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Abstract. In Mathematical Morphology (MM), dynamics are used to
compute markers to proceed for example to watershed-based image de-
composition. At the same time, persistence is a concept coming from
Persistent Homology (PH) and Morse Theory (MT) and represents the
stability of the extrema of a Morse function. Since these concepts are
similar on Morse functions, we studied their relationship and we found,
and proved, that they are equal on 1D Morse functions. Here, we pro-
pose to extend this proof to n-D, n ≥ 2, showing that this equality can
be applied to n-D images and not only to 1D functions. This is a step
further to show how much MM and MT are related.

Keywords: Mathematical Morphology · Morse Theory · Computational
Homology · Persistent Homology · dynamics · persistence.

1 Introduction

Fig. 1: Low sensibility of dynamics to noise (extracted from [14]).

In Mathematical Morphology [20, 21, 22], dynamics [13, 14, 23], defined in
terms of continuous paths and optimization problems, represents a very powerful
tool to measure the significance of extrema in a gray-level image (see Figure 1).
Thanks to dynamics, we can construct efficient markers of objects belonging
to an image which do not depend on the size or on the shape of the object
we want to segment (to compute watershed transforms [19, 24] and proceed to
image segmentation). This contrasts with convolution filters very often used in
digital signal processing or morphological filters [20, 21, 22] where geometrical
properties do matter. Selecting components of high dynamics in an image is
a way to filter objects depending on their contrast, whatever the scale of the
objects.
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Fig. 2: The dynamics of a minimum of a given function can be computed thanks
to a flooding algorithm (extracted from [14]).

Note that there exists an interesting relation between flooding algorithms
and the computation of dynamics (see Figure 2). Indeed, when we flood a local
minimum in the topographical view of the 1D function, we are able to know the
dynamics of this local minimum when water reaches some point of the function
where water is lower than the height of the initial local minimum.

In Persistent Homology [5, 9] well-known in Computational Topology [6],
we can find the same paradigm: topological features whose persistence is high
are “true” when the ones whose persistence is low are considered as sampling
artifacts, whatever their scale. An example of application of persistence is the
filtering of Morse-Smale complexes [8, 7, 15] used in Morse Theory [18, 12]
where pairs of extrema of low persistence are canceled for simplification purpose.
This way, we obtain simplified topological representations of Morse functions. A
discrete counterpart of Morse theory, known as Discrete Morse Theory can be
found in [10, 16, 12, 11].

In this paper, we prove that the relation between Mathematical Morphology
and Persistent Homology is strong in the sense that pairing by dynamics and
pairing by persistence are equivalent (and then dynamics and persistence are
equal) in n-D when we work with Morse functions. Note that this paper is the
extension from 1D to n-D of [4].

The plan of the paper is the following: Section 2 recalls the mathematical
background needed in this paper, Section 3 proves the equivalence between pair-
ing by dynamics and pairing by persistence and Section 4 concludes the paper.

2 Mathematical pre-requisites

We call path from x to x′ both in Rn a continuous mapping from [0, 1] to Rn. Let
Π1, Π2 be two paths satisfying Π1(1) = Π2(0), then we denote by Π1 <> Π2

the join between these two paths. For any two points x1,x2 ∈ Rn, we denote by
[x1,x2] the path:

λ ∈ [0, 1]→ (1− λ).x1 + λ.x2.

Also, we work with Rn supplied with the Euclidian norm ‖.‖2 : x→ ‖x‖2 =√∑n
i=1 x2

i .

We will use lower threshold sets coming from cross-section topology [17, 2, 3]
of a function f defined for some real value λ ∈ R by:

[f < λ] =
{
x ∈ Rn

∣∣∣ f(x) < λ
}
,
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and
[f ≤ λ] =

{
x ∈ Rn

∣∣∣ f(x) ≤ λ
}
.

2.1 Morse functions

We call Morse functions the real functions in C∞(Rn) whose Hessian is not
degenerated at critical points, that is, where their gradient vanishes. A strong
property of Morse functions is that their critical points are isolated.

Lemma 1 (Morse lemma [1]). Let f : C∞(Rn)→ R be a Morse function. When
x∗ ∈ Rn is a critical point of f , then there exists some neighborhood V of x∗

and some diffeomorphism ϕ : V → Rn such that f is equal to a second order
polynomial function of x = (x1, . . . , xn) on V :

∀ x ∈ V, f ◦ ϕ−1(x) = f(x∗)− x21 − x22 − · · · − x2k + x2k+1 + · · ·+ x2n,

We call k-saddle of a Morse function a point x ∈ Rn such that the Hessian
matrix has exactly k strictly negative eigenvalues (and then (n − k) strictly
positive eigenvalues); in this case, k is sometimes called the index of f at x. We
say that a Morse function has unique critical values when for any two different
critical points x1, x2 ∈ Rn of f , we have f(x1) 6= f(x2).

2.2 Dynamics

Fig. 3: Pairing by dynamics on a Morse function: the red and blue paths are both
in (Dxmin) but only the blue one reaches a point x< whose height is lower than
f(xmin) with a minimal effort.

From now on, f : Rn → R is a Morse function with unique critical values.

Let xmin be a local minimum of f . Then we call set of descending paths
starting from xmin (shortly (Dxmin)) the set of paths going from xmin to some
element x< ∈ Rn satisfying f(x<) < f(xmin).

The effort of a path Π : [0, 1]→ Rn (relatively to f) is equal to:

max
`∈[0,1],`′∈[0,1]

(f(Π(`))− f(Π(`′))).
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A local minimum xmin of f is said to be matchable if there exists some
x< ∈ Rn such that f(x<) < f(xmin). We call dynamics of a matchable local
minimum xmin of f the value:

dyn(xmin) = min
Π∈(D

xmin )
max
`∈[0,1]

(
f(Π(`))− f(xmin)

)
,

and we say that xmin is paired by dynamics (see Figure 3) with some 1-saddle
xsad ∈ Rn of f when:

dyn(xmin) = f(xsad)− f(xmin).

An optimal path Πopt is an element of (Dxmin) whose effort is equal to
minΠ∈(D

xmin )(Effort(Π)). Note that for any local minimum xmin of f , there

always exists some optimal path Πopt such that Effort(Πopt) = dyn(xmin).

Thanks to the unicity of critical values of f , there exists only one critical
point of f which can be paired with xmin by dynamics.

Dynamics are always positive, and the dynamics of an absolute minimum of
f is set at +∞ (by convention).

2.3 Topological persistence

Fig. 4: Pairing by persistence on a Morse function: we compute the plane whose
height is equal to f(xsad), which allows us to compute to Csad, to deduce the
components CIi whose closure contains xsad, and to decide which representa-
tive is paired with xsad by persistence by choosing the one whose height is the
greatest.

Let us denote by clo the closure operator, which adds to a subset of Rn all
its accumulation points, and by CC(X) the connected components of a subset
X of Rn. We also define the representative of a subset X of Rn relatively to a
Morse function f the point which minimizes f on X:

rep(X) = arg minx∈Xf(x).
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Definition 1. Let f be some Morse function with unique critical values, and let
xsad be some 1-saddle point of f . Now we define the following expressions:

Csad = CC([f ≤ f(xsad)],xsad),

{CIi }i∈I = CC([f < f(xsad)]),

{Csadi }i∈Isad =
{
CIi | xsad ∈ clo(CIi )

}
,

∀i ∈ Isad, repi = arg minx∈Csad
i
f(x),

xmin = arg maxrepi,i∈Isadf(repi).

In this context, we say that xsad is paired by persistence to xmin. Then, the
persistence of xsad is equal to:

Per(xsad) = f(xsad)− f(xmin).

3 The n-D equivalence

Let us make two important remarks that will help us in the sequel.

Fig. 5: Observe the path in blue coming from the left side and decreasing when
following the topographical view of the Morse function f . The effort of this path
to reach the minimum of f is minimal thanks to the fact that it goes through
the saddle point at the middle of the image.

Lemma 2. Let f : Rn → R be a Morse function and let xmin be a local minimum
of f . Then for any optimal path Πopt in (Dxmin), there exists some `∗ ∈]0, 1[
where f ◦Πopt is maximal satisfying that Πopt(`∗) is a 1-saddle of f .

Proof : This proof is depicted in Figure 5. Let us proceed by counterposition,
and let us prove that when a path Π in (Dxmin) does not go through a 1-saddle
of f , it cannot be optimal.

Let Π be a path in (Dxmin). Let us define `∗ ∈ [0, 1] one of the positions
where the mapping f ◦Π is maximal:

`∗ ∈ arg max`∈[0,1]f(Π(`)),
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Fig. 6: How to compute descending paths of lower efforts: the initial path going
through x∗ (the little grey ball) is in red, the new path of lower effort is in green
(the non-zero gradient case is on the left side, the zero-gradient case is on the
right side).

and x∗ = Π(`∗). Let us prove that we can find another path Π ′ in (Dxmin)
whose effort is lower than the one of Π.

At x∗, f can satisfy three possibilities:

– When we have ∇f(x∗) 6= 0 (see the left side of Figure 6), then locally f
is a plane of slope ‖∇f(x∗)‖, and then we can easily find some path Π ′ in
(Dxmin) with a lower effort than Effort(Π). More precisely, let us fix some
ε > 0 with ε→ 0 and draw the closed topological ball B̄(x∗, ε), we can define
three points:

`min = min{` | Π(`) ∈ B̄(x∗, ε)},
`max = max{` | Π(`) ∈ B̄(x∗, ε)},

xB = x∗ − ε. ∇f(x∗)

‖∇f(x∗)‖
.

Thanks to these points, we can define a new path Π ′:

Π|[0,`min] <> [Π(`min), xB ] <> [xB , Π(`max)] <> Π|[`max,1].

By doing this procedure at every point in [0, 1] where f ◦ Π reaches its
maximal value, we obtain a new path whose effort is lower than the one of
Π.

– When we have ∇f(x∗) = 0, then we are at a critical point of f . It cannot be
a 0-saddle, that is, a local minimum, due to the existence of the descending
path going through x∗. It cannot be a 1-saddle neither (by hypothesis). It is
then a k-saddle point with k ∈ [2, n] (see the right side of Figure 6). Using
Lemma 1, f is locally equal to a second order polynomial function (up to a
change of coordinates ϕ s.t. ϕ(x∗) = 0):

f ◦ ϕ−1(x) = f(x∗)− x21 − x22 − · · · − x2k + x2k+1 + · · ·+ x2n.
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Now, let us define for some ε > 0 s.t. ε→ 0:

`min = min{` | Π(`) ∈ B̄(0, ε)},
`max = max{` | Π(`) ∈ B̄(0, ε)},

B =

x
∣∣∣ ∑
i∈[1,k]

x2i ≤ ε2 and ∀j ∈ [k + 1, n], xj = 0

 \ {0}.
This last set is connected since it is equal to a k-manifold (with k ≥ 2)
minus a point. Let us assume without constraints that Π(`min) and Π(`max)
belong to B (otherwise we can consider their orthogonal projections on the
hyperplane of lower dimension containing B but the reasoning is the same).
Thus, there exists some path ΠB joining Π(`min) to Π(`max) in B, from
which we can deduce the path Π ′ = Π|[0,`min] <> ΠB <> Π|[`max,1] whose
effort is lower than the one of Π since its image is inside [f < f(x∗)].

Since we have seen that, in any possible case, Π is not optimal, it concludes
the proof.

Fig. 7: At a 1-saddle point xsad (at the center of the image), the component
[f ≤ f(xsad)] is locally the merge of the closure two connected components (in
orange) of [f < f(xsad)] when f is a Morse function.

Proposition 1. Let f be a Morse function from Rn to R with n ≥ 1. When x∗

is a critical point of index 1, then there exists ε > 0 such that:

Card (CC(B(x∗, ε) ∩ [f < f(x∗)])) = 2,

where Card is the cardinality operator.

Proof : The case n = 1 is obvious, let us then treat the case n ≥ 2 (see
Figure 7). Thanks to Lemma 1 and thanks to the fact that xsad is a 1-saddle, we
can say that (up to a change of coordinates and in a small neighborhood around
xsad) for any x:

f(x) = f(xsad) + xT .

[
−1 0
0 In−1

]
.x,
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where In−1 is the identity matrix of dimension (n − 1) × (n − 1). In other
words, around xsad, we obtain that:

[f < f(xsad)] =

{
x
∣∣∣ − x21 +

n∑
i=2

x2i < 0

}
= C+ ∪ C−,

with:

C+ =

x
∣∣∣ x1 >

√√√√ n∑
i=2

x2i

 , C− =

x
∣∣∣ x1 < −

√√√√ n∑
i=2

x2i

 ,

where C+ and C− are two open connected components of Rn. Indeed, for any

pair (M,M ′) of C+, we have xM1 >
√∑n

i=2(xMi )2 and xM
′

1 >
√∑n

i=2(xM
′

i )2,

from which we define N = (xM1 , 0, . . . , 0)T ∈ C+ and N ′ = (xM
′

1 , 0, . . . , 0)T ∈ C+

from which we deduce the path [M,N ] <> [N,N ′] <> [N ′,M ′] joining M to M ′

in C+. The reasoning with C− is the same. Since C+ and C− are two connected
(separated) disjoint sets, the proof is done.

3.1 Pairing by persistence implies pairing by dynamics in n-D

Theorem 1. Let f be a Morse function from Rn to R. We assume that the
1-saddle point xsad of f is paired by persistence to a local minimum xmin of f .
Then, xmin is paired by dynamics to xsad.

Proof : Let us assume that xsad is paired by persistence to xmin, then we
have the hypotheses described in Definition 1. Let us denote by Cmin the con-
nected component in {Ci}i∈Isad satisfying that xmin = rep(Cimin

).

Since xsad is a 1-saddle, by Proposition 1, we know that Card(Isad) = 2,
then there exists: x< = rep(C<) with C< the component Ci with i ∈ I \ {imin},
then xmin is matchable. Let us assume that the dynamics of xmin satisfies:

dyn(xmin) < f(xsad)− f(xmin). (HY P )

This means that there exists a path Π< in (Dxmin) such that:

max
`∈[0,1]

f(Π<(`))− f(xmin) < f(xsad)− f(xmin),

that is, for any ` ∈ [0, 1], f(Π<(`)) < f(xsad), and then by continuity in space
of Π<, the image of [0, 1] by Π< is in Cmin. Because Π< belongs to (Dxmin),
there exists then some x< ∈ Cmin satisfying f(x<) < f(xmin). We obtain a con-
tradiction, (HY P ) is then false. Then, we have dyn(xmin) ≥ f(xsad)−f(xmin).

Because for any i ∈ Isad, xsad is an accumulation point of Ci in Rn, there
exist a path Πm from xmin to xsad such that:

∀` ∈ [0, 1],Πm(`) ∈ Csad,
∀` ∈ [0, 1[,Πm(`) ∈ Cmin.
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In the same way, there exists a path ΠM from x< to xsad such that:

∀` ∈ [0, 1],ΠM (`) ∈ Csad,
∀` ∈ [0, 1[,ΠM (`) ∈ C<.

We can then build a path Π with is the concatenation of Πm and ` →
ΠM (1 − `), which goes from xmin to x< and goes through xsad. Since this
path stays inside Csad, we know that Effort(Π) ≤ f(xsad)− f(xmin), and then
dyn(xmin) ≤ f(xsad)− f(xmin).

By grouping the two inequalities, we obtain that dyn(xmin) = f(xsad) −
f(xmin), and then by unicity of the critical values of f , xmin is then paired by
dynamics to xsad.

3.2 Pairing by dynamics implies pairing by persistence in n-D

Theorem 2. Let f be a Morse function from Rn to R. We assume that the local
minimum xmin of f is paired by dynamics to a 1-saddle xsad of f . Then, xsad

is paired by persistence to xmin.

Proof : Let us assume that xmin is paired to xsad by dynamics. Let us recall
the usual framework relative to persistence:

Csad = CC([f ≤ f(xsad)],xsad), (1)

{CIi }i∈I = CC([f < f(xsad)]), (2)

{Csadi }i∈Isad =
{
CIi |xsad ∈ clo(CIi )

}
, (3)

∀i ∈ Isad, repi = arg minx∈Csad
i
f(x). (4)

By Definition 1, xsad will be paired to the representative repi of Ci which
maximizes f(repi).

1. Let us show that there exists imin such that xmin is the representative of a
component Csadimin

of {Csadi }i∈Isad .

(a) First, xmin is paired by dynamics with xsad and dyn(xmin) is greater
than zero, then f(xsad) > f(xmin), then xmin belongs to [f < f(xsad)],
then there exists some imin ∈ I such that xmin ∈ Cimin

(see Equation
(2) above).

(b) Now, if we assume that xmin is not the representative of Cimin
, there

exists then some x< in Cimin
satisfying that f(x<) < f(xmin), and then

there exists some Π in (Dxmin) whose image is contained in Cimin . In
other words,

dyn(xmin) ≤ Effort(Π) < f(xsad)− f(xmin),

which contradicts the hypothesis that xmin is paired with xsad by dy-
namics.
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(c) Let us show that imin belongs to Isad, that is, xsad ∈ clo(Cimin
). Let us

assume that:
xsad 6∈ clo(Cimin). (HY P2)

Every path in (Dxmin) goes outside of Cimin
to reach some point whose

image by f is lower than f(xmin) since xmin has been proven to be the
representative of Cimin . Then this path will intersect the boundary ∂ of
Cimin

. Since by (HY P2), xsad does not belong to the boundary ∂ of Cimin
,

any optimal path Π∗ in (Dxmin) will go through one 1-saddle xsad
2 =

arg max`∈[0,1]f(Π∗(`)) (by Lemma 2) different from xsad and verifying

then f(xsad
2) > f(xsad). Thus, dyn(xmin) > f(xsad)− f(xmin), which

contradicts the hypothesis that xmin is paired with xsad by dynamics.
Then, we have:

xsad ∈ clo(Cimin
).

2. Now let us show that f(xmin) > f(rep(Csadi )) for any i ∈ Isad \ {imin}.
For this aim, we will prove that there exists some i ∈ Isad such that
f(rep(Csadi ) < f(xmin) and we will conclude with Proposition 1. Let us
assume that the representative r of each component Csadi except Cmin sat-
isfies f(r) > f(xmin), then any path Π of (Dxmin) will have to go outside
Csad to reach some point whose image by f is lower than f(xmin). We ob-
tain the same situation as before (see (1.c)), and then we obtain that the
effort of Π will be greater than f(xsad) − f(xmin), which leads to a con-
tradiction with the hypothesis that xmin is paired with xsad by dynamics.
We have then that there exists i ∈ Isad such that f(rep(Csadi ) < f(xmin).
Thanks to Proposition 1, we know then that xmin is the representative of
the components of [f < f(xsad)] whose image by f is the greatest.

3. It follows that xsad is paired with xmin by persistence.

4 Conclusion

We have proved that persistence and dynamics leads to same pairings in n-D,
n ≥ 1, which implies that they are equal whatever the dimension. A possible
sequel to this work could be to study if we can define persistence as a new
notion of dynamics in mathematical morphology. It could develop a new filtering
procedure and would show that Persistent Homology can bring new tools to
Mathematical Morphology.
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