is the sim-
plicial decomposition of X. The Euler number of this

Fig. 54: Simplicial set of a (4, 8) digital picture whose
Euler characteristic is equal to 1 ([90]).

simplicial complex is then defined by the following ax-
ioms:

– ξ(∅) = 0,
– ξ(S) = 1 if S is non-empty and convex,
– for any simplicial sets S1, S2,
ξ(S1 ∪ S2) = ξ(S1) + ξ(S2)− ξ(S1 ∩ S2),

and does not depend on the triangulation C of X.

According to [176,90], the (face) Euler number of
the simplicial set S can be formulated such that:

ξ(S) = n0 − n1 + n2 − n3,

where nk, k ∈ J0, 3K, denotes the number of k-faces
in the simplicial decomposition. Note that the value of
the face Euler number depends on the chosen connec-
tivity [176].

By the Euler-Poincaré formula, we obtain the for-
mula of the volume Euler number :

ε = b0 − b1 + b2,

where bk is the k-dimensional Betti number. In fact,
b0 equals the number of connected components of the
object, b1 equals the number of holes in all these compo-
nents, and b2 equals the number of cavities in all these
components. For a given binary image F , the sum of
the volume Euler numbers of all connected components
in F is called the volume Euler number of the image F .

In the case of a planar simplicial set, the Euler num-
ber is equal to the number of connected components mi-
nus the number of holes, which permits to define easily
the Euler characteristic of a 2D image where the con-
tinuous analog of the ones is represented by its corre-
sponding planar simplicial set, which is always possible
on a rectangular grid for a digital set; this point is de-
tailed hereafter.

Assume that any 2D binary digital (m,n)-image P ,
where (m,n) belongs to {(4, 8), (8, 4)}, is given, and
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Fig. 55: Simplicial set of a (8, 4) digital picture whose
Euler characteristic is equal to 0 ([90]).

that we define, as in [90], C0 as the black point set in the
image, C1 as the union of the black segments whose end-
points are m-adjacent black points. If (m,n) = (4, 8)
(respectively, if (m,n) = (8, 4)), we define C2 as the
union of the unit squares (respectively, the (1, 1,

√
2)

triangles) whose sides are contained in C1. Then we
obtain C(P ) = C0 ∪C1 ∪C2, that is, the simplicial set
of the image P . The Euler number of P is then obtained
by computing the number of connected components of
C(P ) minus the number of holes in C(P ).

Figure 54 and Figure 55 depict two binary images
with the same set of points. Figure 54 depicts an image
whose Euler number is equal to one, when Figure 55
depicts an image whose Euler number is equal to zero.
Effectively, the Euler number depends on the chosen
connectivity. For this reason, if the given digital picture
is well-composed, the choice of the adjacencies does not
import, and the Euler number is unique.

Furthermore, it has been observed that using dual
adjacencies on arbitrary binary digital images, this num-
ber can be computed locally [139,91] by an enumeration
of some local patterns (see also [74,167] for different ap-
proaches). Since using any pair of dual adjacencies on a
well-composed image leads to the same result, Latecki
deduced in [104] that the Euler number is also locally
computable on well-composed sets. This results in much
faster algorithms, which shows one more time the pow-
erfulness of well-composedness.

The 3D case is obviously also important and has
been treated in [36,48,37,181,51,22,106]. In particular,
in [107], the used method is local.

Benefits of well-composedness come mainly from the
fact that the number of possible configurations is min-
imal, and then the calculus is simplified and computa-
tions are faster.

Fig. 56: 8-curves and 4-curves are not always Jordan
curves in Z2.

Fig. 57: A well-composed curve is always a Jordan curve
in Z2.

8.5 Well-composed Jordan curves separate the plane

It is well-known that the JST [133] exposed and dis-
cussed before does not hold, for instance, in the discrete
world of rectangular grids.

For example, a simple closed curve based on dig-
ital connectivity [74,82,124,125,147,149,150,151,194],
does not always separate the space into two components
anymore: Figure 56 shows on the left a curve based on
8-connectivity and on the right a curve based on 4-
connectivity; none of them separates the digital plane
Z2.

This is related to the connectivity paradoxes of Ro-
senfeld [153] that we exposed in Subsection 2.2. This
paradox can appears when we choose the same connec-
tivity in Z2 for a set and its complement. To obviate
this problem, we can use dual pair of connectivities,
and then we obtain the Digital Jordan Separation The-
orem (DJST) [173,148,146,145] which states that a dig-
ital 4-connected simple closed curve (whose each point
has two 4-neighbors in the curve) separates the plane
into two 8-connected components. Conversely a digital
8-connected simple closed curve (whose each point has
two 8-neighbors in the curve) separates the plane into
two 4-components.

Another way to obviate the connectivity paradox is
to use well-composed simple closed curves, for which 4-
connectivity and 8-connectivity are equivalent: in this
manner, no ambiguity is possible and the connectivity
paradox cannot occur anymore. Figure 57 shows an ex-
ample of well-composed simple closed curve, which is
then a Jordan curve in the sense that it separates the
digital plane into two components.
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Fig. 58: A simple closed curve in H2 is a Jordan curve.

Fig. 59: Different kinds of simple closed curves accord-
ing to Wang and Battacharya.

Note that another way to preserve the separation
property proper to the plane is to work in Khalimsky
Grids [86,87,88] (see Figure 58), where simple closed
curves, also called discrete 1-surfaces [92,55], separate
the Khalimsky grid H2. However, in this case, the neigh-
borhood of a point in H2 depends on its coordinates,
and then the grid structure of H2 is different from the
usual ones of Z2.

On arbitrary grids, Wang and Battacharya [183]
proposed an interesting generalization of the DJST. Let
S be a set of pixels. Two pixels of S are called edge-
connected (respectively, point-connected) in S if there
is a path between them such that the successive pixels
on the path belong to S and are directly edge-connected
(respectively, directly point-connected). Two pixels of
S are called mix-connected in S if there is a path be-
tween them such that the successive pixels on the path
belong to S and are either directly edge-connected or
directly point-connected; they call such paths an edge-
connected, point-connected, or mix-connected path in S,
respectively. This way, their equivalent of the Jordan
Separation Theorem on arbitrary grids is the following:
a finite edge-connected (resp. a finite mix-connected)
simple closed curve of pixels separates the plane into
two mix-connected (respectively, edge-connected) com-
ponents. Furthermore, a set of pixels S is saif well-com-
posed iff for any point v in the boundary of S, S∩A(v),
where A(v) denotes the set of pixels which contain the
point v, is edge-connected. Then, a well-composed sim-
ple closed curve of pixels in the sense of [183] separates
R2 into two components. Figure 59 shows on the left a
mix-connected simple closed curve, separating the plane
into two edge-connected parts, the curve in the middle
is an edge-connected simple closed curve separating the

Fig. 60: The continuous analog of a set which is not well-
composed: the topological boundary contains a “pinch”.

Fig. 61: The continuous analog of a well-composed set:
the topological boundary is a manifold.

plane into two mix-connected components, and on the
right, we can see a well-composed simple closed curve
which separates the plane into two components, what-
ever the chosen connectivity. Well-composedness is then
used here to give back to the JST the ”natural” topo-
logical property verified in the continuous plane.

8.6 Jordan separation theorem and well-composedness

Well-composedness is deeply related to Jordan curves,
satisfying the JST [83,12,179,23], and to Jordan sur-
faces, satisfying the Jordan-Brouwer Separation Theo-
rem [3,75,110,93].

Effectively, as stated in [102], it is equivalent to say
that a digital subset X of Z2 is well-composed or to
say that the boundary of its continuous analog is a 1-
manifold, which means that it is made of disjoint simple
closed curves. Figure 60 shows a set which is not well-
composed, since one of the connected components of its
boundary is not a simple closed curve, and Figure 61
shows a well-composed set, since each connected com-
ponent of its boundary is a simple closed curve.

Note that the fact that a simple closed curve is well-
composed in the digital plane is different from the fact
that the boundary of a 2D set is a simple closed curve
in R2. The first concept is a property of well-composed
curves as a set (in this case, the whole set is a Jordan
curve), when the second correspond to the separation
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property of any boundary of any 2D well-composed set
(in this case, the Jordan curves are the connected com-
ponents of the boundary).

Fig. 62: Non-Jordan surfaces.

Fig. 63: Jordan surfaces.

Also, as we have seen before, a digital set X ⊂ Z3 is
said CWC iff the boundary of its continuous analog is a
2-manifold, that is, is made of disjoint simple closed sur-
faces, which strongly relates the Jordan-Brouwer sepa-
ration theorem to well-composedness. Figure 62 shows
the boundaries of continuous analogs, which are not
Jordan surfaces, and Figure 63 shows on the contrary
boundaries of continuous analogs of well-composed sets,
which are then 2-manifolds.

9 Applications of well-composedness on
gray-level images

Here we present some applications related to gray-level
well-composed images: we first recall that the surface
extraction algorithm called Marching Cubes has no am-
biguous cases, and then no hole problem. On these im-
ages, we recall how to obtain thin topological maps of
digital gray-level images to compute watersheds start-
ing from a well-composed gradient image. We also recall
the different applications that exist nowadays, based on
the computation of the tree of shapes on these well-com-
posed images.

9.1 Marching Cubes

The main reference in matter of scientific and experi-
mental visualization of scalar field data on 3D cubical
grids is the Marching Cubes (MC) algorithm [112]. As-
suming that we have a continuous scalar field f whose
values are known on the lattice points of a cubical grid,
we can visualize the approximation of the implicit sur-
face [f = α] (usually assumed to be a topological 2-
manifold), α ∈ R, using a triangular mesh, that is, a

Fig. 64: Lorensen’s Marching Cubes Lookup Ta-
ble [112].

Fig. 65: The “hole problem” [162] using Marching
Cubes.

simplicial complex, also called the surface tilling of the
iso-surface. This algorithm computes the triangulation
cube by cube in this way: each corner c of the cube
(the lattice points of the cubical grid) whose value f(c)
is greater than or equal to the given threshold α is said
to be positive (they correspond to the inside part of the
object), and the other corners of the cubes are said to
be negative (they correspond to the outside part of the
object). A boundary point is then created on each edge
of the cube using a (trivial or non-trivial) interpolation
such that one of its vertices is positive and the other is
negative. Then, using a lookup table proper to the MC
algorithm [112] as shown in Figure 64, boundary points
are connected with one or several triangles, making a
triangular mesh, connected or not, depending on the
configuration of points in the cube. Then the ”local”
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meshes are grouped together to make the final mesh in
R3.

We would then hope that the resulting mesh is an
union of disjoint simplical surfaces [24] which separates
the positive vertices to the negative vertices. However,
some holes/cracks can appear as shown in Figure 65,
due to ambiguities in some configurations. In this case,
the algorithm fails to produce a piecewise linear man-
ifold: some edges are faces of only one triangle, which
means that they draw together the boundary of a hole
in the surface. To obviate these ambiguities, Han et
al [77] use digital topology: a pair of connectivities (among
the 8-,18-, and 26-connectivities) is then associated with
the positive/negative lattice points, to be able to decide
which surface tilling has to be drawn (at each cube
separatly). As usual, this pair must be a Jordan pair
to avoid the connectivity paradoxes of Rosenfeld. Then
there is only one possible tilling at each cube and pos-
itive and negative vertices are separated in each cube
by the local tilling surface. The resulting mesh is “dig-
itally” topologically correct in the sense that the sur-
face tilling correctly reflects the topology of the initial
isosurface [f = α] if the connectedness is well chosen.
This algorithm is called connectivity-consistent march-
ing cubes (CCMC).

Be careful not to confuse topological correctness
used in digital topology and topological correctness used
in isosurface extraction: this last means that the ap-
proximating isosurface is homeomorphic to piecewise
trilinear interpolation of the digitization of the given
continuous scalar field.

However, it is sometimes difficult to choose which
connectivity is best suited to a given application, and
then we would rather avoid to choose a connectivity,
since the resulting mesh depends strongly on this choice.
Digital well-composedness is then salutary: it has been
stated in [89] that a cube is unambiguous iff there exists
a 6-path of positive (respectively, negative) vertices in
this cube connecting each pair of positive (respectively,
negative) vertices of this same cube, which is the char-
acterization of DWCness in 3D. This way, no choice of
connectivity is needed anymore, since whatever the cho-
sen connectivities the result will be the same. Moreover,
[f = α] is a piecewise linear 2-manifold with no hole,
and then its boundary is contained in the boundary of
the cubical grid; this last property is called topological
consistency.

Furthermore, Siqueira et al. proved in [162] that the
isosurface resulting from the MC algorithm may reflect
the topology of the initial continuous scalar field when
the given binary image is well-composed. If for some

Fig. 66: Lookup tables of Daragon [44,45] in the 3D
case.

Fig. 67: n-D approach of Lachaud [98], based on the
convex hull.

reason, we are not able to make any well-composed in-
terpolation or to use any topological repairing method,
the use of the Modified Marching Cubes algorithm [170],
shortly MMC, is a good choice, but it assumes that the
digitized object is r-regular and that the sampling grid
has a sufficient resolution.

Note that some very powerful MC-like methods ex-
ist for the n-dimensional case, n ≥ 2, as the frontier
orders of Daragon [44,45] based on combinatorial topol-
ogy and the continuous analog of the digital bound-
ary of Lachaud and Montanvert [98] based on digital
topology. Both obtain the same surface tillings in the
3D case, as shown in Figure 66, showing each possi-
ble configuration in the 3D case, assuming that we use
6-,18-, or 26-connectivity for the black points (and a
dual connectivity for the white points). In other words,
(6, 18)-connectivity will join the black points which are
6-connected, and will separate the black points which
are only 18- or 26-connected. At the same time, it will
join the white points which are 6- or 18-connected, and
it will separate the white points which are only 26-
connected. Note that the n-D approach of Lachaud is
depicted in Figure 67, and consists in separatly com-
puting in each cube the boundary of the convex hull of
the set of points made with the black points plus the
boundary points (see (a), (b), and (c)). An equivalent
approach using a non trivial interpolating function is
showed from (d) to (f). Under reasonable constraints,
these two methods provide simplicial surfaces with no
”holes”, at least in the 3D case.
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Fig. 68: The irreducible thick configuration [7].

We can also mention the existence of isosurface sim-
plification algorithms [160,84] used to reduce the exces-
sive number of triangles produced by the MC algorithm
in practice. These methods work particularly well with
3D CWC images since they preserve the topology of the
boundary of the continuous analog of the foreground of
a well-composed digital image [162].

Finally, Boutry [26] exposed in his thesis that a n-D
image which is DWC should not have any possible local
ambiguity, since DWCness implies local equivalence of
connectivity, and in this manner gray-level DWC im-
ages should not have ambiguous cases. Furthermore, he
conjectured that no “hole problem” is possible in n-D
using DWC images. No proof of this assertion has been
published yet.

9.2 Thin topological maps thanks to
well-composedness

A discrete image can be seen as the digitization of a
piecewise continuous function. This way, we can repre-
sent the underlying piecewise continuous function of a
discrete image using a topological map where faces cor-
respond to the smooth regions and where the contours
made of edges and vertices correspond to the disconti-
nuities of this underlying function. Note that this repre-
sentation using faces, edges and vertices is not new [59,
96]. However, consistency problems, like the ”irreducible
thick configuration” of [7] in Figure 68 or [18,90], are
encountered when we work on cubical grids in this con-
text: there is then no guarantee that the extracted crest
network [115] is thin.

To obviate this problem, Marchadier et al. [115] pro-
pose to use well-composedness [104,17,102] to avoid the
connectivity problem and to obtain a coherent topo-
logical map where the resulting crest network is thin.
The proposed method is the following. Starting from
a given 2D grayscale image, they compute the gradi-
ent that they make well-composed using some topolog-
ical repairing method [115]. Then they apply a level-
ing method of Bertrand et al. [18] which combines the
well-composed-preserving thinning of Latecki [104] and

Fig. 69: An irreducible gray-level well-composed image
and its crest network [115].

Fig. 70: The initial image, the reduced gradient, and
the resulting watershed [115].
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Fig. 71: A gray-level image (in the middle), its min-tree
and its max-tree (on the left), and its tree of shapes [63]
(on the right).

deletion of the peaks, to obtain finally an irreducible
well-composed gray-level image (see Figure 69).

In fact, we can see this last image as a watershed
transform [20,130,143,126,16] of the gradient of the
initial image. Effectively, the quasi-minima of this gra-
dient represent the catchment bassins. Then, by a case-
by-case study, a thin crest network is computed on
the complement of these quasi-minima, using a linking
method [120,47], with no ambiguities since this image
is well-composed. This way, Marchadier et al. obtain a
coherent topological map [30,60] (see Figure 70) repre-
senting the underlying piecewise continuous function of
the given discrete image.

9.3 “Pure” self-duality

A very powerful hierarchical representation, based on
the inclusion relationship of the components of an im-
age, exists in mathematical morphology: the tree of
shapes [123,63,42] (see [119,187,188,189,186] for some
possible applications). It is sometimes seen as the fu-
sion of the min-tree, made of the connected components
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Fig. 72: An example of plain-map from H1 to H1 [127].
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Fig. 73: Incoherences using 4-connectivity for both up-
per and lower threshold sets: some shapes intersect but
are not nested the one in the other one.
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Fig. 74: Incoherences using 8-connectivity for both up-
per and lower threshold sets: some shapes intersect but
are not nested the one in the other one.

of the lower threshold sets (leaves are the regional min-
ima in the image), and its dual, the max-tree, which is
made of the connected components of the upper thresh-
old sets (leaves are the regional maxima in the image).
Figure 71 shows a gray-level image and its component
trees.

The conditions that the tree of shapes of an im-
age exists has been developed in details in [127]: sum-
marily, if the image is a plain map (see Figure 72),
that is, an interval-valued map from Hn to H1 which
is closed-valued and whose domain is the whole space
(assumed to be unicoherent [34]), and if this plain map
is AWC, then the saturation operator (cavity-fill-in op-
erator) and the closure operator can be “switched” (see
Lemma 20 in [127]); this way, the set of quasi-shapes
is a tree, i.e., two components are either nested or dis-
joint, and the set of shapes computed using these quasi-
shapes is a tree too. In other words, the tree of shapes
exists when computed on an AWC plain map. Note
that all the details about the computational aspects
are given in [63].

This morphological representation is self-dual in the
sense that it is invariant by contrast inversion: it treats
in a similar way bright objects over a dark background

(a) u. (b) umin. (c) umax. (d) uDWC.

Fig. 75: An image u, its min/max interpolations, and
uDWC which is self-dual.

(a) T (umin). (b) T (umax).

(c) T (uDWC).

Fig. 76: The tree of shapes of the min, max, and self-
dual interpolations.

or dark objects over a bright background. This is very
useful when we do not know a priori the contrast of
the object, or if we need to study several objects of
different contrasts in the same image. This operator is
based on connectivities, and then, in Rosenfeld’s frame-
work, we have to associate one connectivity to the upper
threshold sets and one of its dual connectivities to the
lower threshold sets to avoid incoherences [9,34]: see
Figures 73 and 74. By contrast, using an EWC image,
connectivities are equivalent, and then we can compute
the tree of shapes of an image or of its negative with
the same pair of connectivities: no switch of connectiv-
ities is needed [62]; Géraud and Najman [63] call this
phenomenon ”pure self-duality”.

Note that AWCness of the representation of the ini-
tial image is sufficient to obtain that the computed
tree of shapes is effectively a tree from a theoretical
point of view, when EWCness is sufficient to ensure
that pure self-duality is obtained when computing the
tree of shapes in practice. A self-dual DWC interpola-
tion such as uDWC is then sufficient in 2D/3D to ensure
that we have at the same time existence of the tree of
shapes and pure self-duality.

Now let us present a simple example of pure self-
duality in 2D related to the tree of shapes. Since the
front propagation in the computation of the tree of
shapes [63] is based on 2n-connectivity, we can “emu-
late” the dual pair of connectivities (c2n, c3n−1) (which
connects the zeros and disconnect the ones) using a min
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Fig. 77: Grain filterings on an image: using the DWC
self-dual representation uDWC leads to “pure” self-
duality.

interpolation. In the same way, we can compute the tree
of shapes based on the dual pair (c3n−1, c2n) (which
connects the ones and disconnects the zeros) using a
max interpolation. So, starting from a given image u,
we compute its min, max, and self-dual interpolations
as shown in Figure 75. Then we compute their respec-
tive trees of shapes T (umin), T (umax), and T (uDWC)
as shown in Figure 76. We can observe that the upper
and lower threshold sets are not processed in the same
way using the min and max interpolations, contrary to
the tree of shapes computed on uDWC [26] which treats
exactly in the same way bright and dark components.

Note that any self-dual operator which is based on
connectivities, derived [33,190] from the tree of shape
or not, will be purely self-dual on well-composed im-
ages. Effectively, an example of self-dual operator de-
rived from the tree of shapes is the grain filter, which
removes the shapes in the hierarchical representation of
an image u whose area is smaller than a given thresh-
old. We can remark easily in Figure 77 that using the
connectivities (c4, c8) or (c8, c4) does not lead to the
same result, when the use of a DWC self-dual interpo-
lation such as uDWC gives the same result whatever the
chosen pair of connectvities.

Furthermore, in digital topology, since we generally
assume that a Jordan pair of adjacencies is associated
with a binary or gray-level image to obviate connectiv-
ity paradoxes, a specific adjacency is then considered
depending on the local values of the pixels in the im-
age; this way, we assume that there exists an “underly-
ing structure” in the graph of the image (see Figure 78).
DWC images having their connectivities locally equiva-
lent, they can be seen as (2n, 2n) images. This way, the
underlying graph of the image becomes simpler, regu-

6 5 7 6 3

4 6 5 9 5

5 2 5 3 7

3 1 4 6 9

3 0 6 8 5

(a) u.

6 5 7 6 3

4 6 5 9 5

5 2 5 3 7

3 1 4 6 9

3 0 6 8 5

(b) Underlying graph struc-
ture.

Fig. 78: From u to its underlying graph structure using
the dual pair (c8, c4): we connect pairs of diagonal pixels
whose values are greater than the two other diagonal
values.

Fig. 79: All the possible cubical connectivity grids
are equivalent on a digitally well-composed image:
in the raster scan order, the 4-connectivity grid,
the 8-connectivity grid, the perfect fusion grid, a 6-
connectivity grid, and the Khalimsky grid.

lar, 90-degrees-rotation- and translation-invariant, and
is not anymore correlated to the values in the image.
This way, the perfect fusion grid [40,39,41], the Khal-
imsky grid [87], and so on, can be associated with a
DWC image (see Figure 79).

9.4 Tree of shapes of the Laplacian

In this section, we present some results of Huyhn et
al. [81] obtained thanks to the computation of the tree
of the sign of the DWC morphological Laplacian in a
self-dual way. Even if it is used here for text detection,
this approach may be extended to treat n-D signals,
such as M.R images, videos, or CT-scans.

Nowadays, text detection methods [56,193,196] are
widely used, especially on mobile devices, for recogni-
tion tasks. They are generally classified into connected-
components-based approaches, like FASText [31], the
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Fig. 80: Summary of the method used by Huyhn et
al. [81].
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Fig. 81: An inclusion tree and its corresponding im-
age [81].

SWT (Stroke Width Transform) [54], the TMMS (Tog-
gle Mapping Morphological Segmentation), and the M-
SER (Maximally Stable Extremal Regions), or into sli-
ding-windows approaches using SVM (Support Vector
Machines) [38], AdaBoost [108], or CNN (Convolutional
Neural Networks) [182] as classifiers.

The one presented by Huyhn et al. [81] is part of the
connected-components-based approaches, and consists
in transforming an image into a tree-based hierarchical
representation (see Figure 80), based on adjacency and
inclusion relationship between the components in the
image.

To proceed, they compute the Laplacian of a given
image using a morphological Laplacian operator [180,
165,131], whose zero-crossings are known to be very
precise contour estimations of the initial image. Us-
ing a large-sized structuring element relatively to the
size of the text to detect, spurious contours are eas-
ily eliminated and salient contours preserved, thanks
to the non-linearity of the operator. After that, a self-
dual well-composed interpolation [29] of this Laplacian
is computed; this way, the zero-crossings of this interpo-
lation are simple closed curves. Using these separated
Jordan curves, we can naturally induce a hierarchy [28]

Fig. 82: In the raster scan order: the initial image, its
level lines, the Dahu pseudo-distance, and its saliency
map [64].

in the image: the components given by the interior of
these curves (whatever the chosen connectivity) are ei-
ther nested or disjoint. A component labeling of the
sign of the Laplacian and the generation of the inclu-
sion tree are then easy and fast to compute (a classical
blob labeling algorithm is sufficient).

Thanks to this tree-based representation of the im-
age, we can extract text candidates: a hole of a char-
acter or a solid character are leaves of the tree (see
Figure 81), and so on. Text grouping is then simply a
subtree of this inclusion tree, since characters must be
grouped iff they belong to the same background.

Finally, well-composedness gave access to a self-dual
text detection algorithm which is furthermore in linear
time and very efficient, thanks to the hierarchy induced
by the Jordan curves extracted from the well-composed
Laplacian.

9.5 The Dahu pseudo-distance

The minimum barrier distance, or MB distance for short,
is defined as the minimal interval of gray-level values
along the path between two points in an image. This
distance has been shown very efficient to proceed to
salient object segmentation [177,195]. A continuous ver-
sion of this distance, the Dahu pseudo-distance, has
then been proposed in [64]; note that this is not a dis-
tance but a pseudo-distance in the sense that it does
not satisfy the identity of indiscernibles. Besides, this
distance leads to topological issues in its naive version
at saddle points, and for this reason, a slightly modi-
fied version of this distance has been proposed to over-
come these issues: starting from a vertex-valued graph
u, Géraud et al. compute first the self-dual interpolation
uDWC to get rid of possible saddle 0D points (note that
saddle faces still exist), and then they compute its self-
dual span-based immersion into the Khalimsky grids to
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obtain a self-dual continuous representation of the ini-
tial signal. Then, no crossing of level-lines is possible,
and the computation of the tree of shapes, used here
to obtain the exact value of the Dahu pseudo-distance,
is easy. Note that thanks to this discrete framework,
all the computations remain tractable. An example of
saliency map [185] is depicted in Figure 82.

10 Conclusion

As we have seen in this survey, the connectivity para-
doxes of Rosenfeld lead to ambiguities in digital im-
ages in the sense that we have to choose between dual
pairs of connectivities; well-composedness is then salu-
tary since in this context no topological paradox or am-
biguity is possible. Fortunately, making an image well-
composed is straightforward in n-D thanks to topolog-
ical reparations and well-composed interpolations that
have been developed these last years.

We have also seen that many topics of digital topol-
ogy are linked to well-composedness: thinnings, seg-
mentation, contour extraction, and visualization tech-
niques. Furthermore, very interesting applications of
well-composedness such as the Dahu pseudo-distance
or the tree of shapes of the sign of the Laplacian lead
to very nice results in matter of image segmentation,
text extraction, and so on.

To conclude, we think that promising research di-
rections could be to study the equivalences between
the different flavours of well-composedness in n-D, or
to study which other properties well-composed images
own compared to the continuous world; we know at
least that boundaries of threshold sets are Jordan curves,
that binary and gray-level images have regularity prop-
erties, but it seems also that critical points such as stud-
ied in Morse theory [61] are isolated and open thanks
to self-duality of this class of images [127]. The link be-
tween topological persistence [53] and the tree of shapes
[34,63] could also be investigated; see for example the
work of Xu et al. [191], which detects local invariant
features in images thanks to Morse theory and the tree
of shapes. On a related theme, many problems in im-
age analysis, digital processing and shape optimization
can be expressed as variational problems involving the
discretization of some discrete discrete differential op-
erators [46,121,73] such as normal vectors or curva-
tures [128,129] of digital surfaces which are of prime
importance in geometry processing. This is in partic-
ular the case for the Laplace-Beltrami operator, much
used in computer graphics [109,154] and in biomedi-
cal imaging [161]. Recently, Caissard et al. [32] showed
that particular digitizations of this operator, taking into

account the discrete nature of the space (such as dig-
ital surfaces embedded in 3D), leads to better prop-
erties of convergence and precision. Hence, a question
would be to understand how well-composedness helps to
make such operators more “stable” from a topographi-
cal point of view.
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tersheds in contour detection. International Workshop
on Image Processing: Real-time Edge and Motion Detec-
tion/Estimation, 1979.

21. Serge Beucher and Fernand Meyer. The morphological ap-
proach to segmentation: The watershed transformation.
Optical Engineering, New York, Marcel Dekker Incorpo-
rated, 34:433–433, 1992.

22. Hanspeter Bieri and Walter Nef. Algorithms for the Euler
characteristic and related additive functionals of digital
objects. Computer vision, graphics, and image processing,
28(2):166–175, 1984.

23. Errett Bishop and Douglas S Bridges. Constructive analy-
sis, volume 279. Springer Science & Business Media, 2012.

24. Ethan D Bloch. A first course in geometric topology and
differential geometry. Springer Science & Business Media,
1997.

25. Isabelle Bloch, Henk Heijmans, and Christian Ronse.
Mathematical morphology. In M. Aiello, I. Pratt-
Hartmann, and J. Van Benthem, editors, Handbook of Spa-
tial Logics, pages 857–944. Springer, 2007.

26. Nicolas Boutry. A study of well-composedness in n-D.
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62. Thierry Géraud, Edwin Carlinet, and Sébastien Crozet.
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Medrano. Cubical cohomology ring of 3D photographs.
International Journal of Imaging Systems and Technol-
ogy, 21(1):76–85, 2011.
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2011.
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