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Abstract. We state in this paper a strong relation existing between
Mathematical Morphology and Discrete Morse Theory when we work
with 1D Morse functions. Specifically, in Mathematical Morphology, a
classic way to extract robust markers for segmentation purposes, is to
use the dynamics. On the other hand, in Discrete Morse Theory, a well-
known tool to simplify the Morse-Smale complexes representing the topo-
logical information of a Morse function is the persistence. We show that
pairing by persistence is equivalent to pairing by dynamics. Furthermore,
self-duality and injectivity of these pairings are proved.

Keywords: mathematical morphology · discrete Morse theory · dynam-
ics · persistence.

1 Introduction

In Mathematical Morphology [14,15,16], dynamics [10,11,17] represent a very
powerful tool to measure the significance of an extrema in a gray-level image.
Thanks to dynamics, we can construct efficient markers of objects belonging
to an image which do not depend on the size or on the shape of the object we
want to segment (to compute watershed transforms [13,18] and proceed to image
segmentation). This contrasts with convolution filters very often used in digital
signal processing or morphological filters [14,15,16] where geometrical properties
do matter.

Selecting components of high dynamics in an image is a way to filter objects
depending on their contrast, whatever the scale of the objects. In persistent
homology [6,8] well-known in Computational Topology [7], we can find the same
paradigm: topological features whose persistence is high are ”true” when the
ones whose persistence is low are considered as sampling artifacts, whatever
their scale. An example of application of persistence is the filtering of Morse-
Smale complexes used in Discrete Morse Theory [9] where pairs of extrema
of low persistence are canceled for simplification purpose. This way, we obtain
simplified topological representations of Morse functions.

In this paper, we prove that the relation between Mathematical Morphology
and Persistent Homology is strong in the sense that pairing by dynamics and
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pairing by persistence are equivalent (and then dynamics and persistence are
equal), at least in 1D, when we work with Morse functions.

The plan of the paper is the following: Section 2 recalls the mathematical
background needed in this paper, Section 3 proves the equivalence between pair-
ing by dynamics and pairing by persistence, Section 4 proves some properties of
these pairings, and Section 5 concludes the paper.

2 Mathematical background

A 1D Morse function is a function f : R→ R which belongs to C2(R) and whose
second derivative f ′′(x∗) at each critical point x∗ ∈ R verifies that f ′′(x∗) is
different from 0. A consequence of this property is that the critical points of a
Morse function are isolated.

In this paper, we work with one-dimensional Morse functions f : R→ R with
the additional property that for any two local extrema x1 and x2 of f , x1 6= x2
implies that f(x1) 6= f(x2)). In other words, critical values of f are “unique”.

Even if it does not seem realistic to assume that the critical values are unique,
we can easily obtain this property by perturbing slightly the given function while
preserving its topology.

Let us define the lower threshold sets: the set [f ≤ λ] for any λ ∈ R is defined
as the set {x ∈ R ; f(x) ≤ λ}. Then, we define the connected component of a set
X ⊆ R containing x ∈ X the greatest interval contained in X and containing x
and we denote it CC(X,x).

We denote as usual R := R∪ {−∞,+∞}. For a, b two elements of R, iv(a, b)
is defined as the interval value [min(a, b),max(a, b)]. Also, for a given function
f : R→ R and for (a, b) ∈ R verifying a < b, we denote:

Rep([a, b], f) := arg min
x∈[a,b]

f(x).

Rep([a, b], f) is said to be the representative [6] of the interval [a, b] relatively to
f . Finally, we denote by ε → 0+ the fact that ε tends to 0 with the constraint
ε > 0.

2.1 Pairing by dynamics

Let f : R → R be a Morse function with unique critical values. For xmin ∈ R a
local minimum of f , if there exists at least one absciss x′min ∈ R of f such that
f(x′min) < f(xmin), then we define the dynamics [11] of xmin by:

dyn(xmin) := min
γ∈C

max
s∈[0,1]

f(γ(s))− f(xmin),

where C is the set of paths γ : [0, 1]→ R verifying γ(0) := xmin and verifying
that there exists some s ∈]0, 1] such that f(γ(s)) < f(xmin).
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Fig. 1: Example of pairing by dynamics: the absciss xmin of the red point is paired
by dynamics relatively to f with the absciss xmax of the green point on its left
because the ”effort” needed to reach a point of lower height than f(xmin) (like
the two black points) following the graph of f is minimal on the left.

Let us now define γ∗ as a path of C verifying:

max
s∈[0,1]

f(γ∗(s))− f(xmin) = min
γ∈C

max
s∈[0,1]

f(γ(s))− f(xmin),

then we say that this path is optimal. The real value xmax paired by dynamics
to xmin (relatively to f) is characterized by:

xmax := γ∗(s∗),

with f(γ∗(s∗)) = maxs∈[0,1] f(γ∗(s)) and γ∗(s∗) is a local maximum of f . We
obtain then:

f(xmax)− f(xmin) = dyn(xmin).

Note that the local maximum xmax of f does not depend on the path γ∗

(see Figure 1), and its value is unique (by hypothesis on f), which shows that
in some way xmax and xmin are ”naturally” paired by dynamics.

2.2 Pairing by persistence

Fig. 2: Example of pairing by persistence: the absciss xmax of the local maximum
in red is paired by persistence relatively to f with the absciss of the local mini-
mum in green since its image by f is greater than the image by f on the right
local minima drawn in pink.

Let f : R→ R be a Morse function with unique critical values, and let xmax be
a local maximum of f . Let us recall the 1D procedure [6] which pairs (relatively
to f) local maxima to local minima (see Algorithm 1). Roughly speaking, the
representatives x−min and x+min are the abscisses where connected components of
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Algorithm 1: Pairing by persistence of xmax.

xmin := ∅;
[x−max, x

+
max] := CC([f ≤ f(xmax)], xmax);

if x−max > −∞ ‖ x+max < +∞ then
x−min := Rep([x−max, xmax], f);

x+min := Rep([xmax, x
+
max], f);

if x−max > −∞ && x+max < +∞ then
xmin := arg maxx∈{x−

min,x
+
min}

f(x);

if x−max > −∞ && x+max = +∞ then
xmin := x−min;

if x−max = −∞ && x+max < +∞ then
xmin := x+min;

return xmin;

respectively [f ≤ (f(x−min)] and [f ≤ (f(x+min)] ”emerge” (see Figure 2), when
xmax is the absciss where two connected components of [f < f(xmax)] ”merge”
into a single component of [f ≤ f(xmax)]. Pairing by persistence associates then
xmax to the value xmin belonging to {x−min, x

+
min} which maximizes f(xmin). The

persistence of xmax relatively to f is then equal to per(xmax) := f(xmax) −
f(xmin).

3 Pairings by dynamics and by persistence are equivalent
in 1D

In this section, we prove that under some constraints, pairings by dynamics and
by persistence are equivalent in the 1D case.

xmin xmax
xmax xmax
- + ℝxmin

2

ℝ

Fig. 3: A Morse function where the local extrema xmin and xmax are paired by
dynamics.
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Proposition 1 Let f : R→ R be a Morse function with a finite number of local
extrema and unique critical values. Now let us assume that a local minimum
xmin ∈ R of f is paired with a local maximum xmax of f by dynamics. We assume

without constraints that xmin < xmax. Also, we denote by (x−max, x
+
max) ∈ R2

the
two values verifying:

[x−max, x
+
max] = CC([f ≤ f(xmax)], xmax).

Then the following properties are true:

(P1) xmin = Rep([x−max, xmax], f),

(P2) With x2min := Rep([xmax, x
+
max], f), then f(x2min) < f(xmin),

(P3) xmax and xmin are paired by persistence.

Proof: Figure 3 depicts an example of Morse function where xmin and xmax

are paired by dynamics.

xmin xmax
xmax
- ℝ

ℝ

x* x**

Fig. 4: Proof of (P1).

Let us first remark that x−max is finite since xmin is paired with xmax by
dynamics relatively to f with xmin < xmax.

Now, let us prove (P1); we proceed by reductio ad absurdum. When xmin is
not the absolute minimum of f on the interval [x−max, xmax], then there exists
x∗ := arg minx∈[x−

max,xmax]
f(x) which is different from xmin (see Figure 4) which

verifies f(x∗) < f(xmin) (x∗ and xmin being distinct local extrema of f , their
images by f are not equal). Then, because the path joining xmin and x∗ belongs
to C, we have:

dyn(xmin) ≤ max{f(x)− f(xmin) ; x ∈ iv(x∗, xmin)}.
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Let us call x∗∗ := arg maxx∈[iv(xmin,x∗)] f(x), we can deduce that f(x∗∗) <
f(xmax) since x∗∗ ∈ iv(x∗, xmin) ⊆]x−max, xmax[. This way,

dyn(xmin) ≤ f(x∗∗)− f(xmin),

which is lower than f(xmax) − f(xmin); this is a contradiction since xmin and
xmax are paired by dynamics. (P1) is then proven.

Let x2min be the representative of [xmax, x
+
max] relatively to f . Two cases are

then possible:

– When x+max = +∞, it implies that f(+∞) = −∞ because f is a Morse
function, and then x2min = +∞, which implies that f(x2min) = −∞. Then
f(x2min) < f(xmin).

xmin xmax
xmax
-

ℝ

xxmin
2 xmax

+

xmax
2

<

Fig. 5: Proof of (P2) in the case where xmax is finite.

– When x+max is finite, let us assume that f(x2min) > f(xmin). Note that we
cannot have equality of f(x2min) and f(xmin) since xmin and x2min are both
local extrema of f . Then we obtain Figure 5. Since with x ∈ [xmax, x

+
max],

we have f(x) > f(xmin), and because xmin is paired with xmax by dynamics
with xmin < xmax, then there exists a value x on the right of xmin where
f(x) is lower than f(xmin). In other words, there exists:

x< := inf{x ∈ [xmax,+∞] ; f(x) < f(xmin)}

such that for any ε → 0+, f(x< + ε) < f(xmin). Since x< > x+max, every
path γ joining xmin to x< go through a local maximum x2max defined by

x2max := arg max
x∈]x+

max,x<[
f(x)

which verifies f(x2max) > f(x+max) (otherwise, x2max would belong to the inter-
val [xmax, x

+
max] by definition of x+max). Then the dynamics of xmin is greater

than or equal to f(x2max)−f(xmin) which is greater than f(xmax)−f(xmin).
We obtain a contradiction. One more time, f(x2min) < f(xmin).
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The proof of (P2) is done.

Thanks to (P1) and (P2), we obtain directly (P3) by applying the algorithm
of pairing by persistence since f(xmin) > f(x2min) with xmin the representative
of [x−max, xmax] and x2min the representative of [xmax, x

+
max]. ut

Proposition 2 Let f : R→ R be a Morse function with a finite number of local
extrema and unique critical values. Now let us assume that a local minimum
xmin ∈ R of f is paired with a local maximum xmax of f by persistence. We
assume without constraints that xmin < xmax. Then, xmax and xmin are paired
by dynamics.

xmin

x
xmax

xmax xmax
- + ℝxmin

2

ℝ

<

Fig. 6: A Morse function f : R→ R where the local extrema xmin and xmax are
paired by persistence relatively to f .

Proof: We denote by (x−max, x
+
max) ∈ R2

the two values verifying:

[x−max, x
+
max] = CC([f ≤ f(xmax)], xmax).

Since xmin is paired by persistence to xmax with xmin < xmax (see Figure 6),
then:

xmin = Rep([x−max, xmax], f) ∈ R,

and there exists x2min ∈ R such that x2min := arg minx∈[xmax,x
+
max]

f(x) verifies

f(x2min) < f(xmin).

Thanks to this last inequality, we know that the path defined as:

γ : λ ∈ [0, 1]→ γ(λ) := (1− λ)xmin + λx2min

belongs to the set of paths C defining the dynamics of xmin (see Section 2).
Then,

dyn(xmin) ≤ max{f(x)− f(xmin) ; x ∈ γ([0, 1])},
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xmin xmax
xmax
- ℝ

ℝ

x*

x¹

Fig. 7: The proof that it is impossible to obtain a local maximum x∗ < xmin

paired with xmin by dynamics when xmin is paired with xmax > xmin by persis-
tence.

which is lower than or equal to f(xmax) − f(xmin) since f is maximal at xmax

on [x−max, x
+
max]. Then we have the following property:

dyn(xmin) ≤ f(xmax)− f(xmin). (P1)

Because f(x2min) < f(xmin), we know that there exists some local maximum
of f which is paired with xmin by dynamics. However we do not know whether
the absciss of this local maximum is lower than or greater than xmin. Then, let
us assume that there exists a local maximum x∗ < xmin (lower case) which is
associated to xmin by dynamics. We denote this property (H) and we depict it
in Figure 7. This would imply that x∗ < x−max since f is greater than or equal to
f(xmin) on [x−max, xmin]. The consequence would be f(x∗) > f(xmax), since the
local maximum x1 of f of maximal absciss in [x∗, x−max] verifies f(x∗) ≥ f(x1) >
f(xmax), and then dyn(xmin) = f(x∗) − f(xmin) > f(xmax) − f(xmin) which
contradicts (P ). (H) is then false. In other words, we are in the upper case: the
local maximum paired by dynamics to xmin belongs to ]xmin,+∞[, let us call
this property (P2).

Now let us define (see again Figure 6):

x< := inf{x > xmin ; f(x) < f(xmin)},

and let us remark that x< > xmax (because xmin is the representative of f on
[x−max, xmax]). Since we know by (P2) that a local maximum x > xmin of f is
paired by dynamics with xmin, then the image of every optimal path belonging
to C contains {x<}, and then [xmin, x

<]. Indeed, an optimal path in C whose
image would not contain {x<} would then contain an absciss x < x−max and then
we would obtain dyn(xmin) > f(xmax)− f(xmin), which contradicts (P1).
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However, the maximal value of f on [xmin, x
<] is equal to f(xmax), then

dyn(xmin) = f(xmax) − f(xmin). The only local maximum of f whose value is
f(xmax) is xmax, then xmax is paired with xmin by dynamics relatively to f . ut

Theorem 1 Let f : R → R be a Morse function with a finite number of local
extrema and unique critical values. A local minimum xmin ∈ R of f is paired by
dynamics to a local maximum xmax ∈ R of f iff xmax is paired by persistence to
xmin. In other words, pairings by dynamics and by persistence lead to the same
result. Furthermore, we obtain per(xmax) = dyn(xmin).

Proof: This theorem results from Propositions 1 and 2. ut

4 Properties of these pairings

Let us observe and prove some properties relative to the pairings studied in this
paper.

4.1 Self-duality

Let us prove that pairings by dynamics and by persistence are self-dual on a 1D
Morse function f : R → R, that is, the result is the same whatever if we work
with f or its dual f− : R→ R : x→ f−(x) := −f(x).

xmin xmax
xmax xmax
- + ℝxmin

2

ℝ

x
min
+x

min
-

f(x)

x
x*

xmin xmax
xmax xmax
- + ℝxmin

2

ℝ

x
min
+x

min
-

f⁻(x)

x
x*

Fig. 8: Proof of self-duality of these pairings.

Proposition 3 Let f : R → R be a Morse function with a finite number of
local extrema and unique critical values. Then the pairing by dynamics (resp.
by persistence) of f and of f− lead to the same result. In other words, these
pairings are self-dual.

Proof: We assume that two finite real values xmin and xmax are paired by

persistence relatively to f with xmin < xmax. Let us define (x−max, x
+
max) ∈ R2

such that:
[x−max, x

+
max] = CC([f ≤ f(xmax)], xmax),
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and we also define (x−min, x
+
min) ∈ R2

such that:

[x−min, x
+
min] = CC([f− ≤ f−(xmin)], xmin).

We can observe by noticing that:

xmin = Rep([x−max, xmax], f)

(since xmin < xmax) and by defining:

x2min := Rep([xmax, x
+
max], f)

that f(xmin) > f(x2min) (see Figure 8).

First, let us observe that x−max is finite (otherwise, f(xmin) = −∞ which is
impossible because f(xmin) > f(x2min)).

Secund, let us prove that xmax is the representative of f− on [xmin, x
+
min].

For any x ∈ [xmin, xmax[∪]xmax, x
2
min], the value f(x) is lower than f(xmax) be-

cause xmin ∈]x−max, xmax[ and x2min ∈]xmax, x
+
max[. Because f−(xmin) < f−(x2min),

x+min < x2min (the case x2min < x−min is impossible since x2min > xmax). Also, we
have x+min > xmax because for any x ∈]xmin, xmax], f(x) > f(xmin) (xmin is
the representative of f on [x−max, xmax]). Then x+min ∈]xmax, x

2
min[. Then, for any

x ∈ [xmin, xmax[∪]xmax, x
+
min], we have f(x) < f(xmax), and the consequence is

that xmax is the representative of f− on [xmin, x
+
min].

Third, let us define x∗ := Rep([x−min, xmin], f−), and let us prove that f−(x∗) <
f−(xmax). Two cases are possible: either f− does not admit a local minimum
of absciss lower than x−max and then f−(−∞) = −∞ which implies x∗ = −∞
and f−(x∗) = −∞, or f− admits a local minimum x lower than x−max such that
f−(x) < f−(x−max) = f−(xmax). In both cases, f−(x∗) < f−(xmax).

Since xmax is the representative of f− on [xmin, x
+
min], x∗ is the representative

of f− on [x−min, xmin], and f−(x∗) < f−(xmax), then xmax is paired with xmin by
persistence relatively to f−.

By Theorem 1, we can conclude that both pairings by persistence and by
dynamics are self-dual. ut

4.2 Injectivity

Let us prove that the pairings that are studied here are injective.

Proposition 4 Let f : R→ R be a Morse function with a finite number of local
extrema and unique critical values. Let Pdyn : R → R the real function which
gives for a local minimum xmin of f the local maximum xmax of f paired to xmin

by dynamics. Then, Pdyn is injective (see Figure 9).

Proof: Let us assume that Pdyn(xmin) = Pdyn(x2min) = xmax with xmin, x
2
min

and xmax three real values. Then by Theorem 1, we know that xmax is paired
with xmin and x2min by persistence, which means that xmin = x2min. ut
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IMPOSSIBLE IMPOSSIBLE

Fig. 9: Pairings by dynamics (on the left side) and by persistence (on the right
side) are injective.

Proposition 5 Let f : R→ R be a Morse function with a finite number of local
extrema and unique critical values. Let Pper : R → R the real function which
gives for a local maximum xmax of f the local minimum xmin of f paired to xmax

by persistence. Then, Pper is injective (see Figure 9).

Proof: Let us assume that Pper(xmax) = Pper(x
2
max) = xmin with xmax, x

2
max

and xmin three real values. Then by Theorem 1, we know that xmin is paired
with xmax and x2max by dynamics, which means that xmax = x2max. ut

5 Conclusion

In this paper, we prove the equivalence between pairing by dynamics and pairing
by persistence for 1D Morse functions and also their self-duality and their injec-
tivity. As future work, we plan to study their relation in the n-D case, n ≥ 2.
Another interesting issue is to explore how ideas steaming from Discrete Morse
Theory can infuse Mathematical Morphology. Conversely, since the watershed is
clearly linked to the topology of the surfaces [3,4,12], it is definitely worthwile
to search how such ideas can contribute to (Discrete) Morse Theory. This can
be done along the same lines as what is proposed in [1,2,5].
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