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Abstract—Component trees are region-based representations that encode the inclusion relationship of the threshold sets of an image.
These representations are one of the most promising strategies for the analysis and the interpretation of spatial information of complex
scenes as they allow the simple and efficient implementation of connected filters. This work proposes a new efficient hybrid algorithm
for the parallel computation of two particular component trees—the max- and min-tree—in shared and distributed memory
environments. For the node-local computation a modified version of the flooding-based algorithm of Salembier is employed. A novel
tuple-based merging scheme allows to merge the acquired partial images into a globally correct view. Using the proposed approach a
speed-up of up to 44.88 using 128 processing cores on eight-bit gray-scale images could be achieved. This is more than a five-fold
increase over the state-of-the-art shared-memory algorithm, while also requiring only one-thirty-second of the memory.
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1 INTRODUCTION

S INCE the 1960s, mathematical morphology [1], [2] has
become increasingly popular in the image processing

community mainly due to its proven utility and rigorous
mathematical description. The mathematical morphology
framework provides a set of powerful operators for ana-
lyzing the spatial domain of images at the region-level—
i.e., connected components—based on tree representations,
called thresholds decompositions [3], [4]. These are based
on tree representations of images which can be divided
into two main groups [5]: hierarchies of segmentation—i.e.,
hierarchy of image partitions such as minimum spanning
trees [6], alpha-trees [7], binary partition trees [8]—and
threshold decompositions—i.e., hierarchy of regions such as
component trees [4], [9], tree of shapes (ToS) [10] and
multivariate tree of shapes [11]). Generally, tree structures
are often considered richer in descriptive ability since they
can be exploited for breaking down images into their funda-
mental elements which are easier to interpret with regards
to the pixels. Component trees [4], [9], are thresholds de-
compositions that represent connected components [12] at
every threshold level of an image in a hierarchical fashion,
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through parent relationships between nodes. The connected
components organized in such trees can be filtered with
different strategies [3], [4] and can model various types of
connectivity [13].

Component trees (i.e., max- and min-tree) have been pop-
ularized by connected operators, such as attribute filters [2],
[3], which have been extensively used for the modeling of
spatial information in images from remote sensing [14], [15],
astronomy [16], [17] and medical scanning [18], [19]. At-
tribute filters are edge-preserving and flexible operators due
to the preservation of contours in the processed objects and
rely on multiple spatial measures or attributes. The possibility
to perform a multi-attribute analysis, like attribute filters
built by employing different attributes, enriches the extrac-
tion of spatial arrangement and improves the discrimination
between different structures. In the presence of scenes with
high complexity and heterogeneity, e.g., densely populated
urban area, a complete modeling of the spatial information
can be achieved through a multi-level analysis. It implies the
decomposition of the original gray-level image obtained by
applying a sequence of attribute filters according to a set of
filter thresholds [20]. The result of this operation are the
so-called attribute profiles [14]. They have been exploited
mainly in remote sensing, e.g., classification [21], [22], data
fusion [23] and change detection [24], as well as in med-
ical imaging processing for tomographic image segmenta-
tion [25]. Recently, attribute filters are utilized within a novel
deep learning framework for the large-scale, unsupervised
detection of objects in remote sensing image [26]. A set of
attributes is automatically identified in order to extract a
representative, high quality training data set.

Nowadays, image processing applications rely on very
high resolution data due to the continuing technological
improvements of the sensor instruments. For example earth
observation platforms have led to the increasing volume,
acquisition speed and variety of sensed images, e.g., the
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(a) Original gray-scale image.
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(b) The iso-level, 4-connected regions.
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(c) The corresponding max-tree.

Fig. 1: Example of max-tree representation based on exemplary image and its components Cic, with the subscript c being the
gray-level and the superscript i the canonical point uniquely identifying the component.

World-View-3 satellite sensor (spatial resolution of 0.31m),
or the AISA Dual airborne sensor (500 bands with spectral
resolution of 2.9nm). The performances of traditional serial
and parallel algorithms for computing the component trees
are strictly correlated to the size and the quantization of the
data. The size of remote sensed images is usually in the order
of several gigabytes due to the depiction of vast and complex
scenes. Consequently, they can not be stored or processed
by algorithms designed for a single shared-memory machine.
Furthermore, due to the high sensitivity of the new sensors,
e.g., radiometric resolution, these images are characterized
by an ample domain of integers or floating point values,
which directly affect the processing time.

In this paper, a novel shared- and distributed-memory
hybrid algorithm for the efficient computation of exact com-
ponent trees, specifically the min- and max-tree, of integral
gray-scale and floating-point images, is presented. For this,
the problem, i.e., the image is subdivided into equal-sized
chunks that get assigned to all available distributing comput-
ing nodes. Then, each of the nodes computes a local, partial
component tree of the assigned chunk. A modified version
of the shared-memory parallelized, depth-first, flooding max-
tree algorithm proposed by Ouzounis et al. [27] is employed.
Finally, the obtained partial component trees need to be
merged into a correct, monolithic global representation. This
is achieved through the iterative resolution and rearrange-
ment of the iso-level edges of the image chunks’ boundary
trees for each gray-level, marking the major algorithmic
challenge. In the proposed approach, the level connections
are expressed as tuples—a data structural design that has
been used by Flick el al. [28] for the distributed resolution
of genomic graphs. This is a novelty in the mathematical
morphology framework and the distributed computation of
component trees.

The remainder of this paper is organized as follows.
Section 2 provides a brief introduction to component trees.
The subsequent Section 3 presents an overview over existing
algorithms proposed in the literature. In Section 4 the pro-
posed algorithm for parallel and distributed computation of
the component trees is laid out. Complexity considerations
and implementation details are explained in Section 5. A

study of the algorithms strong and weak scaling as well as
comparative study to the current state-of-the-art algorithm is
presented in the experimental evaluation in Section 6. Finally,
Section 7 concludes the paper, discussing the findings of this
work and presents opportunities for future work.

2 COMPONENT TREES

Component trees were introduced by Jones [9], [29] as
efficient image representations that enable the computation
of advanced morphological filters in a simple way. These
trees are hierarchical structures that encode the threshold
sets and their inclusion relationship. Thereby, each sub-tree
is nothing different than all connected image components
up until the given gray-threshold. As a result, one of the
major advantages of components trees is their possibility to
efficiently implement of connected filters.

More formally, let f : Ω → E be a discrete two-
dimensional gray-scale image, defined on a spatial domain
Ω ⊆ Z2 and taking values on a set of scalar values E ⊆ Z.
For any λ ∈ Z, a lower L(f) and upper U(f) threshold set is
defined by:

L(f) = {x ∈ Ω, f(x) < λ}, (1)

U(f) = {x ∈ Ω, f(x) > λ}, (2)

Let P(Ω) be the power set of all the possible subsets of
Ω. Given X ∈ Ω, the set of connected components of X
is denoted as C(X) ∈ P(Ω). Each connected component is
represented by a unique point called the level root [30], or
canonical element [16]. Considered two points x, y ∈ Ω,
and xr the root of the tree, x is canonical if x = xr
or f(parent(x)) < f(x) (where parent is the image that
encodes the inclusion relationship of the threshold sets [16])
If ≤ is a total relation, any two connected components
Y,Z ∈ C(L(f)) are either disjointed or nested. The min-
tree and max-tree structures represent the lower, respectively
upper, threshold components in L(f) and U(f) as well as
with their inclusion relations. For example, Fig. 1c shows
the max-tree structure of the image in Fig. 1a. The arrows
denote the parent relation between the nested connected
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components that are identified in Fig. 1b. This is a simplified
case that it is used for clarification purposes. In synthetic
images that include more complex shapes (see the example
in Section 4) or real scenarios the max-tree structure is less
intuitive since its hierarchy is not driven by the inclusion
relationship of connected components as it appears in Fig. 1.
Furthermore, the notion of tuple as used in this work should
be understood as a finite sequence of four elements of the
form 〈cx, x, cy, y〉 with x, y ∈ Ω being two pixel coordinates
and cx, cy ∈ E ∧ f(x) = cx ∧ f(y) = cy the colors of these
pixels.

3 RELATED WORK

The selection of the most appropriate algorithm for com-
puting the component trees shall be made according to the
properties of the input image (i.e., size and pixel value
quantization) and the processing resources available such as
memory capacity and number of computing cores. Carlinet et
al. [39] presented a comparative review of the state-of-the-
art algorithms and provided detailed guidelines for selecting
the most suitable algorithm. The algorithms are grouped
into three main classes: immersion-, flooding- and merge-
based. Algorithms that belong to the immersion and flooding
class, may also be referred to as leaf-to-root merging and
root-to-leaf flooding methods, respectively [37]. Since this
section is not intended to repeat the review, Fig. 2 merely
presents a timeline for each algorithm class, and how they
have developed in the past years.

As explained in Section 1, the algorithm proposed in this
work is of hybrid nature, entailing shared- and distributed-
memory parallelization aspects simultaneously. The node-
local parallelization is thereby based on a flooding strategy,
while the distributed computation components follows a
merge-based approach. Therefore, a detailed explanation of
immersion algorithms is deliberately left out, and the reader
is referred to Tarjan [31], Najman et al. [30], Berger et
al. [16] and Carlinet et al. [39].

3.1 Flooding Algorithms

The first flooding algorithm was proposed by Salembier et
al. [4]. It is an efficient algorithm which retrieves the pixel at
the lowest gray-level, i.e., root, through a scanning step and
then it performs a propagation by flooding the neighbor at
the highest level, i.e., a depth-first traversal of the connected
components at higher intensities. Pixels in the propagation
front are stored in a hierarchical queue composed by as many
First In First Out (FIFO) queues as the number of gray-levels.
It allows to directly access any pixel in the FIFO queue at
a given level. Salembier’s et al. [4] algorithm was rewritten
in a non-recursive implementation by Hesselink et al. [32],
later also by Nister et al. [33] and Wilkinson et al [34].
The algorithm presented by Wilkinson aims at solving the
limitation of Salembier, the linear scaling with the number of
gray-levels. Wilkinson has proposed to use a priority queue
and a stack, a combination of the algorithms of Salembier et
al. and Hesselink et al., instead of using only a hierarchical
queue for handling the pixel values during the flooding.

Carlinet et al. [39] have proposed a non-recursive flood-
ing algorithm variant of Salembier et al., which has strong

Algorithm 1 Non-recursive version of Salembier’s algorithm
as presented by Carlinet et al. [39].

1: procedure PROCESS-STACK(r, q)
2: λ← f(q)
3: POP(levroot)
4: while levroot not empty and λ<f(TOP(levroot)) do
5: INSERT FRONT(S, r)
6: r ← parent(r)←POP(levroot)
7: if levroot empty or f(TOP(levroot)) 6= λ then
8: PUSH(levroot, q)
9: . Particular case of the last element:

10: parent(r)← TOP(levroot)
11: INSERT FRONT(S, r)

12: function MAX-TREE(f)
13: . 1. INITIALIZATION:
14: for all p do parent(p)← −1 . meaning “unseen”
15: start pixel← any point in Ω
16: PUSH(pqueue, start pixel)
17: PUSH(levroot, start pixel)
18: parent(start pixel)← INQUEUE
19: . 2. FLOODING:
20: loop
21: flood:
22: p← TOP(pqueue); r ← TOP(levroot)
23: for all n ∈ N (p) such that parent(p) = −1 do
24: PUSH(pqueue, n)
25: parent(n)← INQUEUE
26: if f(p) < f(n) then
27: PUSH(levroot, n)
28: goto flood

. p is done
29: POP(pqueue)
30: parent(p)← r
31: if p 6= r then INSERT FRONT(S, p)
32: . 3. ROOT FIXING:
33: while pqueue not empty do
34: . all points at current level done?
35: q ←TOP(pqueue)
36: . Attach r to its parent
37: if f(q) 6= f(r) then PROCESS-STACK(r, q)
38: . Particular case of the last element, the tree root:
39: root← POP(levroot)
40: INSERT FRONT(S, root)

similarities with Wilkinson et al. and Nister et al. Due to the
fact that the algorithm proposed in this work is based on it,
the pseudo-code (40 lines only) is shown in Algorithm 1. The
algorithm computes two structures that describe the tree: a
parenthood image, such that parent(p) is the parent pixel
of pixel p in the tree, and an array of pixels S, where pixels
are sorted such as the parent of any pixel is always stored
before this pixel (so browsing S corresponds to a downward
traversal of the tree). To that aim, two auxiliary structures are
used: pqueue is a hierarchical queue of pixels, and levroot
is a stack of pixels. The algorithm is divided into three
stages: initialization, flooding and root fixing, respectively
starting from lines 13, 19 and 32. In the initialization phase,
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1975 (s) Tarjan et al. [31]

2006 (s) Njaman et al. [30]

2007 (s) Berger et al. [16]

(a) Immersion
(leaf-to-root merging)

1998 (s) Salembier et al. [4]

2003 (s) Hesselink et al. [32]

2008 (s) Nister et al. [33]

2011 (s) Wilkinson et al. [34]

(b) Flooding
(root-to-leaf flooding)

2007 (p) Ouzounis et al. [27]

2008 (p) Wilkinson et al. [35]

2011 (s) Ouzounis et al. [36]

2017 (p) Moschini et al. [37]

2017 (p) Kazemier et al. [38]

(c) Merge-based

Fig. 2: The main three classes of algorithms and their chronology. Each entry includes the publication year, the algorithm
class ( s - serial or p - parallel) and the corresponding reference.

a random point start pixel is chosen as the flooding point.
This pixel is now considered as a canonical element, i.e., the
representative of the connected component, and it is pushed
on the stack levroot. This stack stores the representative
pixels of the visited components; these pixels are the roots
of the sub-trees, so they represent components at different
gray-levels. The main purpose of the flooding phase is to
compare the gray-level of each pixel p with its neighboring
pixels n, and to enqueue those that have not yet been seen.
The first processed pixels are p and the canonical element
r of its component. These have the highest priority in the
queue, i.e., the highest gray-level, and are on top of levroot
(p is not removed from the queue). The neighboring pixels
n are pushed on the stack only if f(n) > f(p), line 24,
which immediately triggers a jump (goto) to the flood
label (in line 21). This jump thus emulates a recursive call,
which actually corresponds to a depth-first discovery of the
tree. At a certain point, all the neighboring pixels of p will
be either in the queue or already processed, meaning that
the analysis of p has terminated; we cannot progress deeper
in the tree. Following this, p is removed from the queue
(line 29), parent(p) is set to r, i.e., the canonical element.
In order to ensure that the canonical element will be the
last one inserted, p is added to S when r 6= p (line 31).
After p is removed from the queue, the canonical element r
is attached to its parent only when the level component has
been fully processed (line 30). The last step (startging from
line 32) aims at setting the parenthood relationship between
components. The first element q of pqueue is retrieved, and
the PROCESS-STACK procedure is called (line 37) when q has
a different level than p. It pops the stack, sets the parent
relationship between the canonical elements, and inserts
them in S until the top component has a level no greater
than f(q)—lines 3 to 6. When the stack gets empty or the top
level is lower than f(q), then q is pushed on the stack as the
canonical element of a new component—lines 7 and 8. The
top element of the stack is the current root pixel—linelst:last
and following. The algorithm ends when all points in queue
have been processed, then S only misses the root of the tree,
which is the single element that remains on the stack (line 38
and following).

3.2 Merge-based Algorithms

The natural way to implement a parallel algorithm is to divide
the original image domain and compute the max-tree on
each sub-image using any algorithm from Fig. 2. In order

to compute this partition, the image should be split in Np
connected disjoint regions, which is the union that forms the
entire image domain. During this step, the image is split into a
reasonable number of chunks, which reflects the underlining
processing architecture, e.g., number of threads available. For
instance, when the number of image chunks is lower than the
number of threads the domain is not decomposed enough and
the distribution of the computations is not yet optimal (load
imbalance). Some threads will idle while having to wait for
other threads to finish. Once all sub-trees are generated, they
can be merged into a single global tree as proposed by Matas
et al. [40], Wilkinson et al. [35] and Ouzounis et al. [27].
This is a non-trivial phase as it requires that the gray-levels
of the connected components are merged and their parent
relationships updated.

The merging strategy introduced by Matas et al. [40]
follows the same principle used by Wilkinson. However, the
algorithm starts by computing partial 1-D trees (i.e., a tree
for each row of the image). Then, the trees that belong to
neighboring rows are merged progressively until the global
tree is obtained. The merging algorithm proposed by Wilkin-
son et al. [35] retrieves the global max-tree and its attribute
values from multiple sub-trees that can be derived over any
arbitrary image sections. Firstly, each thread computes a data
structure (i.e., partial max-tree) that sets the parent pointers
and accumulates attribute values. Afterward, all these sub-
domains are merged through the use of a binary tree. This
is achieved through a concurrent merging strategy which
connects two partial max-trees step by step. A synchronized
mechanism based on two binary semaphores defines when a
thread is ready to accept the domain of its neighbor (i.e., the
sender has to complete the max-tree computation). Once the
last connection is computed by the thread 0, all the threads
can resume and proceed with the filtering phase. Ouzounis et
al. [27] proposed a max-tree algorithm implementation for
attribute filtering based on the concurrent merging strategy
in [35]. The hybrid algorithm proposed in this paper relies on
the merging strategy used in [27], [35] and additional details
can be found in Section 4.

3.3 Connected Component Labeling

The main problem of generating the max-tree can be split
into two parts: find the connected components and estab-
lish their hierarchy. The task of grouping connected pixels
within an image can be seen as the well-known Connected
Component Labeling problem [41]. This is an important
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step for a large number of applications and it relies firstly
on finding which parts of an object, e.g., binary images,
gray-levels images, data with higher dimensionality, etc.,
that are physically connected, based on a connectivity rule,
and secondly, to label them. Iverson et al. [42] provide an
evaluation of connected-component labeling algorithms in
the context of distributed computing, when data that need
to be processed in a given application usually require large
processing power and distributed-memory machines. They
conclude that there is an unavoidable compromise to find
between memory and processing time. Most of the available
parallel algorithms are problematic especially in terms of
memory requirements. For instance, the merging step could
end up on a single node resulting in an unbalanced scenario.
However, algorithms that try to solve this problem provide
poor scaling results in terms of processing time. At the same
time Flick el al. [28] proposed a scalable distributed-memory
algorithm to overcome this problems raised by Iverson. They
have aimed to solve issues such as excessive memory usage,
extra computation and communication of the processors, and
load balancing. The main idea of the algorithm is similar to
the Shiloach-Vishkin algorithm [43] in that it transforms the
problem into finding weakly connected components within
the Bruijn directed graph [44]. It will be shown in Section 4
that the proposed algorithm uses the notion of tuples and in-
verse doubling in order to connect the overlap zones between
the split regions and resolves the connected components and
their corresponding parenthood.

4 DISTRIBUTED COMPONENT TREE ALGORITHM

In the following sections the algorithm for the parallel and
distributed computation of the component trees will be in-
troduced. To simplify the explanation, only the max-tree case
will be presented. A corresponding min-tree algorithm can be
inferred by reversing the order in which the gray-levels are
processed. Furthermore, the explanations assume a homoge-
neous, distributed systems. This refers in particular to the
workload distribution of the image into contiguous, equal-
sized partitions. For heterogeneous, distributed systems a
different, more appropriate strategy must be chosen, such as
proposed by Qin et al. [45].

4.1 Definitions and Notation

A two-dimensional gray-scale image f can be seen as an
undirected graph G = (V,E). V represents a set of vertices—
the pixels of the image—and n = |V | the total number
of pixels. Then E, a number of edges or non-ordered pairs
of vertices (vi, vj), with i, j ∈ [0, n[, which model the
neighborhood relationship of the pixels. Classically, images
are either four- or eight-connected [46], meaning the top,
left, right and bottom neighbors, respectively including the
diagonals, are considered connected neighbors. The entire
graph G is said to be connected if, for any p, q ∈ V , there
exists a path from p to q, which is a sequence of s > 1
vertices—i.e., p = p1, ..., ps = q—such that every pi ∈ V ,
and any two successive pixels of the sequence are adjacent
epi,pi+1

∈ E. Given this definition a connected component
CC is a subgraph of G such that VCC ⊆ VG , ECC ⊆ EG ,
∀ p ∈ VCC : f(p) = c, that is maximal: ∀ e = (p, p′) 6∈

ECC such that p ∈ VCC and p′ 6∈ VCC , f(p′) 6= c. A con-
nected component can be either weak or strong connected,
depending on the path length s. Weak connected graphs can
have an arbitrary path length, while for strong connected
graphs s = 2 holds. Furthermore, if not stated otherwise,
the following symbols are defined for the remainder of the
document: h and w is the height and the width of the
image f , respectively. The entire image has a gray-level depth
d, i.e., the number of different gray-values c. Concerning
parallelization, the number of available distributed compute
nodes is p, while the local number of shared-memory threads
is labeled with t. For the explanation of the distributed
resolution, it is also necessary to introduce what is coined a
tuples. These are essentially quartuples, mathematical tuples
with four components, of the form 〈ci, pk, cj , pl〉 with ci and
cj being two gray-values and pk and pl two vertices. They
are used to explicitly express edges e ∈ E of the image f
of a canonical point with a certain gray-value to a different
canonical point of a given other gray-value.

4.2 Concept

Algorithm 2 Pseudo-code of the proposed distributed max-
tree algorithm.

1: @parallel
2: function DISTRIBUTED-MAX-TREE(f)
3: p← number of nodes
4: r ← processor id in range [0, p[
5: t← number of threads
6: f ′ ← LOAD-PARTIAL-IMAGE(f, r, p)
7:
8: parents′ ← LOCAL-MAX-TREE(f ′, t)
9:

10: root tuples← HALO-TREE-EDGES(f ′, parents′)
11: area tuples← HALO-COMPONENTS(f ′, parents′)
12: tuples← RESOLVE(area tuples, root tuples)
13:
14: tuples′ ← REDISTRIBUTE(tuples)
15: parents← APPLY(tuples′, parents′)
16:
17: return parents

The general nature of the distributed max-tree algorithm
can be described as divide-and-conquer. This means, that the
entire problem, i.e., the image, is divided into sub-images
for which the respective max-trees are computed and that
are then successively merged along the division boundaries.
The major algorithmic challenge lies in the latter stage. It re-
quires to solve two demanding graph theory sub-problems—
connected component labeling and graph canonicalization—
in distributed memory environments. This work proposes
an iterative, parallel merging algorithm based on explicit
expression of the max-tree edges as directed tuples. For
this, halo-zones are employed—one-pixel wide, redundant
overlaps of the partial images of neighboring image chunks
(see also Figure 3). Conflicts within the tuples signify the
need to rearrange the edges of the boundary tree in order
to obtain a globally correct view. Such a conflict could for
example be, that the exact same gray-level component points
to different parent components in the partial trees.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

Analogous to the two graph problems to be solved, the
proposed algorithm requires two kinds of tuples. First, the
locally determinable edges of the boundary trees in the
halo zone (root tuples), and, second, information about
components that have been split due to the image division
(area tuples) and their the canonical points. In the pro-
posed resolution approach, the tuples are iteratively scanned
for and remapped to the most optimal candidates. This entails
merging split iso-level and determining the best parent or
root each component and as a result remapping the tuples.
Less optimal tuple candidates are replaced by transient edges
to ensure a correct merge of the remaining trees. Subse-
quently, the computed changes need to be applied to the
partial images. For this, the resolved tuples are send back to
the respective sub-images of origin, and utilized to obtain the
globally create max-tree. Algorithm 2 sketches the proposed
strategy.

4.3 Local Max-Tree Algorithm

For the local computation one can in principle employ any
correct max-tree algorithm. The proposed solution specifi-
cally utilizes a modified version of the recursive Salembier’s
depth-first flooding algorithm [4]. As observed by Carlinet
et al. [39], Salembier’s algorithm was rewritten in a nonre-
cursive implementation by Hesselink et al. [32] and later by
Nister et al. [33] and Wilkinson et al. [34]. In [34], it was
shown that replacing the hierarchical queue (used in [4]) by
a priority queue to perform the recursive flooding strongly
reduced the computation of component trees, especially for
high-dynamic range images (i.e., with floating point). Due
to the similarities of approach and the proved efficiency in
terms of processing time in [34] and [33], Carlinet et al. [39]
merged these solutions and suggested a novel non-recursive
implementation, which is utilized in this work. Additionally,
it has been enhanced to always use the minimal pixel index as
canonical point for an iso-level and to yield better computa-
tional performance. Algorithm 3 presents the corresponding
pseudo-code.

The first change can best be seen in line 26. In contrast to
the original non-recursive variant, the canonical area point
is not chosen at the beginning of an iso-level processing—
as it may not yet be the canonical minimum—but rather
constantly maintained throughout the process. This is done
by keeping the current area minimum at a specific place, e.g.,
the front of the pixel vector, and compared to on insertion
of new elements. Only after all pixels of the entire iso-level
is found, the canonical point is assigned in the parent image,
see also line 31, and thus minimality of the index guaranteed.

Moreover, when one considers the computational per-
formance of the algorithm, the proposed modifications also
allows for faster computation. Before, each gray-level had
its one hierarchical queue in Salembier’s original algorithm
formulation or a singular in Carlinet’s non-recursive refor-
mulation. This approach scales logarithmically with both, the
number of gray-levels as well as the number of pixels per
channel. In the proposed variant the gray-levels are keys to
a map, called stacks, that has vectors for the corresponding
pixels as keys. Then, insertions only scale logarithmically with
the number of gray-levels, for locating the respective vector
in the map, but the actual push operation happens in constant

Algorithm 3 Pseudo-code of the modified version of Salem-
bier’s depth-first, flooding-based max-tree algorithm.

1: function MAX-TREE(f)
2: stacks← {} . Initialization
3: pixels← {}
4: children← [ ]
5: for all p ∈ f do
6: parents(p)← −1
7: deja vu(p)← false
8:
9: start pixel← any index in f . Seed pixel

10: start grayv ← f(start pixel)
11: deja vu(start pixel)← true
12: PUSH(stacks(start grayv), start pixel)
13: PUSH(pixels(start grayv), start pixel)
14:
15: while not EMPTY(stacks) do . Depth-first
16: flood:
17: grayv ← MAX-KEY(stacks)
18: pixel← POP(stacks(grayv))
19: for all n ∈ N (p) do
20: if deja vu(n) then continue
21: deja vu(n)← true
22: PUSH(stacks(f(n)), n)
23: PUSH(pixels(f(n)), n)
24: if TOP(stacks) > BACK(stack) then
25: . Ensure canonical point is in front
26: SWAP(TOP(stacks), BACK(stacks))

27: if grayv < f(n) then
28: PUSH(stacks(grayv), pixel)
29: goto flood

30:
31: if EMPTY(stacks(grayv)) then . Iso-level done
32: c← pixels(grayv)
33: for all p ∈ pixels(grayv) do parents(p) ← c

34: . Remove the iso-level from the maps
35: ERASE(pixels, grayv)
36: ERASE(stacks, grayv)
37:
38: if EMPTY(stacks) then . Attach children
39: merge← MAX-KEY(stacks)
40: else
41: merge← grayv

42: while not EMPTY(children) and
↪→ BACK(children).grayv > merge do

43: child← POP(children)
44: parents(p)← child.pixel

45: PUSH(children, 〈merge, c〉)
46:
47: if not EMPTY(children) then . Attach root children
48: root← BACK(children).grayv
49: for all c ∈ children do parents(c)← root

50:
51: return parents
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time. Especially in images with a large amount of pixels, this
can drastically reduce computation time.

The strategy for shared-memory parallelization explained
by Ouzounis et al. [27] has been chosen. Their max-tree al-
gorithm was based on the parallel implementation proposed
by Wilkinson et al. [35]. The authors largely proved the
correctness and efficiency of the approach and they predicted
an achievable (near) linear speed-up beyond 4 CPUs. In
greater detail, the local image partition of the node distri-
bution step, is again virtually partitioned in t equally sized
horizontal chunks, without overlap, and assigned to one of
the t threads. For each of the partitions the partial max-tree is
computed using the introduced algorithm. The virtual images
boundaries are realized by excluding respective pixels in
the neighborhood searches. Finally, the partial max-trees are
merged using the connect function, equally presented by
Ouzounis et al [27]. Minor changes have been made to ensure
that the canonical points of each iso-level is guaranteed to be
minimal. This can be achieved by performing a look-ahead on
the upcoming elements of the merge stacks and potentially
swap them if required. After the local computation, one
would obtain the partial max-trees depicted in Fig. 3e and
Fig. 3f.

4.4 Tuple Generation

The tuple generation of the partial images is subdivided into
two major steps. First, there is the generation of root tuples,
representing the branches of the halo areas’ partial max-
trees, and, second, the area tuples—i.e., tuples that connect
or stitch the gray-level components divided by the image
partition.

The former set of tuples is generated by traversing the
boundary max-trees recursively upwards towards the root.
For each edge within the tree a corresponding tuple is created
with the canonical point of a sub-ordered, child iso-level
pointing to the canonical point of its parent. In line with
the used notation it is the result of a HALO-TREE-EDGES

function invocation. The performance of this step can be
further optimized by skipping already visited branches also
avoiding redundant tuples. Generating the root tuples can be
performed fully local and does not require any data exchange
with other processing nodes.

The former step, the connection of the split components,
is achieved by identifying differences in the labeling of the
canonical points of said components in the halo areas. It
is the result of a HALO-COMPONENTS function invocation.
This can achieved efficiently by performing two prefix-sums
pixels in the halo area of the partial images. In the first
run, the canonical points are broadcast downwards across
the partial images, while the second prefix-sum, in reverse,
back-propagates found differences. Each conflict implies that
a merge of the two components is necessary. Therefore, an
area tuple needs to be created. It maps the higher canonical
point xh to the lower xl, resulting in a tuple of the form
〈c, xh, c, xl〉. For a faster collapse of transitive chains in the
resolution stage, the inverse tuple 〈c, xl, c, xh〉 is additionally
generated and stored. This entire process of performing the
prefix-sums can be efficiently realized using a logarithmic
merge tree across all available nodes.

4.5 Distributed Tuple Resolution
The resolution of the tuples happens essentially in the same
mode as the generation of tuples. First, the area tuples
are resolved, which requires the iterative resolution of the
weakly connected area components into strong ones, and
then, second, the resolution of the edges for the normal-
ized components. The respective high-level pseudo-code is
displayed in Algorithm 4. It makes use of the distributed
communication primitive ALLREDUCE several times. In line
with this text it should be understood as a function that
reduces, i.e. combines, vector of values with the same length
and arbitrary, but consistent data types, element-wise using
an operator given as second parameter. The single, final result
vector is broadcast to all participating distributed compute
nodes. ALLREDUCE can be efficiently implemented using a
logarithmic communications tree.

Algorithm 4 Pseudo-code of a single iterations of the dis-
tributed area tuple resolution.

1: @parallel
2: function RESOLVE(area, roots)
3: tuples← []
4:
5: loop
6: all done← ALLREDUCE(EMPTY(roots), And)
7: if all done then break
8:
9: grayv ← ALLREDUCE(MAX-KEY(roots), Max)

10: unresolved← true
11: while unresolved do
12: GLOBAL-SORT(area)
13: rules← RESOLVE-COMPONENTS(area(grayv))
14: unresolved← REMAP(area(grayv), rules)
15: unresolved← ALLREDUCE(unresolved,Or)
16:
17: resolved← RESOLVE-ROOTS(grayv, area, roots)
18: tuples← CONCAT(tuples, resolved)

19:
20: return tuples

In general, the area tuple resolution is inspired by the dis-
tributed connected component labeling algorithm presented
by Flick et al [28]. The goal is to turn a weakly connected
graph, here the components, into a strongly connected ones,
meaning directly pointing to the correct canonical point of
an area without intermediate, transitive connections. This is
achieved by following the graph edges until the most optimal,
i.e., smallest pixel point is found. However, in distributed
memory environments it might not be possible to follow
all paths directly as they might be residing on a different
machine. To overcome this, the longest local partial graph
paths are computed and iteratively shortened until the strong
graphs are found. For this, all tuples are globally sorted,
i.e., across all nodes, and locally linearly scanned for the
most optimal candidate, remapped and saved. This process
is repeated until convergence is achieved, which is equal to
having no tuples remapped in the current iteration. Techni-
cally, there are two challenges involved in this.

First, there is the problem of globally sorting (GLOBAL-
SORT in Alg. 4) the tuples. This means that all tuples need



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

to be partially ordered, so that the smallest element is on
the node with the smallest rank and the maximal tuple on
the node with the highest rank. For this, the distributed
max-tree algorithm uses an enhanced version of the parallel
sorting by regular sampling algorithm [47]. In the variant
that is proposed here, the number of tuples are additionally
balanced after sorting them, in order to keep the workload
equal on each node.

Algorithm 5 Pseudo-code of the component resolution algo-
rithm mapping weakly connected tuples into stronger ones.

1: function RESOLVE-COMPONENT(area tuples)
2: rules← {}
3:
4: for all tuple ∈ area tuples do
5: from← tuple.from
6: to← tuples.to
7: if to > from then SWAP(to, from)
8: canonical← CANONIZE(rules, from)
9: min← MIN(canonical, to)

10: max← MAX(canonical, to)
11: rules[from] = min
12: rules[max] = min

13:
14: ends← [FRONT(area tuples), BACK(area tuples)]
15: LEFT-PREFIX-SUM(ends, rules,Min)
16: RIGHT-PREFIX-SUM(REVERSE(ends), rules,Min)
17:
18: return rules

Second, there is the problem of finding the strongest
connected components local to each node. The approach
proposed here, is sketched in Algorithm 5. Each of the
area tuples is linearly scanned and the most optimal, i.e.
smallest canonical point memorized in an associate map
called rules. These can then be applied to the tuples by
scanning them once again and modifying the During the
transitive solution the entire rule chain needs to always be
canonized and the currently known minimum pointed to
(lines 8–12). If the tuples are balanced during the global
sorting step, the resolution of the partial component graphs,
i.e., all the tuples with the same origin, may additionally be
fragmented across the memory of multiple nodes. Therefore,
the distribute max-tree algorithm must connect these partial
graphs in each iteration. This can be achieved by exchanging
the start and end of the sorted tuple chain including the
found canonical point with the direct neighbors. Given that
the neighboring node proposes a better canonical point, it
is adopted instead of the one found locally. Transitivity is
achieved by logarithmically merging these chains across all
available machines. For this two prefix-sums (sometime also
cumulative sum or scan, lines 15–16), first from left to right
across the ranks, and then in reverse to propagate potentially
better canonical points back.

Furthermore, each tuple exists twice. Once in the “correct
direction” pointing from the larger pixel index to the lower
index and its inverse, pointing from low to high. Whenever
a tuple is remapped, the tuple is flipped, i.e., the direction is
changed, for the next iteration in order to back propagate
this change to its inverse. The reason behind this is, that

the inverse tuple might have found an even more optimal
canonical point coming from the other side of the chain,
due to say half circular structures on the image. Both tuples
are then updated and the transitive chain collapsed much
quicker. As an effect of this, the number of iterations heavily
reduces, as introduced by Flick et al [28].

After the canonicalization of the weak connected compo-
nents into strong connected components, the roots for each
of the canonical points must be found. The corresponding ap-
proach is sketched in Algorithm 6. For this, the area tuples
and root tuples are merged first in order to normalize of
the components’ canonical points (lines 2–4). Only then can
the most optimal root for each component be determined.
This is achieved by once again linearly scanning the tuples
and memorizing the best candidates in an associative map
called best roots. Similarly to the area tuples fragmenta-
tion, root candidates of a single component may be scattered
across multiple nodes. Therefore, they must be connected two
prefix-sum operations (lines 7–10).

In a third and final linear scan over the combined tuples
the found best roots are evaluated. There are four possible
options. First, the tuple’s root gray-value is smaller, i.e. it is
further up in the tree, than the best root. In this case, a tuple
needs to be created that connects the best root transitively
with the one from the tuple (see case 2). Second, the gray-
value of the tuple and the best root match, but the root
has a smaller canonical point (see case 3) This means that
the root and its connected component as well as the one
of the neighbor are weakly connected via the area of the
current tuple. An area remapping tuples needs to be created,
including its inverse, and added to the area tuples. Third,
the current tuple already points correctly to the best root
(see case 4), then the tuple is inverted, essentially pointing
the “wrong” way around from the root to the lower area and
pushed into the root’s gray-valued tuple bucket. The reason
behind this is, that the canonical point of the root might still
be changed during the area resolution phase of its gray-value.
Therefore, it may not be marked as finished yet, but kept
until the respective gray-level of the roots has been resolved.
Finally, the fourth condition (see case 1) is meant for inverted
root tuples. After their normalization, they are flipped yet
again into the “correct” order, i.e., pointing from high gray-
values to low gray-values and send back to its respective tuple
bucket.

4.6 Obtaining the Global Parent Image

After the tuples have been resolved the global parent image
can be obtained by redistributing the tuples back to their
original sub-image. For this, the each tuple is send back
to the node, that contains the pixel with the index of the
second tuple component, independent whether it is a area
or edge tuple. Each of the area tuples is then stored in an
associative container, mapping from the original points to the
canonical point. Subsequently, while iterating over the image,
each of the pixels is normalized to its correct canonical points
using said data structure. The root tuples are handled slightly
differently. Each tuples is visited once and the pixel index at
the from part of the tuples is simply set to the destination of
the tuple. After this step, each node posses the correct partial
parent image representing the global max-tree.
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Halo Halo

0 (0) 1 (1) 0 (2) 3 (3)

0 (4) 3 (5) 0 (6) 3 (7)

0 (8) 3 (9) 0 (10) 3 (11)

0 (12) 3 (13) 3 (14) 3 (15)

2 (16) 0 (17) 1 (18) 2 (19)

(a) Unpartitioned image

0 (0) 1 (1) 0 (2) 3 (3)

0 (4) 3 (5) 0 (6) 3 (7)

0 (8) 3 (9) 0 (10) 3 (11)

(b) Partial image of p0
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2 (16) 0 (17) 1 (18) 2 (19)

(c) Partial image of p1
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gray-level

(d) Unpartitioned image
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(e) Max-tree of p0’s partial image.
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0
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1
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2
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0

1
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gray-level

(f) Max-tree of p1’s partial image.

1) Identify partitioned components. Utilize conflicts in canonical point labeling within the halo areas (area tuples).
Tuples in this step are doubled, from large to small and inverted.

HALO COMPONENTS {3 :[〈3, 5, 3, 3〉, 〈3, 3, 3, 5〉]}
{0 :[〈0, 8, 0, 0〉, 〈0, 0, 0, 8〉]
3 :[〈3, 9, 3, 3〉, 〈3, 3, 3, 9〉]}

2) Determine the edges of the boundary max-trees and represent them as tuples (root tuples).

HALO-TREE-EDGES
{3 :[〈3, 3, 0, 0〉, 〈3, 5, 1, 1〉]
1 :[〈1, 1, 0, 0〉]}

{3 :[〈3, 9, 2, 19〉]
2 :[〈2, 19, 1, 18〉]
1 :[〈1, 18, 0, 8〉]}

3) Iteratively resolve the generated the tuples beginning from the highest to the lowest gray-level—component first, then
edges. Tuples with ↓ are dropped (incorrect or inverted),  mark conflicts during remapping and applied changes are bold.

RESOLVE

C3

RESOLVE-COMPONENTS
NORMALIZE
RESOLVE-ROOTS
Generated tuples

[〈3, 3, 3, 5〉 ↓, 〈3, 3, 3, 9〉 ↓]
[〈3, 3, 0, 0〉, 〈3, 5, 1, 1〉 , 〈3, 5, 3, 3〉 ]
[〈3, 3, 0, 0〉 , 〈3,3,1,1〉 ]
[〈2,19,0,0〉, 〈2,19,1,1〉]

[〈3, 5, 3, 3〉, 〈3, 9, 3, 3〉]
[〈3, 9, 2, 19〉 , 〈3, 9, 3, 3〉 ]
[〈3,3,2,19〉 ]
[]

C2

RESOLVE-COMPONENTS
NORMALIZE
RESOLVE-ROOTS
Generated tuples

[]
[〈2, 19, 0, 0〉, 〈2, 19, 1, 1〉]
[〈2, 19, 0, 0〉 , 〈2, 19, 1, 1〉 ]
[〈1,1,0,0〉, 〈1,1,1,18〉]

[]
[〈2, 19, 1, 18〉]
[〈2, 19, 1, 18〉 ]
[〈1,18,1,1〉]

C1

RESOLVE-COMPONENTS
NORMALIZE
RESOLVE-ROOTS
Generated tuples

[〈1, 1, 1, 18〉 ↓]
[〈1, 1, 1, 18〉]
[〈1, 1, 0, 0〉 ]
[〈0,0,0,8〉]

[〈1, 18, 1, 1〉]
[〈1, 18, 0, 8〉 , 〈1, 18, 1, 1〉 ]
[〈1,1,0,8〉 ]
[〈0,8,0,0〉]

C0

RESOLVE-COMPONENTS
NORMALIZE
RESOLVE-ROOTS
Generated tuples

[〈0, 0, 0, 8〉 ↓, 〈0, 0, 0, 8〉 ↓]
[〈0, 8, 0, 0〉]
[]
[]

[〈0, 8, 0, 0〉, 〈0, 8, 0, 0〉 ↓]
[]
[]
[]

Fig. 3: Toy example demonstrating the tuple resolution of the distributed max-tree algorithm.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

TABLE 1: Overview of the worst-case time, space and message complexity of the distributed max-tree algorithm steps.

Time Space Messages

Image chunking O(n
p
) O(n

p
) O(1)

Local max-tree O( n
p×t
× log(d) + w × log(t)) O(n

p
+ t× w) −

Root tuple generation O(w × d) O(w × d) −
Area tuple generation O(w × log(p)) O(w) O(log(p))
Tuple resolution O(k × d× w

d
× log(w × d)× log(p)) O(w × d) O(k × d× log(p))

Redistribution O(w × d) O(w × d) O(log(p))
Application O(w × d+ n

p
× log(w × d))) O(w × d) −

Algorithm 6 Pseudo-code of the distributed resolution of the
root tuples.

1: function RESOLVE-ROOTS(grayv, area, roots)
2: combined← CONCAT(area(grayv), roots(grayv))
3: GLOBAL-SORT(combined)
4: NORMALIZE(combined)
5:
6: . Determine best root for each components globally
7: best roots← FIND-BEST-ROOTS(combined)
8: ends← [FRONT(combined), BACK(combined)]
9: LEFT-PREFIX-SUM(ends,Min)

10: RIGHT-PREFIX-SUM(REVERSE(ends),Min)
11:
12: for all tuple ∈ combined do
13: root← best root[tuple.from]
14: if tuple.grayv > tuple.n grayv then . Case 1
15: PUSH(roots(tuple.grayv), INVERT(tuple))
16: else if tuple.grayv < root.grayv then . Case 2
17: PUSH(roots(root.grayv),

〈
root.grayv,

↪→ root.from, tuple.n grayv, tuple.to
〉

18: else if tuple.n grayv = root.grayv and
↪→ root.pixel < tuple.to then . Case 3

19: t to← CANONIZE(tuple.to)
20: r to← CANONIZE(root.to)
21: n c← tuple.n grayv
22: min to← MIN(t to, r to)
23: max to← MAX(t to, r to)
24: PUSH(area[n c], 〈n c, tuple.to, n c,min to〉)
25: PUSH(area[n c], 〈n c,min to, n c, tuple.to〉)
26: PUSH(area[n c], 〈n c,max to, n c,min to〉)
27: PUSH(area[n c], 〈n c,min to, n c,max to〉)

28: else . Case 4
29: PUSH(roots(root.grayv),

〈
root.grayv,

↪→ root.from, tuple.grayv, tuple.from
〉

30:
31: return tuples

5 IMPLEMENTATION

The proposed parallel algorithm has been implemented in
C++ and is available on the open-source code repository
Github [48]. The coarse-grained parallelization across mul-
tiple nodes has been realized using the Message Passing
Interface (MPI) [49]. For the shared-memory implementa-
tion C++11 native threads have been used. The algorithm
accepts data loaded from files in the Hierarchical Data Format
5 (HDF5) format [50], which it will also store the resulting
parent image to.

5.1 Complexity

In this section the time and space complexity for the algo-
rithm steps of the distributed max-tree computation are laid
out. A summary can be found in Table 1. The used symbols
are explained in Section 4.1. All formulas are given for the
worst-case scenario.

The time and space complexity for loading the sub images
can be straight-forward inferred and amount to the number
of total pixels divided by the amount of available processing
nodes, as each of the receives an equally size chunk of the
entire problem. This requires to potentially exchange one
message in which the image dimensions are broadcast. For
the local max-tree computation each of the t thread needs to
allocated the part of parent image, that is equal in size to the
processed raw image, plus and additional area remapping
that is solely dependent on the image width, explaing the
space complexity. The computational complexity consists of
the linear image-scan for each thread and sub-image, which
in turn need to do look-ups into the associative container
for the stacks, resulting in the first summand. However,
each thread needs to be merged with its direct neighbors,
which can be done in logarithmic fashion as explained in
Section 4.3, along the virtual split boundaries, i.e., the width
of the image.

The next two steps involve the generation of the tuples.
In the worst case, for each of the boundary pixels—again
the width of the image—a tuple needs to created, resulting
in according space and time complexity. Although, in practice
the number will most of the times be much lower, because the
boundary zones mostly consists of connected flat zones with
shared parents nodes, resulting in early outs. In fact, the av-
erage complexity should therefore be closer toO(w∗ log(d2 )),
but is for obvious reasons dependent on the analyzed data.
Contrary to root tuples, which can be generated entirely local,
area tuples needs to be stitched together across all processing
nodes, resulting in the additional factor for the time complex-
ity. Using a two prefix-sum operations this information can be
exchanged in a logarithmic number of communication steps,
explaining the messaging complexity.

The main resolution consists of k iterations of sorting,
linearly scanning and remapping the tuples for each of the
available gray-levels of the gray depth d. It is assumed here
that the number of tuples per gray-level is more or less
evenly distributed, resulting in the purposefully chosen term
w
d (it would actually cancel out with d). The sorting adds
both logarithmic components, over the number of tuples and
nodes, as it requires reordering them across all machines.
One of the major uncertainty factors is the iteration constant
k, which is dependent on the data. In the worst case, k
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is equal to the number of processing nodes p as upper
bound, given a single tuple needs to visit each single machine
due to transitivity. However, in practice, the iteration count
will remain low, typically only one or two, even for a high
number of nodes, due to the area stitching step and tuple
inversions, effectively minimizing the canonicalizations. The
corresponding message complexity can be explained in a
similar fashion. For each of the d gray-levels, k iterations
are performed requiring the communication of the tuples
using a logarithmic communication primitive across all cores.
Thereby, the tuples can be exchanged in whole, not requiring
to break them down into individual messages.

Finally, the resolved tuples need to be send back to the
partial image of origin and locally applied. The former step,
requires to exchange messages between each of the nodes.
Using a logarithmic communication tree, this can be done
ad hoc, explaining the message complexity. The later step
requires iterating over the whole image and normalizing
each of the pixels using an associative data structure with
logarithmic look up time. This is the reasons for the second
summand in the time complexity equation. The first can be
explained by the changing roots by directly assigning them
while iterating through the tuples.

Generally, the algorithm has complexity classes that are
either linear or linear-logarithmic, supporting good scalabil-
ity overall. The only bottleneck seems to be the iterative
constant k that could potentially degrade into the number
of used compute nodes p as upper bound. However, this is
rarely the case in practical use and presents an opportunity
for future research.

5.2 Implementation Details

For the algorithm implementation the Message Passing In-
terface (MPI) [51] programming framework has been used.
It provides low-level network communication primitives to
exchange one-to-one and many-to-many messages between
the participating distributed nodes. Efficient algorithms usu-
ally rely on the later category of operations, the so-called
collectives, due to possibility of achieving a logarithmic scal-
ing, in time and number of messages, across the number
of cores. The proposed implementation makes use of two
concrete function. On the one hand this is MPI_Allreduce
and on the other hand this is MPI Scan. The latter is a
concrete realization of the prefix-sum operation, accepting
a vector of input values and element-wise calculating the
left partial sum with respect to the passed binary operator.
In the proposed algorithm implementation is used at various
points, e.g. connecting the components in the halo areas or to
exchange the canonical points of the partial strong connected
components (see Section 4.5).

Specifically for the generation of the area tuples that
connects the halo zones, two prefix-sums, alternating from
left to right, are necessary. The first operations identifies
conflicts in the canonical point labeling and the second
propagates them back. In order to retain the complete in-
formation about all remapping rules for all nodes, the prefix-
sum function (MPI_Scan) would require an exchange buffer
with a worst case memory complexity of O(p ∗ w ∗ 2)—i.e.
two halo zones 2 ∗ w for each of the p nodes. This is highly
undesirable, as it scales both, with the number of processing

nodes as well as the width of the image. One can realize this
operation more efficient, if only the outer boundaries of the
already merged images are communicated and the intermedi-
ary remapping rules are memorized in a data structure, e.g.,
a map, across the two MPI_Scan calls. Then, the memory
complexity of the sent buffer simply becomes O(w ∗ 2).

The MPI framework does allow the registration of custom
functions for collective calls, such as MPI_Scan. These must
be associative and optionally commutative, which is satisfied
by the above operation. In practice, however, such a reduction
function additionally needs to have static linkage, or in other
words, it must be a singleton. Furthermore, due to the defini-
tion of the MPI API standard, it is also not possible to pass any
context or state, say an object pointer to the aforementioned
map, to the prefix-sum. For this reason, a straight forward
realization of the stateful MPI_Scan is not possible. Yet,
there is the alternative of working around this limitation by
accessing static data structures, e.g. a map modeling the local
execution context, within the scope of the custom reduction
operation. This could be a globally defined variable or static
class member.

Algorithm 7 Pseudo-code of a thread-safe, stateful MPI
reduction operation and subsequent usage by a prefix-sum.

1: mutex← CREATE MUTEX()
2: rules← {}
3:
4: procedure REDUCTIONOPERATION(in, out)
5: LOCK(mutex)
6: local rules←FIND(rules, thread id)
7: UNLOCK(mutex)
8: MERGE(in, out, local rules) . actual work
9:

10: procedure CAPTURESTATE(local rules)
11: LOCK(mutex)
12: PUT(rules, local rules)
13: UNLOCK(mutex)
14:
15: local rules← {}
16: op←MPI OP CREATE(REDUCTIONOPERATION)
17: CAPTURESTATE(local rules)
18: MPI SCAN(..., op)

In this case, though, the whole distributed max-tree im-
plementation effectively also becomes a singleton and may
not be used in multi-threaded environments, which is sub-
optimal for a number of analysis uses cases. Therefore, it
has been chosen an approach as sketched in Algorithm 7.
A set of potential remapping data-structures from different
threads is stored in a global associative container, here rules,
guarded by amutex. Before calling an MPI_Scan the remap-
ping data-structure must be stored and during the custom
reduction operation retrieved. In order to be able to correctly
retrieve the remapping data-structure a unique, shared key
must be chosen, for example the current thread identifier.

One enhancement to and possibility for future research on
the MPI standard versions could be, to directly allow passing
context pointers to every API call that utilizes reduction
operations. This pointer is simply forwarded to the custom
reduction operation on each invocation and then used to
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realized stateful behaviour. In case a context is not needed,
it may be set to null. As a result, this would remove the
locking overhead and the code becomes cleaner and more
understandable.

6 EXPERIMENTAL EVALUATION

6.1 Environment

The experiments have been performed on the JURECA sys-
tem [52] at the Juelich Supercomputing Centre. The sys-
tem consists of 1884 compute nodes with each having two
Intel R© Xeon R© E5-2680 v3 Haswell CPUs with 12 cores at
2,5 GHz and Hyperthreading. 1604 compute nodes have 128
GiB, 128 nodes 256 GiB, 74 node 512 GiB and two nodes
1024 GiB DDR5 RAM. For our experimental evaluation the
following software libraries have been used—HDF5 1.8.18
parallel and ParaStation MPI 5.1.9. Source code
has been compiled with g++ 5.4.0 optimization level 03.
The available benchmark for the experiments relies on a
maximum of 32 nodes and 24 threads.

6.2 Datasets

As for the used data, the tests have been performed on two
real-world images depicted in Figure 4. The first dataset
is a Pléiades Ortho Product 1 that was acquired over the
Naples metropolitan area (Italy) in 2013. It includes four Pan-
sharpened images with spatial and radiometric resolution of
0.5m and 8 bpp, respectively. This dataset was selected due
to its free availability, its sufficient size and spatial resolu-
tion, which are relevant to the needs of the remote sensing
community for scalable and accurate methods that allow to
classify rapidly and accurately objects of interest over vast
areas, as was discussed in Section 1 (e.g., produce very high
resolution land cover mapping at the European scale). The
second dataset is an image that was taken at the ESO Paranal
Observatory in Chile by the Visible and Infrared Survey
Telescope for Astronomy (VISTA). It portraits more than 84
million stars in the central regions of the Milky Way [53]. The
Figure 4a and Figure 4b show the true-color image of both
datasets. For the Naples dataset, experiments are performed
only using the first channel [54]. For the ESO, the RGB image
is simplified to a singular luminance channel, similarly to how
it was done by Moschini et al. [37] in order to obtain similar
conditions for benchmarking the proposed algorithm. The
luminance image is obtained through weighing and summing
the channels, so that L = 0.2126R + 0.7152G + 0.0722B.
However, in order to show that the algorithm scales regard-
less of the domain size of the gray-levels, three different
quantization levels are derived from the luminance channel:
8-uint bpp, 16-uint bpp and 32-float bpp [55]. Contrary to
[37], the original size of the image is preserved (≈9Gpx),
since the JURECA system provides node with large memory.

6.3 Experimental Setup

As discussed in Section 3 there are a number of other serial
and parallel versions of the algorithm. Most of them report

1. http://www.intelligence-airbusds.com/en/23-sample-imagery

different value permutations for the computation time, mem-
ory consumption, speed-up and scalability of their implemen-
tations. Carlinet et al. [39] provide their used benchmarks,
datasets and the source codes in C++ for many different
serial and parallel algorithms2. In order to compare results
achievable by using serial and parallel computing, the Berger
et al. [16] algorithm has been selected. Moschini et al. [37]
proved that Berger is the fastest sequential algorithm for
images with high quantization values and even floating. How-
ever the algorithms depend on the MILENA image processing
library [56] (i.e., provide fundamental image types and I/O
functionality) which was not designed to handle very large
images and floating values. For these reasons it was necessary
to re-write a new C++ implementation of the algorithm
which is library independent. For the parallel processing case,
the hybrid shared-memory parallel max-tree algorithm devel-
oped by Moschini et al. [37] was considered. The algorithm
has been implemented in C using POSIX threads and the
source code is available publicly3. Contrary to the MILENA
library, this algorithm has been proposed with the purpose
of dealing with large-scale and high-dynamic range images,
and was therefore ready to be used out-of-the-box. It may
be argued that the comparison is not entirely fair due to
the different nature of the algorithms—i.e., shared-memory
and distributed-memory—but can very well be investigated
for the same number of utilized cores. The expectation natu-
rally is that distributed memory implementation, as the one
proposed here, are naturally going to have more overhead
compared to shared-memory versions. To the best of our
knowledge the only distributed max-tree algorithm has been
proposed recently by Kazemier et al. [38], but the source
code was not obtainable at the time of writing as it is not yet
released.

TABLE 2: Hybrid: multithreading+MPI.

Nodes 1 1 2 2 4 4 8 8

Threads 1 2 2 4 4 8 8 16

Cores 1 2 4 8 16 32 64 128

The performance assessment of the algorithms proposed
by Berger and Moschini against the algorithm proposed in
this paper is conducted with two kinds of benchmarks. The
first type is focused on the computation time and speed-
up, while the second measures memory consumption. Each
benchmark configuration, meaning a particular node and
core count, is executed five times and the following statis-
tics are reported: mean µ, standard deviation σ, minimum,
maximum, and coefficient of variation (CV ), defined as
ν = σ

µ [57]. The use of the multithreading/MPI hybrid
features of the algorithm allows to span the MPI process
on each node available and to parallelize it locally using
multithreading. For this reason, both types of benchmarks
are performed on each number of cores, as shown in Table 2.
The strategy is to evaluate first the performance on one core
of one node. Afterwards the number of threads are doubled
alternating with doubling the number of nodes, until the
maximum of 128 cores across nodes and threads is reached.

2. https://www.lrde.epita.fr/wiki/Publications/carlinet.14.itip
3. http://www.cs.rug.nl/ michael/ParMaxTree/
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(a) Pan-sharpened, true-color image of Naples, Italy. (b) Central Milky Way, captured by the ESO, Chile.

Fig. 4: Benchmark images used in the experimental evaluation of the algorithm.

6.4 Speed-up and Memory Consumption

The Figure 5 depicts the experimental results related to the
processing time. For each dataset, the plot of the mean
execution time and the plot of the speed-up for increasing
number of cores is reported. In order to make a fair compari-
son with the state-of-the-art results (i.e., the shared-memory
algorithm [37]), the proposed algorithm is first run on a
single node. The algorithm’s execution time measures the
beginning and end of the main() function of the process
with the MPI rank 0 and the thread number 0. The speed-
up coefficient is computed as tp = t1/tc. the fraction of the
execution time with a single core and the execution time with
multiple processing cores. Generally it can be said that the
proposed algorithm is able to gain a substantial speed-up for
both data sets and the different gray-levels quantizations.

For the 8bpp case, the algorithm shows a constant, near
linear speed-up curve. In both datasets, the speed-up shows
an increasing behavior for up to 256 cores with no reason
to doubt its consistency for a higher number of cores, with
an execution time of 9.38 and 62.35 seconds for Naples
and ESO, respectively. However, for ESO 16bpp and 32bpp
the speed-up flattens sooner, stabilizing at 64 and 16 cores,
respectively. With a high gray-level depth, the number of
tuples is increasing sharply, resulting in larger merge time.
The effect observable here is the Amdahl speed-up boundary
for a constant workload.

TABLE 3: Processing times (mean values in minutes and
statistics) of the sequential Berger algorithm.

Images Mean µ StDev σ CV Min Max

Naples 13.54 0.484 0.001 13.53 13.55

ESO 8bpp 113.76 6.011 0.001 113.62 113.91

ESO 16bpp 184.56 9.877 0.001 184.35 184.73

ESO 32bpp 185.67 19.457 0.002 185.34 186.21

When these results are compared with the Moschini
algorithm, the proposed algorithm always provides faster
execution times. Unfortunately, for the dataset ESO 32bpp it
was not possible to derive any conclusions since the Moschini

algorithm did not terminate. A more detailed analysis of the
execution time for the different phases of the algorithm (see
the Algorihtm 2) is depicted in Figure 6. The results are
related only to a single dataset case (ESO 16bpp) because
of space considerations. Each set of rows depicts a a specific
number of nodes (i.e., 1 node, 2 nodes, 4 nodes and 8 nodes).
The time distribution for increasing number of threads is
shown in each row. For the single node case, the computation
of the local max tree is the most time-consuming phase. This
is a shared-memory scenario where the three phases concern-
ing the management of the tuples do not take place. When the
number of threads increases, the second most costly phase is
the local apply. The local merge needs to be considered only
beyond four threads. The same conclusions can be derived
for the remaining nodes configuration. However, since it is a
distributed memory environment, the phases connected with
tuple handling are also present.

In the two-node case the tuple generation phase and the
global apply are mostly present, the weight of the tuple reso-
lution becomes more pronounced the higher the node count.
This behavior can best be explained by the algorithm com-
plexity, explained in Table 1, showing a logarithmic scaling
with the number of processing cores. As has been shown here,
the parallel implementation allows to achieve a significant
processing time gain when compared with serial processing.
In Table 3 the processing times for the different datasets are
presented. When considering ESO 32bpp, which is the more
challenging dataset used in this work, the proposed algorithm
computes the max-tree in ≈27 minutes (with 24 cores) while
Berger converges only after ≈3 hours.

Last but not least, comments should be made regarding
the memory consumption of the proposed algorithm. Con-
sidering the usual trade-off between memory consumption
and computational time, the experiments show the proposed
algorithm is more memory efficient and takes shorter compu-
tational time than Berger and Moschini. Table 4 and Table 5
scrutinize the memory consumption (in GB) for the different
algorithms with Naples and ESO 16bpp images, respectively,
when computing on a single node. For each given number of
threads, it can be noticed that the average and the maximum
memory usage of all the tasks in the job are always lower for
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Fig. 5: Execution time, speed-up and memory consumption curves of the proposed and Moschini’s algorithm for increasing
number of threads. The thread count for Moschini and Proposed (Shared) is increased locally on a single node. In case of the
hybrid setting the number of threads and number of nodes are doubled alternately (refer to Table 2).
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Fig. 6: Execution time distribution of the proposed algorithm for the ESO 16bpp dataset. n signifies the number of utilized
nodes and t the number of threads for on each node.

TABLE 4: Memory consumption (mean values in GB and
statistics) for the different algorithms with Naples image
when using a single node. For each threads setup, the average
and the maximum resident set size of all the tasks in the job
are reported, respectively.

Algorithm Threads Mean µ StDev σ CV Min Max

Berger et al. [16] 1 59.65 0.327 0.005 59.35 60.19 Average
66.89 6.429 0.096 63.29 78.13 Maximum

Moschini et al. [37]

1 91.99 1.955 0.021 89.64 93.52 Average
116.83 0.000 0.000 116.83 116.83 Maximum

2 89.03 0.590 0.007 88.10 89.64 Average
116.83 0.000 0.000 116.83 116.83 Maximum

4 82.82 1.988 0.024 81.19 86.09 Average
116.83 0.000 0.000 116.83 116.83 Maximum

8 79.33 3.161 0.040 73.99 81.80 Average
116.84 0.000 0.000 116.84 116.84 Maximum

16 74.23 5.571 0.075 64.96 79.14 Average
116.84 0.000 0.000 116.84 116.84 Maximum

24 62.45 4.593 0.074 58.83 70.03 Average
116.84 0.000 0.000 116.84 116.84 Maximum

Proposed

1 18.93 0.340 0.018 18.43 19.32 Average
22.36 0.106 0.005 22.22 22.45 Maximum

2 18.40 0.657 0.036 17.81 19.12 Average
23.13 0.106 0.005 22.94 23.18 Maximum

4 18.18 0.107 0.006 18.06 18.33 Average
22.92 0.178 0.008 22.68 23.17 Maximum

8 16.23 1.159 0.071 14.79 17.19 Average
23.07 0.544 0.024 22.44 23.64 Maximum

16 14.28 2.082 0.146 10.66 15.63 Average
24.24 0.686 0.028 23.24 25.15 Maximum

24 23.11 1.872 0.081 20.42 25.00 Average
22.35 0.099 0.004 22.18 22.41 Maximum

TABLE 5: Memory consumption (mean values in GB and
statistic) for the different algorithms with ESO 16bpp image
when using a single node. For each threads setup, the average
and the maximum resident set size of all the tasks in the job
are reported.

Algorithm Threads Mean µ StDev σ CV Min Max

Berger et al. [16] 1 292.30 0.217 0.001 291.93 292.48 Average
296.70 0.001 0.000 296.70 296.70 Maximum

Moschini et al. [37]

1 457.71 0.777 0.002 456.98 458.61 Average
525.21 0.001 0.000 525.21 525.21 Maximum

2 472.53 0.898 0.002 471.54 473.76 Average
525.21 0.001 0.000 525.21 525.21 Maximum

4 436.67 1.761 0.004 434.06 437.89 Average
525.21 0.001 0.000 525.21 525.22 Maximum

8 409.87 3.323 0.008 406.41 414.84 Average
525.21 0.001 0.000 525.21 525.22 Maximum

16 383.99 2.466 0.006 381.68 387.10 Average
525.22 0.001 0.000 525.22 525.22 Maximum

24 380.92 5.482 0.014 376.22 388.25 Average
525.22 0.001 0.000 525.22 525.22 Maximum

Proposed

1 102.39 0.091 0.001 102.32 102.54 Average
114.13 0.052 0.000 114.08 114.20 Maximum

2 103.04 0.307 0.003 102.61 103.43 Average
113.84 0.028 0.000 113.81 113.88 Maximum

4 102.34 0.528 0.005 101.65 103.05 Average
117.99 0.036 0.000 117.95 118.03 Maximum

8 100.80 0.458 0.005 100.25 101.46 Average
121.55 0.068 0.001 121.48 121.62 Maximum

16 94.86 1.264 0.013 93.58 96.30 Average
124.43 0.185 0.001 124.27 124.72 Maximum

24 94.27 1.714 0.018 92.95 96.19 Average
124.82 0.241 0.002 124.46 125.05 Maximum
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the proposed algorithm. This means that the algorithm is able
to scale in terms of memory consumption and communication
cost with respect to large datasets and the number of parallel
cores. This is an important factor, considering most of the
time the main constraint lies in the memory size.

7 CONCLUSION

In this work a new parallel and distributed algorithm for the
computation of the max-tree of an image has been presented.
The parallelization strategy consists of splitting the entire
problem, i.e., the image, into equal-sized sub images, for
which the partial max-trees are computed that are subse-
quently merged at the split boundaries. Using this algorithm,
substantial speed-ups and scalability could be achieved in
computing the max-tree on large real-world images, out-
performing the state-of-the-art shared memory implemen-
tation. In particular, faster execution time and significantly
less memory consumption can be achieved. The proposed
algorithm allows to process gray-scale image of arbitrary
gray-level depth including floating point values. This makes it
suitable for the usage in large-scale image classification task,
such as land cover type prediction, which is one of the major
practical application domains.

In future work, the equivalent min-tree algorithm includ-
ing distributed attribute filter are going to be implemented.
This will set a solid foundation for the next research goal, the
massive parallelization of the tree of shapes [58]—a contrast
independent component tree representation of images.
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