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Abstract. Component trees provide a high-level, hierarchical, and con-
trast invariant representation of images, suitable for many image process-
ing tasks. Yet their definition is ill-formed on multivariate data, e.g., color
images, multi-modality images, multi-band images, and so on. Common
workarounds such as marginal processing, or imposing a total order on
data are not satisfactory and yield many problems, such as artifacts, loss
of invariances, etc. In this paper, inspired by the way the Multivariate
Tree of Shapes (MToS) has been defined, we propose a definition for a
Multivariate min-tree or max-tree. We do not impose an arbitrary total
ordering on values; we only use the inclusion relationship between com-
ponents. As a straightforward consequence, we thus have a new class of
multivariate connected openings and closings.

Keywords: Openings and closings · Component trees · Hierarchical rep-
resentation · Color images · Multivariate data · Connected operators

1 Introduction

Mathematical Morphology (MM) offers a large toolbox to design image process-
ing filters that serve as powerful building blocks and enable the user to rapidly
build their image processing applications. Operators based on MM have many
advantages both from the practitioner and the computer scientist view points:
1. They are fast to compute, i.e., an erosion/dilation with a structuring element
is as fast as a linear filter with a kernel of the same size. 2. They are numer-
ically stable, i.e., a morphological filter preserves the domain of the values (no
rounding is necessary and there is no risk of overflow/underflow during com-
putation). 3. They are contrast-invariant, i.e., they are suitable for processing
low-contrasted images as well as dark/bright images. This property is funda-
mental to process images with light-varying conditions.

The foundation for MM-based filters relies on complete lattices formed by
digital images [20] which are well defined in the binary and grayscale cases for
which a natural order exists. On the contrary, there is still no consensus for
defining a natural order on vectors. The multivariate case is even more subtle
when extending more advanced MM filters such as those requiring a total rank-
ing of values. For example, connected operators, that only change the values of
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Fig. 1: An image (a), and its morphological component trees (b) to (d).

connected components, have desirable contour-preserving properties and form a
widely-used class of filters. Those filters require the values to be totally ordered.

To tackle this problem, many attempts have been done to define a “sensitive”
total order which are reviewed in Section 2. In this paper, we adopt a different
approach, following a property-based methodology. After a reminder about con-
nected component-trees in Section 2 and how they relate to connected operators,
we explain in Section 3 our requirements for a multivariate component tree and
its construction process and its usage to extend connected filters to multivariate
data. Its properties are studied in Section 4, and we conclude in Section 5.

Due to limited space, this paper only introduces the Multivariate Compo-
nent Tree (MCT) and the resulting multivariate openings and closings. As a
consequence, experiments with these new tools are kept for later.

2 Mathematical Background and State of the Art

2.1 Trees for Morphological Connected Openings and Closings

Connected operators are widely used in Mathematical Morphology for their prop-
erties. A connected operator ψ shares with all morphological filters the desirable
property to be contrast change invariant. More formally, given a strictly increas-
ing function ρ : R → R and an image u, ψ must verify ρ(ψ(u)) = ψ(ρ(u)).
Contrary to structural openings/closings, they may not require prior knowl-
edge about the geometry of what has to be removed. In the binary case, con-
nected operators can only remove some connected sets of pixels. This extends
for grayscale images with the threshold-set decomposition principle, connected
operators are those that remove (i.e, merge) some flat-zones or change their
gray level. As a consequence connected operators do not move object bound-
aries. Opening/closing by reconstruction [29, 22] and area openings [30] are some
widely used examples of connected filters. They were then extended to attribute
filters [2] to express more complex forms of filtering, and Salembier et al. [23]
proposed a versatile structure, namely the Max-Tree, that brought the potential
of MM approaches to a higher level.

With the Max-Tree, filtering an image is as simple as pruning some branches
and removing some nodes. Also, it enables much more powerful image filterings
with pruning and non-pruning strategies [25], and with second-generation con-
nectivities [17]. In [8], the authors propose a closely related structure, the Tree
of Shapes (ToS), to support self-dual connected operators. The grain filter [7] is
the self-dual counterpart of the area opening and removes extremal connected
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components. Most importantly, while morphological trees support fast and ad-
vanced filters, they are also hierarchical representations of the image (the reader
can refer to Sec. 4.3 of Ronse [21]). As such, they enable a multi-scale image
analysis and bring us to an higher level of image understanding. Since then,
they have been used for image simplification, segmentation, shape-based image
retrieval, compression, image registration and more. To cap it all, those trees are
fast to compute [4].

More formally, let an image u : Ω → E defined on a domain Ω and taking
values on a set E equipped with an ordering relation ≤. Let [u < λ] (resp.
[u > λ]) with λ ∈ E be a threshold set of u (also called respectively lower
cut and upper cut) defined as [u < λ] = {x ∈ Ω, u(x) < λ}. We denote by
CC(X), X ∈ P(Ω) the set of connected components of X. If ≤ is a total relation,
any two connected components X,Y ∈ CC([u < λ]) are either disjoint or nested.
The set S = CC([u < λ]) endowed with the inclusion relation forms a tree called
the Min-Tree. Its dual tree, defined on the upper cuts S = CC([u > λ]), is
called the Max-Tree (see Figs. 1b and 1c). The last morphological tree, the Tree
of Shapes (ToS), depicted in Fig. 1d, is based on the fusion of the Min- and
Max-Trees after having filled the holes of their components. Indeed, given the
hole-filling operator H, a shape is any element of S = {H(Γ ), Γ ∈ CC([u <
λ])}λ ∪ {H(Γ ), Γ ∈ CC([u > λ])}λ. Two shapes being also either nested or
disjoint, (S,⊆) also forms a tree.

In the rest of this paper, the Min-Tree, Max-Tree and ToS could be used
interchangeably, as we will implicitly consider a set of connected components
S endowed with the inclusion relation (i.e., the cover of (S,⊆)) to denote the
corresponding tree. Also, without loss of generality, we will consider E = Rn
throughout this paper, and we will note u = 〈u1, u2, · · · , un〉 where u is a multi-
band image and uk are scalar images.

2.2 Connected Openings and Closings for Multi-band Images

A widely spread solution to extend morphological operators to multi-band im-
ages is to process the image channel-wise and finally recombine the results.
Marginal processing is subject to the well-known false color problem as it may
create new values that were not in the original images. False colors may or may
not be a problem by itself (e.g. if the false colors are perceptually close to the
original ones) but for image simplification it may produce undesirable artifacts.

Since the problem of defining multivariate connected operators lies in the
absence of a total order between values, many attempts have been done to define
a total order on vectorial data. Two strategies are mainly used: conditional (C-)
ordering that gives priorities to some (or all) of the vector components, reduced
(R-) ordering that defines a ranking projection function and orders vectors by
their rank (a total pre-order).

Commonly used ranking functions are the l1-norm or the luminance in a
given color space. It makes sense if we assume that the geometric information
is mainly held by the luminance [7] but it is not that rare to face images where
edges are only available in the color space. In other words, this strategy is not
sufficient if the geometric information cannot be summed up to a single dimen-
sion. In Tushabe and Wilkinson [24], Perret et al. [19], Naegel and Passat [15],
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Fig. 2: A multi-band image, marginal Min-Tree and the Multivariate Min-Tree
that fulfills our requirements.

authors used another widely used R-ordering, the distance to a reference set of
values to extend min- and max- trees to multivariate data for image compres-
sion or astronomical object detection. This approach is well-founded whenever
the background is uniform or defined as set of values. R-orderings are usually
combined with C-orderings (typically a lexicographic cascade) to get a strong
ordering (as in [9], to extend grain filters on colors).

More advanced strategies have been designed to build a more “sensitive” total
ordering that depends on image content. Velasco-Forero and Angulo [27, 28] use
machine learning techniques to partition the value space, then a distance to
clusters allows to build an ordering. In [13], manifold learning is used to infer a
ranking function of values and in [12] a locally-dependent ordering is computed
on spatial windows. Lezoray and Elmoataz [11], Lézoray [10] combine both ideas
for a manifold learning in a domain-value space capturing small dependencies
between a pixel and its neighbors during the construction of the total order. More
recently, keeping with content-based ordering approaches, Veganzones et al. [26]
proposed an R-ordering based an indexing of the leaves of the image binary
partition tree. A review of vector orderings applied to MM can be found in [1].

In [18], the authors propose to deal directly with the partial ordering of values
and manipulate the underlying graph structure. While theoretically interesting,
a component-graph is algorithmically harder to deal with and the complexity of
the structure (in terms of computation time) compels the authors to perform
the filtering only locally [16].

Finally, in [5], we introduced the Multivariate Tree of Shapes (MToS) as a
novel structure to represent color images. While dedicated to extend the Tree of
Shapes, the basic idea lies in a sensible strategy to merge several ToS and thus,
can be transposed to merge any set of component trees.

3 Extension of Morphological Trees for Multivariate Data

3.1 Requirements for a Multivariate Component Tree

The construction of the Multivariate Component Tree (MCT) is designed from
the following premises. First, we have a channel-wise prior about the objects we
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Fig. 3: Scheme of the Multivariate Component Tree construction process.

want to detect and their background (i.e, we know channel-wise the contrast
“direction”). Second, we have no prior about how objects are spread among the
channels, they may be visible in a single, in some or in many channels. Before
going further into details of the what is a MCT, and how to get it, let us start
with the what for and a description of the properties we want it to have:

Single-band equivalence. On a single-band image, the Multivariate Component
Tree must be the same as the normal component tree.

Preservative behavior. Given a connected component C of S, if C is either nested
or disjoint to every other connected components, then it must appears in the
Multivariate Component Tree. This property actually covers the first one. It
is illustrated in Fig. 2 with two Min-Trees; since there is no overlap between
components from the two channels of u, the Multivariate Min-Tree is intuitive.
Note that the “merging” is purely based on the inclusion, there is no less-than
relation (in terms of values) between the components from u1 and u2. Indeed, in
this example, I becomes a child of G while its value in u2 is greater than in u1.
Being agnostic about the value ordering when merging trees is closely related to
the marginal contrast change invariance described hereafter.

Invariance to any marginal increasing change of contrast. For any family of
increasing function {ρ1, ρ2, · · · ρn}, T (〈ρ1(u1), ρ2(u2), · · · ρn(un)〉) = T (u). This
property enforces a fundamental property of morphological representation: well-
contrasted and low-contrasted objects are considered equally. This property
is twofold. First it enables to consider channels that have different dynamics
whereas linear-based approaches generally require a proper prior data normal-
ization. Second, it makes the representation robust when a change of exposure
appears only in some channels.

3.2 Multivariate Component Tree Construction

The merging process of the marginal component trees consists in 2 main steps:
the construction of a depth map ω and the deduction of a tree from ω. These
two steps, designed to get the properties described in Section 3.1, are described
hereafter.
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depth map.

Getting a tree out of a depth map. Before going further into details, let us
explain and motivate the construction of the depth map. The depth conveys the
object inclusion level. The lighter an object appears in the depth map, the deeper
it stands in the object hierarchy. In [6], we showed that given a hierarchy and its
corresponding depth map, one can recover the initial hierarchy by computing its
max-tree, as illustrated in Fig. 4. The interest of the depth map lies in the way it
abstracts away the underlying value ordering relation between objects. Indeed,
no matter the input hierarchy, whether is it a Min-tree (based on the inclusion
of lower components), Max-Tree (based on the inclusion of upper components)
or a ToS (based on the inclusion of hole-filled lower and upper components), it
is equivalent to the Max-Tree computed on its depth map. Figure 5 shows the
depth maps ωTmin, ωTmax, and ωT tos of an image computed from its Min-Tree,
its Max-Tree and its ToS. As one can see, dark objects appear bright in (b),
bright objects appear bright in (c) and the most inner shapes appear bright in
(d). Actually, we can show that for a gray-level image u, ωTmin = ρ(255 − u)
and ωTmax = ρ(u) with ρ some increasing contrast change. As a consequence, it
is straightforward that the Max-Tree of ωT is T itself.

The depth map leads to an alternate representation of the image content.
Instead of having a representation based on the brightness, we now have a pixel-
wise interpretation of the inclusion level of objects. In other words, if a pixel
appears brighter than its neighbor in the depth map, this means that it belongs
to a nested sub-object.

From marginal component trees to the graph of components. The
component trees T1, T2, . . . , Tn are computed on each band u1, u2, . . . , un of the

(a) Input u (b) ωT min (c) ωT max (d) ωT tos

Fig. 5: An input gray-level image (a) and its corresponding depth map for the
Min-Tree (b), Max-Tree (c) and ToS (d) hierarchies. The dynamic of the depth
image has been stretched to [0-255].
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Fig. 6: A GoC that is an invalid morphological tree. Left: two marginal compo-
nents from two channels are overlapping. Right: The corresponding Graph of
Components (GoC) G. The points of A ∩ B belong to both nodes A and B, so
the tree G is not valid.

input image. Each tree is associated with its set of components S1, S2, . . . , Sn.
Let S =

⋃Si, we call the Graph of Components (GoC) G the cover of (S,⊆).
The GoC, depicted in Fig. 3, is actually the inclusion graph of all the connected
components computed marginally.

It is worth mentioning even if the GoC is actually a tree, it is not a valid
morphological tree. Indeed, in “standard” morphological hierarchies (min-/max-
trees) and their extension (the component-graph [18]), for any point x, there
exists a single smallest component that contains x. As a consequence, a point
belongs to a single node in the structure. In the GoC, a point may belong to
several nodes. For example, in Fig. 6, the points in (A∩B) belong to both nodes
A and B, but (A ∩ B) does not exist as a node in any marginal tree. Thus, we
cannot just extract a tree (e.g. the minimum spanning tree) from the GoC as it
will not be valid.

It is also worth mentioning that the graph of components G is different from
the component-graph introduced by Passat and Naegel [18]. The latter is the
inclusion graph of all connected components based on a partial ordering ≺ (i.e,
the set {CC([u ≺ λ]), λ ∈ Rn}) while G is the inclusion graph of connected
components computed marginally (i.e, the set

⋃n
k=1{CC([uk < λ]), λ ∈ R}).

G is thus a sub-graph of the component-graph.
Note that the graph is a “complete” representation of the input image u

that can be reconstructed from G. Indeed, without loss of generality, suppose
that G is built from T1, · · · , Tn being Max-Trees. For a component A of G, let
λi(A) = min{ui(x), x ∈ A}, then the input can be reconstructed with:

u(x) =

〈
max
X: x∈X

λ1(X), max
X: x∈X

λ2(X), · · · , max
X: x∈X

λn(X)

〉
. (1)

Constructing a depth map from the graph of components. As said
previously, getting a morphological tree out of the GoC is not as simple as it
seems (e.g. with a MST algorithm) as one has to ensure that pixels do not
belong to disjoint branches of the tree. We have also seen that the depth map is
an interesting intermediate representation, which provides pixel-wise description
of the organization of the scene (in terms of inclusion) and enables us to extract
a tree out of it. As a consequence, our objective is now to build a depth map
from the GoC. Let ρ be the depth of a node A in G, i.e, ρ(A) is the length of
the longest path of a component A from the root. Let ω : Ω → R defined as:

ω(x) = max
X∈S,x∈X

ρ(X). (2)
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The map ω associates each point x with the depth of the deepest component
containing x . Let C =

⋃
h∈R CC([ω ≥ h]). (C,⊆) is actually the max-tree of ω.

The method is illustrated in Fig. 7 where a two-channel image has overlapping
components from red and green components. The trees T1 and T2 are computed
marginally and merged into the GoC G for which we compute the depth of each
node (Fig. 7b). Those values are reported in the image space, pixel-wise (Fig. 7c).
This is the step which decides which components are going to merge; here B and
D are set to the same value. This choice is based on the level of inclusion and
no longer on the original pixel values.

While the graph is a complete representation of u, once G is flattened to ω,
it is not possible to go backward and recover the original connected components.
This is the only lossy step part of the process.

Filtering and reconstruction with the Multivariate Component Tree.
Morphological trees enables to perform openings, closings and extremal filterings
in two steps: 1. a pruning where nodes are removed and pixels are re-assigned;
2. a restitution where pixels get their final values.

Let P be a binary predicate that tells if a node is to be removed. For example,
P(X) = X̄ > α denotes a predicate that retains all components whose size
is above α (grain filter, area opening and closing). Similarly to Eq. (1), the
reconstruction after filtering the Max-Tree T = (S,⊆) of a scalar image u is:

ũ(x) = max
X∈S, x∈X | P(X)

λ(X). (3)
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(b) Multivariate opening with restitution strategy Rinf. (c) Multivariate opening
with restitution strategy RNC. (d) Marginal opening. Openings are of sizes 500,
4000 and 16000 (top-down).

Equation (3) actually describes the direct filtering, the pixels are affected
to the level of the last surviving node in the hierarchy. This is one of the four
filtering strategies described in [14]. The others -namely min, max, subtractive-
only make sense for a non-increasing predicate, that is a predicate that may keep
a node while its parent is going to be deleted. Interested reader should refer to
[14] for more details on filtering strategies.

Last, we need to define the restitution for multivariate data. One could simply
define the restitution as in Eq. (1) with a predicate constraint as shown in Eq. (5):

Γ (x) = {X ∈ Sw | x ∈ X,P(X)} (4)

ũ(x) =

〈
max

X∈Γ (x)
λ1(X), max

X∈Γ (x)
λ2(X), · · · , max

X∈Γ (x)
λn(X)

〉
. (5)

Simply stated, each pixel is assigned the infimum of the pixels of its node. The
painting Several Circles1 Fig. 8 does not reveal how the filters behave on “real”

1 Einige Kreise, from Vasily Kandinsky, 2016 (Solomon R. Guggenheim Museum, New
York, c©2018 Artists Rights Society, New York/ADAGP, Paris).
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natural images but enables us to illustrate the troubles we can face when filtering
colors. Fig. 8a shows that neighboring regions with non-comparable colors (like
those of A, B and C) merge at the same level.

The restitution strategy from Eq. (5) (let us call it Rinf ) leads to several
artifacts as shown in Fig. 8b. First, this restitution may affect pixels that belong
to components that should be preserved. Second, it creates false colors that were
not present in the original image (as in region D).

This second problem is shared with the marginal processing strategy shown
in Fig. 8d. It creates false-colors because it combines marginal filtering results
(e.g. in region F ). It is also worth noting that, for the same reason, it creates flat
zones that are smaller than the filtering grain size (e.g. the region C) and blurs
object boundaries. That is why a marginal processing is a legitimate filtering
approach when the quality is assessed according to the human perception.

The restitution strategy proposed in [24] tackles those problems by keeping
the original pixel values when they belong to a node “living” and using the a
color of the contour of the connected component when they belong to a “dead”
one. Results of the nearest color strategy are shown in Fig. 8c. It combines the
strength of a vectorial approach that produces “real” flat zones with no contour
blurring and a quite qualitative color filtering similar to the one obtained by
marginal filtering. Yet, there remain some restitution quality troubles for nodes
which merge non-comparable regions as we need to choose a single color to
reconstruct both regions. It yields color artifacts as in B, and C where orange
and magenta pixels have been colorized in cyan from A.

4 Algebraic Properties and Complexity

First, trivially, the Multivariate Min-Tree and the Multivariate Max-Tree are
dual by construction. The preservative behavior property is also ensured by con-
struction. If a component A is either nested or disjoint to any other component,
then this is a “bottleneck” node in G, in the sense that every path leading to a
sub-component of A needs to pass through this node. As a consequence, every
pixels in A will have a depth ω greater than ρ(A) (i.e, in CC[ω > ρ(A)]) and
there exists a node in Tω corresponding to A.

The openings described previously meet the prerequisites described in Sec-
tion 3.1. Due to the lack of space, we only give the intuition of the proofs. The
single-band equivalence is straightforward; if there is a single input tree T1, the
graph G is thus a tree and Tω = T1. Whichever restitution strategy is then used,
they all are equivalent in this case and produce the same output as the regular
attribute opening. The marginal-contrast-change invariance is also straightfor-
ward; since each tree Ti is contrast change invariant for the i-th channel (and
does not depend on the others), so does the graph G. Also, since the rest of the
process only depends on the inclusion relation between components, the whole
process is thus marginal-contrast-change invariant.

Morphological properties for multivariate openings and closings based on Tω
depends on the restitution strategy. With the strategy Rinf, the openings (resp.
closings) are marginally anti-extensive (resp. extensive). However, in the general
case they are neither idempotent, nor marginally anti-extensive.
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From a computational standpoint, in the classical case of images with low-
quantized values (for instance, with values encoded on 8 bit in every channel
/ band), the marginal trees can be computed in linear time w.r.t. the number
N of pixels [4]. The most expensive part is the graph computation which is
O(n2.H.N), where n is the number of channels, H the maximal depth of the
trees, and N the number of pixels.

5 Conclusion

This paper introduced preliminary ideas to extend connected filters on multi-
band images2. This approach relies on the extension of component trees to data
for which no natural total order exists. Instead of imposing an arbitrary to-
tal ordering, the method tries to combine and merge connected components
from several marginal component trees. As such, it can be seen as a local and
context-dependent ordering of the pixels based on their level of inclusion in each
hierarchy. Beyond multivariate connected filters, our method produces a single
hierarchical representation of the image, the MCT, that can be used to study
“shapes” in images [3]. As a further work, we plan to figure out a way to priori-
tize some bands while keeping the idea of “ordering by inclusion level”. We also
plan to transform the value space before using the MCT (whether by a principal
component analysis, or by projection in a given color-space) to study the effect
of the data correlation on the merging process used by the MCT.
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