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Abstract. Many approaches exist to compute the distance between two
trees in pattern recognition. These trees can be structures with or with-
out values on their nodes or edges. However, none of these distances take
into account the shapes possibly associated to the nodes of the tree. For
this reason, we propose in this paper a new distance between two trees of
shapes based on the Hausdorff distance. This distance allows us to make
inexact tree matching and to compute what we call residual forests, rep-
resenting where two trees differ. We will also see that thanks to these
residual forests, we can obtain good preliminary results in matter of brain
tumor segmentation. This segmentation not only provides a segmenta-
tion but also the tree of shapes corresponding to the segmentation and
its depth map.
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1 Introduction

The tree of shapes (ToS) is a hierarchical representation of the boundaries of the
objects in an image (they are sometimes called level-lines). For sake of complete-
ness, and because we think that many applications can be derived from it, we
propose to introduce the first distance between two ToS based on the distance
between their shapes. This distance makes us able to obtain a fast graph inexact
matching algorithm, whose complexity is in O(n1 × n2 × K + n21 + n22) where
n1 and n2 are the numbers of nodes of the trees T1 and T2 respectively and
where K is the number of operations needed to compute the distance between
two shapes. Our methodology is related to the following topics.

Hausdorff distance: The Hausdorff distance (HD) is a very powerful tool
used in Pattern Recognition to compute the deformation needed to obtain a
curve from another. It is much used in image matching [19]. Sometimes, we can
prefer to use the ranked Hausdorff distance [18] (which is more robust), or the
Gromov-Hausdorff Distance when we want to compute the distance between two
metric trees [26].

Distance between graphs: Among the possible distances between trees, we
can find the tree-edit distances [3]. When hierarchical structures contain cycles,
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they are graph and then specific distances can be used [5]. A co-spectral distance
between graphs can also be found in [11], where in brief they compute the Lapla-
cian of the adjacency matrix of two given graphs of same number of nodes; after
having computed their respective eigenvalues, they compute the squared sum of
the differences of the two spectra which leads to the desired distance. From the
computational topology point of view, we can recall the distances between Reeb
graphs [2].

Graph matching (GM): The references presented here are not exhaustive
since according to Conte et al. [12], more than 160 publications are related
to GM. There exist several approaches: exact matching methods that require a
strict correspondence among the two objects or among their subparts, and inex-
act matching methods where a matching can occur even if the two graphs being
compared are structurally different. Exact ones can be based on tree search [4]
or not [25]. Among them, several flavours exist. From the strongest to the weak-
est forms: the graph isomorphisms which are bijective, the subgraph isomor-
phisms, the monomorphisms, and the homomorphisms. An alternative approach
is to compute maximal common subgraphs (MCS) [5]. These algorithms are
NP-complete, and require exponential time in the worst case [12] except for
special kinds of graphs. Concerning the inexact ones, they can be based on
tree search [34], on continuous optimization [14], on spectral methods [35], or
other techniques [20]. They are considered to be either optimal or approximate
depending on the case. Usually, a matching cost is associated to these algo-
rithms (like for the tree-edit distance [3]); the aim is then to find a mapping
which minimizes this cost. As explained in [7], relaxation labeling and probabilis-
tic approaches [6], semidefinite relaxations [32], replicator equations [29], and
graduated assignments [17] can also be used to proceed to graph matching. GM
algorithms can be based on similarity functions [?] to do for example face recog-
nition. Finally, GM can be based on the tree of shapes (see [28]). However, as we
will see later, this approach is not “differential” like ours, since it is deserved to
locate patterns that are already known and not for patterns that are unknown.

The tree of shapes: the tree of shapes [16, 10] is a hierarchical representation
of the shapes in an image. Its origin can be found in [22, 27], and its applica-
tions are numerous: grain filtering [9], object detection [13], object retrieval [28],
texture analysis [36], image simplification and segmentation [37], and image clas-
sification [24]. It is mainly known as being the fusion of the min-tree and the
max-tree [30].

The paper is organized as follows: Section 2 gives the mathematical back-
ground needed in this paper, Section 3 presents our proposition of distance be-
tween two trees, Section 4 introduces our tree-matching algorithm, Section 5
demonstrates that the provided tools can be used to do brain tumor segmenta-
tion, Section 6 concludes the paper.
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2 Mathematical background

The shapes of a real image defined in a finite rectangle Ω in Z2 are the satura-
tions [10] of the connected components of its (upper and lower) threshold sets.
A set T of shapes is then called tree of shapes [16] when any two shapes are
either nested or disjoint. A distance d on a set E is a mapping from E×E to R+

which satisfies that for any two elements A,B of E, d(A,B) = 0 iff A = B, that
it is symmetrical, and which satisfies the triangular inequality. Let us denote
by µ the cardinality operator and by A,B two (finite) subsets of Ω. Then, the
mapping dµ from E × E to R+:

dµ(A,B) =

{
0 if A and B are empty,

1− µ(A∩B)
µ(A∪B) otherwise.

is a distance [21] called the Jaccard distance. Let (E, d) be some metric space.
The Hausdorff distance between two finite subsets E1 and E2 of E and based
on a given distance d is defined as:

DH(E1, E2) := max

{
max
p1∈E1

min
p2∈E2

d(p1, p2), max
p2∈E2

min
p1∈E1

d(p1, p2)

}
.

3 A distance between two trees of shapes

Let I1, I2 be two images on Ω and T1, T2 their respective trees. We define the
distance between a shape s1 of T1 and T2 as dµ(s1, T2) = mins2∈T2

dµ(s1, s2).
Let T be the set of trees of shapes in Ω. We can define a mapping dT from
T × T to R+ : dT (T1, T2) = maxs1∈T1 dµ(s1, T2), which is not symmetrical. We
finally define DT (T1, T2) = max (dT (T1, T2), dT (T2, T1)) . Since Ω is supplied
with the distance dµ, it is metric, and then DT is the Hausdorff distance based
on the distance dµ. Let us propose the following proof whose main steps are
indicated at http://www.phys.ens.fr/~chevy/Tutorat/Hausdorff.pdf, that
the mapping DT is a distance.

Property 1 For the Jaccard distance dµ, the mapping DT is a distance.

Proof: let TA, TB , TC be three elements of T . Then:

1. When TA = TB , for any sA ∈ TA, minsB∈TB
dµ(sA, sB) = 0, then for any

sA ∈ TA, we have dµ(sA, TB) = 0, and then dT (TA, TB) = 0. A symmetrical
reasoning shows that dT (TB , TA) = 0, and then DT (TA, TB) = 0. Conversely,
DT (TA, TB) = 0 implies that dT (TA, TB) = 0 and dT (TB , TA) = 0. Thanks
to dT (TA, TB) = 0, we know that for any sA ∈ TA, there exists some sB ∈ TB
with dµ(sA, sB) = 0 (and thus sA = sB). In other words, for any sA ∈ TA,
sA ∈ TB , that is, TA ⊆ TB . Thanks to dT (TA, TB) = 0, we obtain TB ⊆ TA.
We can conclude with TA = TB .

2. The symmetry is obtained by construction.
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3. Triangular inequality: let us proceed in five steps:
(a) For any sA ∈ TA and any sB ∈ TB , let us prove that:

dµ(sA, TC) ≤ dµ(sA, sB) + dµ(sB , TC).

Since dµ is a distance, for any sC ∈ TC :

dµ(sA, sC) ≤ dµ(sA, sB) + dµ(sB , sC),

which implies by applying the increasing min operator:

dµ(sA, TC) = min
sC∈TC

dµ(sA, sC)

≤ dµ(sA, sB) + min
sC∈TC

dµ(sB , sC)

≤ dµ(sA, sB) + dµ(sB , TC),

which proves the inequality.
(b) Now, let us prove that for any sA ∈ TA and any sB ∈ TB :

dµ(sA, sB) + dµ(sB , TC) ≤ dµ(sA, sB) +DT (TB , TC).

This property is due to dµ(sB , TC) ≤ dT (TB , TC) ≤ DT (TB , TC).
(c) For any sA in TA, let us prove that:

dµ(sA, TC) ≤ dµ(sA, TB) +DT (TB , TC).

We already know that dµ(sA, TC) ≤ dµ(sA, sB) + DT (TB , TC), then
thanks to the min operator, we obtain:

dµ(sA, TC) = min
sB∈TB

dµ(sA, TC),

≤ min
sB∈TB

dµ(sA, sB) +DT (TB , TC),

≤ dµ(sA, TB) +DT (TB , TC),

which concludes this part of the proof.
(d) Thus we obtain:

dµ(sA, TC) ≤ dµ(sA, TB) +DT (TB , TC) ≤ DT (TA, TB) +DT (TB , TC),

which leads to:

dT (TA, TC) = max
sA∈TA

dµ(sA, TC)

≤ max
sA∈TA

(dµ(sA, TB) +DT (TB , TC)) ,

≤ DT (TA, TB) +DT (TB , TC),

then with a similar reasoning, we obtain that:

dT (TC , TA) ≤ DT (TA, TB) +DT (TB , TC),

and then DT (TA, TC) ≤ DT (TA, TB)+DT (TB , TC), which concludes the
proof. ut
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Property 2 Let T1 and T2 be two trees of shapes defined on the same domain.
Let us compute the subsets T ′

1 and T ′
2 with λ ≥ 0 a given threshold:

T ′
1 = {s ∈ T1 | dµ(s, T2) ≤ λ},
T ′
2 = {s ∈ T2 | dµ(s, T1) ≤ λ}.

Then the subtrees T ′
1 of T1 and T ′

2 of T2 satisfy DT (T ′
1, T

′
2) ≤ λ.

Proof: Let us prove first that:

∀s′1 ∈ T ′
1, min

∀s′2∈T ′
2

dµ(s′1, s
′
2) ≤ λ. (P )

When (P ) is false, there exists some s′1 ∈ T ′
1 such that: mins′2∈T ′

2
dµ(s′1, s

′
2) > λ,

that is, for any s′2 ∈ T ′
2, we have dµ(s′1, s

′
2) > λ. However, s′1 belongs to T ′

1,
then dµ(s′1, T2) ≤ λ, then there exists s2 ∈ T2 \ T ′

2 such that dµ(s′1, s2) ≤ λ. By
symmetry of dµ, we have that dµ(s2, s

′
1) ≤ λ, then mins1∈T1

dµ(s2, s1) ≤ λ, then
s2 ∈ T ′

2. We obtain a contradiction, then (P ) is true. By symmetry, we obtain:

∀s′2 ∈ T ′
2, min

s′1∈T ′
1

dµ(s′2, s
′
1) ≤ λ,

thus for any s′1 ∈ T ′
1 and for any s′2 ∈ T ′

2, dµ(s′1, T
′
2) ≤ λ and dµ(s′2, T

′
1) ≤ λ,

which leads to DT (T ′
1, T

′
2) ≤ λ. ut

4 Tree-matching and residual forests

In this section, we present our definition of tree-matching, we explain how we are
able to ensure that the Hausdorff distance between two subtrees is lower than a
given threshold, and then we introduce our residual forests.

4.1 Our definition of tree-matching

In this paper, we consider that two trees T1 and T2 computed on the images I1
and I2 defined on Ω match relatively to a given λ ∈ R+ when their Hausdorff
distance DT (T1, T2) is lower than or equal to the threshold λ. A strong property
is that when T1 and T2 match relatively to 0, they are identical sets of shapes,
since it means that for any shape s1 in T1, there exists some shape s2 in T2 equal
to s1, and conversely (thanks to the symmetry of DT ).

4.2 Subtrees extraction

Now let us assume that we have two trees T1 and T2 corresponding to two
images I1 and I2 respectively, both defined on Ω. We want to find two sub-
trees T ′

1 of T1 and T ′
2 of T2 satisfying: DT (T ′

1, T
′
2) ≤ λ for some λ ∈ R+.

For this aim, it is sufficient to compute: T ′
1 = {s1 ∈ T1 ; dµ(s1, T2) ≤ λ} and

T ′
2 = {s2 ∈ T2 ; dµ(s2, T1) ≤ λ}. We are ensured that T ′

1 and T ′
2 are trees: they

are both sets of shapes which are disjoint or nested and they both contain the
maximal element Ω. Furthermore, by Property 2, we ensure that the Hausdorff
distance between T ′

1 and T ′
2 satisfies: DT (T ′

1, T
′
2) ≤ λ, and then we obtain sub-

trees of T1 and T2 which are as much similar as we want.
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4.3 Residual forests

Assuming we have computed T ′
1 and T ′

2 for a given λ ∈ R+, we can then remove
from T1 the elements of T ′

1 (we obtain the forest F1) and from T2 the elements
of T ′

2 (we obtain the forest F2). We call then F1 and F2 residual forests of
T1 (relatively to T2) and of T2 (relatively to T1) respectively. The connected
components of F1 and F2, called residual trees of I1 and I2 respectively, will
then represent where I1 and I2 differ from each other. Obviously, the lower λ,
the bigger the residual forests.

4.4 Complexity

Let us assume that some threshold λ is given. For two given trees of shapes T1, T2
of numbers of nodes n1, n2 respectively, we can compute a distance matrix M
whose element Mi,j is equal to dµ(s1i , s

2
j ) where {s1i }i are the shapes of T1 and

{s2j}j are the shapes of T2. This is done in O(n1 × n2 ×K) where K is the time
needed to compute the distance between two shapes. From this matrix, we can
deduce in linear time each term dµ(s1i , T2) for each i and dµ(s2j , T1) for each j
using the min operator. This decision step is then in O(n1 × n2). Now, for each
shape that we want to remove from T1 to finally obtain T ′

1, we have to remove
the corresponding node in T1 structure, which is linear time. At most we have to
do this (n1−1) times, this part is then in O(n21). Obtaining T ′

2 from T2 is then in
O(n22). The total complexity of our algorithm is then in O(n1×n2×K+n21+n22).

5 An application: brain tumor segmentation

To show an application of our distance, we propose an algorithm able to do unsu-
pervised brain tumor segmentation [31]. The key idea is the following: assuming
that two brains look like each other, except that the first has a tumor and the
second has not, the tumor should appear in one of the residual trees of the tu-
mored brain since the residual trees encode the difference between two images.
In this experiment, we use the MICCAI BraTS multi-modal1 dataset [33] to
obtain tumored brains, and the OASIS-3 dataset [23] for brains with no tumor.
We assume that the brains are aligned. Note that the following experiment is in
2D, but it can easily be extended to n-D [16, 15].

Details of the algorithm: For practical reasons, we normalize the FLAIR and
T2 modalities using Gauss normalization (we remove the mean and divide by
5 times the standard deviation), we clip the values between −1 and 1, and we
uniformly quantify so that the value space becomes J0, 10K for the two FLAIR
modalities (tumored and sane brains) and J0, 20K for the T2 modality (tumored
brain).

1 The BraTS dataset provides FLAIR, T1, T1CE, and T2 modalities for each brain
but we will limit us to the FLAIR and T2 modalities.
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Fig. 1. From left to right, the initial tumored slice where we want to locate the tumor,
then the sane slices of similarities equal to 0.396337, 0.537613, 0.558739 and 0.604324
(relatively to the tumored slice). The last one is the best matching brain in the dataset.

The algorithm:

1. We choose one of the 335 brains of size 240× 240× 155 in the BraTS 2020
dataset and we extract the slice corresponding to z = 77 in the FLAIR
modality file (see Figure 1).

2. The similarity between two slices is computed this way:

– We compute the cross-correlation between the intensities of the two slices
(each one has been normalized by its L2 norm), that we name Isim.

– We compute the norms of the gradient of both slices in a pixel-wise
manner, we normalize by their L2 norms each of these images, and we
deduce the cross-correlation Gsim between these two signals.

– We compute on the FLAIR images the masks FluidsBraTS
2 and FluidsOASIS

(see Section A for the details). We deduce their cross-correlation Fsim

(normalized by the L2 norm).
– We finally compute the similarity as the weighted sum:

1/3 ∗ Isim + 1/3 ∗ Gsim + 1/3 ∗ Fsim.

3. We choose in the database of 749 OASIS-3 FLAIR images (with no tumors)
the slice of the brain which best matches with the slice coming from the
BraTS database (see Figure 1).

4. We compute the trees of shapes T sane and T tum of the sane brain and of
the tumored brain respectively on quantified slices (to limit the number of
components in the computed trees).

5. Using grain filtering, we keep in each computed ToS a maximal number of
n = 35 nodes to obtain the most representative structures in the image. The
grain filtering removes all the shapes in the two trees whose area is lower
than the one of the nth greater component in each tree. This way we obtain
T sanesimp = {Ssanei }i and T tumsimp = {Stumi }i (see Figure 2).

6. We fix a threshold λ = 0.6 (empirically chosen) which determines when two
shapes will be considered as sufficiently similar.

7. We compute in a matrix M the distances between each shape of the first
tree with each shape of the second tree: Mi,j = dµ(Stumi ,Ssanej ).

8. For T tumsimp, we keep only the nodes whose corresponding shape has a distance
lower than λ to the other tree T sanesimp ; we obtain then T tummatch (see Figure 3).

2 We call fluids the cerebro-spinal fluids, which appears in dark gray in a FLAIR
image and which are generally located at the center of the brain.
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Fig. 2. Filtered trees of the slices of the ill brain and its best-matching sane brain (the
background is in yellow, the shapes are in black).

Fig. 3. Extraction of the part of the tree of the tumored brain which best matches
with the sane brain. The root of this tree is the only node which loops.

Fig. 4. From left to right, the most relevant residual tree extracted from T tum
simp and its

depth map. Other trees are filtered out because of their negligible corresponding area
in the image.

9. We compute the residual trees {T resi }i by removing to T tumsimp the elements of
T tummatch: these residual trees correspond to the tumor(s) or to small differences
between the two brains (see Figure 4).

10. We set at zero the components of T resi whose amplitude is too low because
low amplitudes are rarely tumors in FLAIR images, at whatever their posi-
tion (see the black thumbnails in Figure 4); we chose empirically the thresh-
old (Ξ + σ) of the BraTS FLAIR image (see Section A for the definitions of
Ξ and σ).
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Fig. 5. From left to right, the T2-weighted slice of the tumored brain, its corresponding
tree, and then its depth map.

11. Then we compute the tree of shapes TT2 of the T2 modality of the same
tumored brain as before, we simplify it as usually using a grain filter keeping
only the n greatest components, and we deduce the corresponding depth
map depthTT2

(see Figure 5) representing the minimal number of level-lines
we have to cross to reach a pixel in an image.

12. Using the mask computed before, we deduce the image:

depth′
TT2

= (1− FluidsBraTS) ∗ depthTT2

which represents the T2-weighted structures in the brain minus the fluids.

Fig. 6. From left to right, the T2-depth mask when β = 0.35 ∗ max(depth′
TT2

), the
binary prediction (the union of the shapes of the residual tree) filtered by the T2-
depth mask, and the binary ground truth. We finally obtain a Dice score of 0.953 on
this slice.
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13. By thresholding this depth map at β = 0.35 ∗ max(depth′
TT2

)3, we obtain
the location(s) in the image where tumors should be (see Figure 6 on its left
side).

14. We apply this mask to the segmentation computed from the residual tree,
we apply on it some morphological operator (here an opening of radius 2)
to obtain the final (smooth) result depicted in Figure 6. Note that the mor-
phological operator is optional and generally does not change much the final
Dice score.

The set of parameters presented in this paper has been established based on
many tests made on 50 test images.

6 Conclusion

In this paper, we have presented the first distance between two trees of shapes
which is computed based on its shape-valued nodes. We have also seen that this
distance can be used to compute residual trees representing hierarchies of the
locations where two images differ. An application related to brain tumor segmen-
tation is proposed with promising preliminary results, but furthermore it pro-
vides a tree of shapes of the segmentation and the corresponding depth map. In
the future, we plan to study if our segmentation method can be applied to multi-
modal signals using the multi-variate tree of shapes [8], to optimize/automatize
the choice of the parameters which is crucial in such a methodology, to see if we
can increase the Dices thanks to some contrast enhancement algorithm [1], and
more generally, we plan to find other applications of this distance. An exploration
of tree-traversing methods will also be done to fasten our implementation.
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Formal computation of FluidsBraTS and FluidsOASIS For a given FLAIR
image F taken in the BraTS (resp. in the OASIS3) dataset, we compute the
mask M of fluids this way. For (x, y) ∈ J1, sxK× J1, syK with sx = sy = 240:

M (x, y) :=

{
1 if

√
(x− xc)2 + (y − yc)2 ≤ R and F (x, y) ≤ Ξ − 0.5 ∗ σ,

0 otherwise,

with (xc, yc) = (119, 119) the coordinates of the center of the image F , R =√
sx2 + sy2/4, and Ξ and σ respectively the statistical mean and standard de-

viation of the intensity of F . It will lead to FluidsBraTS in the first case and to
FluidsOASIS in the second case.

Table 1. Dice scores with β = γ ∗ max(depth′
TT2

).

Patient Number 1 2 3 4 5 6 7 8 9 10 11

Dice score (γ = 0.35) 0.873 0.821 0.142 0.913 N/A 0.859 0.875 N/A 0.442 0.444 0.953

Dice score (γ = 0.2) 0.873 0.871 0.860 0.923 N/A 0.895 0.923 N/A 0.642 0.474 0.944

Tumor? (z = 77) Yes Yes Yes Yes No Yes Yes No Yes Yes Yes

Contrast High Low Low High N/A High Low N/A Low Low High

Fig. 7. From top to bottom, the FLAIR slices of the eleven studied patients, the ground
truths, the predictions with γ set at 0.35 and the predictions with γ set at 0.2.

Dice scores on the 10 first patients on BraTS dataset Table 1 and
Figure 7 show the results obtained with β set at different values. We can see
that, depending on the contrast around the tumor, the optimal choice of β is
not the same.


