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Abstract 

Segmentation of cardiac images, particularly late gadolinium-enhanced magnetic resonance imaging 

(LGE-MRI) widely used for visualizing diseased cardiac structures, is a crucial first step for clinical diagnosis 

and treatment. However, direct segmentation of LGE-MRIs is challenging due to its attenuated contrast. Since 

most clinical studies have relied on manual and labor-intensive approaches, automatic methods are of high 

interest, particularly optimized machine learning approaches. To address this, we organized the “2018 Left 

Atrium Segmentation Challenge” using 154 3D LGE-MRIs, currently the world’s largest cardiac LGE-MRI 

dataset, and associated labels of the left atrium segmented by three medical experts, ultimately attracting the 

participation of 27 international teams. In this paper, extensive analysis of the submitted algorithms using 

technical and biological metrics was performed by undergoing subgroup analysis and conducting 

hyper-parameter analysis, offering an overall picture of the major design choices of convolutional neural 

networks (CNNs) and practical considerations for achieving state-of-the-art left atrium segmentation. Results 

show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm, 

significantly outperforming prior state-of-the-art. Particularly, our analysis demonstrated that double, 

sequentially used CNNs, in which a first CNN is used for automatic region-of-interest localization and a 

subsequent CNN is used for refined regional segmentation, achieved far superior results than traditional 

methods and pipelines containing single CNNs. The findings from this study can potentially be extended to 

other imaging datasets and modalities, having an impact on the wider medical imaging community. This 

large-scale benchmarking study makes a significant step towards much-improved segmentation methods for 

cardiac LGE-MRIs, and will serve as an important benchmark for evaluating and comparing the future works 

in the field. 

 

Keywords: Benchmarking, Convolutional Neural Networks, Late Gadolinium-Enhanced Magnetic Resonance 

Imaging, Segmentation. 

   



1. Introduction 

1.1. Background 

 Segmentation is an important task for the quantitative analysis of medical images. In particular, 

delineation of a patient’s internal organ and tissue structure from 3D images, such as those obtained from 

computed tomography (CT) and magnetic resonance imaging (MRI), is often a necessity for medical 

diagnosis, patient stratification, and clinical treatment (Medrano-Gracia et al. 2015, Oakes et al. 2009, Csepe 

et al. 2017). Nowadays, various contrast agents are widely used to improve the visibility of disease-associated 

structures such as scarring, tumors, and blood vessels. For example, gadolinium-based contrast-enhancing 

agents are used in a third of all MRI scans (LGE-MRIs) worldwide and are proved to be very effective in 

providing clinical diagnosis of cardiac diseases (Oakes et al. 2009, Higuchi et al. 2017, Hennig et al. 2017, 

Figueras i Ventura et al. 2018). However, direct segmentation and analysis of cardiac LGE-MRIs remain 

challenging due to the attenuated contrast in nondiseased tissue and imaging artifacts, as well as the varying 

quality of imaging. Therefore, the current standard of image segmentation and 3D reconstruction from these 

images for medical use still relies heavily on labor-intensive manual or semi-automatic methods (Csepe et al. 

2017, Oakes et al. 2009, Higuchi et al. 2017). For instance, researchers and clinicians at the University of 

Utah have utilized LGE-MRIs for cardiac research in the past two decades based on their well-established, 

although time-consuming workflow to manually label the left atrium (LA) from LGE-MRIs in patients with 

atrial fibrillation, the most common cardiac arrhythmia (McGann et al. 2014). 

 

1.2. Related Work 

 In recent years, many approaches have been proposed for performing automatic 3D segmentation of 

cardiac structures from medical images, mostly for non-contrast data. A 2013 benchmarking study held in 

conjunction with Medical Image Computing and Computer Assisted Intervention (MICCAI) examined 

methods for automatically segmenting the LA from non-contrast MRIs and CTs (N = 30 each) (Tobon-Gomez 

et al. 2015). The study revealed that methods combining statistical or atlas-based models with region growing 

approaches performed the best for both image types among 9 participants. A more recent 2017 benchmarking 

study for segmentation of left and right ventricles from non-enhanced MRIs showed that convolutional neural 

networks (CNNs) significantly outperformed traditional methods (Bernard et al. 2018). By analyzing 

algorithms from 10 participants, the study revealed that the popular U-Net CNN architecture (Ronneberger, 

Fischer and Brox 2015) which was specifically designed for medical image segmentation was particularly 

effective. Contrary to non-enhanced images, contrast-enhanced MRIs/CTs have received significantly less 

attention for research despite their important role in clinics. A 2016 study was conducted to investigate 

methods of LA segmentation from LGE-MRIs and contrast-enhanced CTs (N = 10 each) by analyzing the 

submitted algorithms from three groups (Karim et al. 2018). However, due to the limited number of submitted 

algorithms, the study was not able to draw any definitive conclusions in terms of approach development. 

Other studies on LGE-MRI segmentation also have limited efficacy as the methods proposed require 

additional information such as manually initialized shape priors (Veni, Elhabian and Whitaker 2017, Zhu et al. 

2013) or paired magnetic resonance angiography (Tao et al. 2016). While LGE-MRI segmentation still heavily 

relies on traditional methods, many recent advancements in CNNs have been made for image segmentation in 

general. VGGNet (Simonyan and Zisserman 2014) has been widely used for developing full convolutional 

networks (Long, Shelhamer and Darrell 2015, Noh, Hong and Han 2015) for semantic segmentation due to its 

simplicity, and adaptations of superior architectures, such as ResNet and Inception (Szegedy et al. 2017), are 

currently the state-of-the-art in the field (Chen et al. 2018b). Thus, the application of current cutting-edge 

CNN architectures to LGE-MRIs requires further investigation and development. 



 

1.3. Contribution 

 It is unknown if it is possible to create a unified deep learning architecture capable of achieving optimal 

performance for segmentations across a wide spectrum of applications. While U-Net, VGGNet, and ResNet 

are currently the most widely used CNN architectures for medical image segmentation, CNNs still have to be 

individually tuned for each specific application (Knoll, Maier and Rueckert 2018, Zhu 2019). This is reflected 

in the current literature which often contains wildly differing implementations of U-Net and other 

architectures for segmentation tasks in different disciplines, making it difficult to pinpoint design 

characteristics that can be applied universally. Methods for hyper-parameter optimization, particularly in 

U-Net, for general problems and/or specific tasks are still an ongoing topic of discussion, and could 

potentially lead to a more robust framework for segmentation. The lack of accessible, large-scale datasets and 

the varying quality of the image data (with labels) also hinders the development of optimized methods for LA 

segmentation from LGE-MRIs. By providing the largest 3D cardiac LGE-MRI dataset along with top quality 

expert labeled LA cavities (N = 154) thanks to the great efforts of University of Utah over the past two 

decades, we have gathered the community and organized the 2018 LA Segmentation Challenge (Figure 1) in 

conjunction with the MICCAI conference and Statistical Atlases and Computational Modelling of the Heart 

(STACOM) workshop in Granada, Spain (Pop 2019). Throughout the course of the challenge, over 200 

research groups/individuals worldwide accessed our challenge dataset. In total, 27 teams participated in the 

final evaluation phase of the challenge and their final rankings are shown on the challenge website 

(http://atriaseg2018.cardiacatlas.org/). 

To analyze the wide spectrum of conventional and deep learning methods submitted to the challenge, we 

first sub-grouped the methods by their main architecture designs and then identified the subgroup with the 

best design features which contributed to its superior performance. We then conducted extensive 

hyper-parameter tuning experiments on the top-performing method to identify the exact parameter choices 

leading to achieving state-of-the-art accuracies. By performing the benchmarking study in this manner, we 

offered both an overall picture on the major design choices necessary, as well as detailed practical 

considerations.  

Through our global benchmarking study, we aim to derive an optimized framework for the segmentation 

of the LA in LGE-MRIs, providing critical insights into effective approaches and techniques for segmentation. 

These approaches can potentially be extended to other areas of cardiac segmentation, as well as for 

non-contrast MRIs, potentially having a high impact on the wider imaging community. 

 

http://atriaseg2018.cardiacatlas.org/


 

Figure 1: Overall workflow of medical images for clinical usage and the 2018 Left Atrium (LA) Segmentation Challenge. A) Clinical 

MRI scanners were used to acquire late gadolinium-enhanced magnetic resonance imaging (LGE-MRIs) from patients with atrial 

fibrillation (AF). B) The LGE-MRIs were manually segmented in a slice-by-slice manner by experts to obtain labels of the LA cavity. 

The 3D LA geometry can be obtained by stacking the 2D segmentation together. C) In the 2018 LA Segmentation Challenge, 154 3D 

LGE-MRI data (each with a spatial dimension of either 576×576×88 or 640×640×88) was split into 100 training and 54 testing sets. 

The training data and labels were made public to all potential participants of the challenge, and the testing data was used at the end of 

the challenge for evaluation. A total of 27 teams participated and were ranked based on the Dice scores. D) Accurate reconstruction of 

the LA anatomical structure provides crucial information for patient stratification and for guiding clinical treatment for patients with 

AF. AO, aorta; LV, left ventricle; RA, right atrium. 

 

  



2. Methods and Materials 

2.1. Dataset and Labels 

A total of 154 independently acquired 3D LGE-MRIs from 60 de-identified patients with atrial 

fibrillation were used in this challenge. All patients underwent LGE-MRI scanning to define the atrial 

structure and fibrosis distribution prior to and post-ablation treatment at Utah (McGann et al. 2014, McGann 

et al. 2011). High-resolution LGE-MRIs of bi-atrial chambers were acquired approximately 20-25 minutes 

after the injection of 0.1 mmol/kg gadolinium contrast (Multihance, Bracco Diagnostics Inc., Princeton, NJ) 

using a 3D respiratory navigated, inversion recovery prepared gradient echo pulse sequence. An inversion 

pulse was applied every heartbeat, and fat saturation was applied immediately before data acquisition. To 

preserve magnetization in the image volume, the navigator was acquired immediately after the data 

acquisition block. Typical scan times for the LGE-MRI study were between 8-15 minutes at 1.5 T and 6-11 

minutes using the 3T scanner (for Siemens sequences) depending on patient respiration (McGann et al. 2014, 

McGann et al. 2011). 

The spatial resolution of one 3D LGE-MRI scan was 0.625×0.625×0.625 mm³ with spatial dimensions of 

either 576 × 576 × 88 or 640 × 640 × 88 pixels. The LA cavity volumes were manually segmented in 

consensus with three trained observers for each LGE-MRI scan using the Corview image processing software 

(Merrk Inc, Salt Lake City, UT) (McGann et al. 2014). The LA cavity was defined as the pixels contained 

within the LA endocardial surface including the mitral valve and LA appendage as well as an extent of the 

pulmonary vein (PV) sleeves. The endocardial surface border of the LA was segmented by manually tracing 

the LA and PV blood pool which were regions with enhanced pixel intensities in each slice of the LGE-MRI 

volume. The extent of the PV sleeves in the endocardial segmentations was limited to the PV antrum region, 

and was defined as the point where the PVs stopped narrowing and remained constant in diameter. On average, 

the PV antra were limited to less than 10 mm extending out from the endocardial surface, or approximately 

three times the thickness of the LA wall. The LGE-MRI image volumes and associated LA segmentations 

were stored in the nearly-raw raster data (nrrd) format. The LGE-MRIs were grayscale and the segmentation 

labels were binary. 

In order to validate the quality of the dataset, the signal to noise ratio (SNR), contrast ratio (CR), and 

heterogeneity (HET) between the foreground containing the LA and the background was assessed (Figure 

2A-C). The three metrics used were also in agreement as SNR had a strong positive correlation with CR and 

HET and while CR and HET had a strong negative correlation. Distributions of the quality measurements on 

all data showed that less than 15% of the data was of high quality (SNR < 1), 70% of the data was of medium 

quality (SNR = 1 to 3), and over 15% of the data was of low quality (SNR > 3). 

 



 
Figure 2: Variation in the quality of the late gadolinium-enhanced magnetic imaging (LGE-MRI) dataset used for this 

study. A) Each row represents different LGE-MRIs with a various quality measured using signal to noise ratio (SNR), 

contrast ratio (CR), and heterogeneity (HET). The data at the top row has the highest quality and the data at the bottom 

row has the lowest quality. Each column represents 2D LGE-MRI at the same location within a 3D LGE-MRI and is 

shown with the distance measurements in millimeters. B) SNR and CR are positively correlated and are both negatively 

correlated with HET. C) Distribution of the SNR for all the 154 3D LGE-MRI datasets used in the 2018 Left Atrium 

Segmentation Challenge. D) Correlation of the average performance in relation to the LGE-MRI image quality, 



demonstrating that lower qualities (higher SNR) result in lower Dice scores. 

 

2.2. 2018 LA Segmentation Challenge 

The 3D LGE-MRI dataset was randomly split into training (N = 100) and testing (N = 54) sets, with the 

entire training set published at the start of the challenge for participants to develop their algorithms. The 

testing set was released without the labels during the evaluation period near the end of the challenge, and 

participants were ranked based on the accuracy of the testing set predictions submitted to the organizers. The 

Dice score was used as the only evaluation metric in the challenge for simplicity. However, subsequent 

analyses with the surface to surface distance and the Euclidean distance error of the LA diameter and volume 

measurements were conducted after the challenge. 

The 17 out of 27 teams who provided their methodologies and performances either in full STACOM 

papers (Xia et al. 2018, Bian et al. 2018, Vesal, Ravikumar and Maier 2018, Yang et al. 2018, Li et al. 2018, 

Puybareau et al. 2018, Chen, Bai and Rueckert 2018a, Jia et al. 2018, Liu et al. 2018, Borra et al. 2018, de 

Vente et al. 2018, Preetha et al. 2018, Qiao et al. 2018, Nuñez-Garcia et al. 2018, Savioli, Montana and 

Lamata 2018) or online (Huang 2018, Xu 2018) were included in this benchmarking study. Summaries of 

their methodologies are shown in Table 1 sorted by the final challenge rankings. 

 

Table 1: Summary of methods submitted to the 2018 Left Atrium Segmentation Challenge 



 

CLAHE, contrast limited adaptive histogram equalization; CNN, convolutional neural network; ROI, region of interest. 

 

2.3. Algorithm Evaluation 

A range of metrics was used for the benchmarking study. Technical measures for evaluating participants 

included the Dice score, Intersection over Union (IoU) or Jaccard Index, sensitivity, specificity, Hausdorff 

distance (HD), and surface to surface distance (STSD). The Dice coefficient is the most commonly used 

metric for evaluating segmentation accuracy. Given a 3D prediction, A, and 3D ground truth, B, the Dice score 

is defined as 



𝐷𝐼𝐶𝐸(𝐴, 𝐵) =
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
          (Eq. 1) 

The IoU (or Jaccard index) measures the similarity between a prediction and a ground truth and is defined as 

𝐼𝑜𝑈(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
            (Eq. 2) 

Sensitivity and specificity are used to reflect the success of each algorithm for segmenting the foreground (LA 

cavity) and the background respectively 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
          (Eq. 3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
         (Eq. 4) 

where TP stands for true positive, TN stands for true negative, FP stands for false positive, and FN stands for 

false negative. The HD measures the local maximum distance between the surfaces of the predicted LA 

volume and the ground truth. This metric evaluates geometrical characteristics, unlike the Dice or IoU which 

purely evaluates pixel-by-pixel comparisons. The 3D version of the HD was used in this study to measure the 

largest error distance of the 3D segmentation defined for a prediction of LA volume, A, and ground truth, B, as 

𝐻𝐷(𝐴, 𝐵) = maxb ∈ B{min𝑎 ∈ 𝐴{√𝑎2 − 𝑏2}}      (Eq. 5) 

where a and b are all pixels within A and B. Lastly, the STSD measures the average distance error between the 

surfaces of the predicted LA volume and the ground truth as 

𝑆𝑇𝑆𝐷(𝐴, 𝐵) =
1

𝑛𝐴+𝑛𝐵
(∑ √𝑝2 − 𝐵2𝑛𝐴

𝑝=1 + ∑ √𝑝′2 − 𝐴2𝑛𝐵
𝑝′=1 )    (Eq. 6) 

where nA is the number of pixels in A, nB is the number of pixels in B, and p and p’ describe all points in A and 

B. 

Biological measures for evaluating performance included the error of the LA anterior-posterior diameter 

and the error of the 3D LA volume between predictions and ground truth since LA diameter and volume are 

the two widely used clinical measures during the clinical diagnosis and treatment of patients with AF. The LA 

diameter, measured in millimeters, is calculated by finding the maximum Euclidean distance along the x-axis 

of each MRI scan to estimate the distance from the anterior LA to the posterior. The LA volume, measured in 

cm
3
, is calculated by summing the total number of positive (LA cavity) pixels. Participant evaluation and 

ranking using these metrics are summarized in Figure 4D-G. 

Throughout the study, statistical significance was assessed using the two-tailed T-test to compare the 

performances of participant sub-groups as well as individual algorithms during analyses. 

 

  



3. Results 

3.1. Performance of Submitted Algorithms 

 We first examined the overall performance of the different methodology categories from the 17 

submitted algorithms. CNNs were the most popular choice as it was used by 15 teams, and on average, 

substantially outperformed the other two teams which used traditional atlas-based segmentation methods (92.5% 

vs 85.1% Dice score, p < 0.05, Figure 3A). Participants used a variety of deep learning libraries for 

implementing their CNN pipelines including Keras (N = 7), Tensorflow (N = 4), PyTorch (N = 3), and Torch 

(N = 1). It was observed that the teams implemented with PyTorch performed better (Figure 3B). Out of the 

15 teams using CNNs, 12 teams proposed CNNs designs based on the popular U-Net architecture 

(Ronneberger et al. 2015) whilst the other three 3 implemented non-U-Net designs. We observed that the 

teams using U-Net based CNNs had superior performances (92.4% vs 89.3% Dice score, p < 0.05) including 

Xia et al. (Xia et al. 2018) and Huang et al. (Huang 2018) who were ranked 1
st
 and 2

nd
 in the challenge 

(Figure 3C). The majority of teams using the U-Net architecture implemented further enhancements to the 

original architecture in an attempt to improve the segmentation performance. This involved the use of 

additional residual connections (Xia et al. 2018), replacing all layers with dilated convolutions (Vesal et al. 

2018), improved methods of training such as the use of custom loss functions, deep supervision (Yang et al. 

2018), multi-task learning (Chen et al. 2018a), and attention mechanisms throughout the network (Li et al. 

2018). The three teams which did not use U-Net as a baseline approach implemented enhanced versions of 

existing architectures such as ResNet (Bian et al. 2018, Szegedy et al. 2017), VGGNet (Simonyan and 

Zisserman 2014, Puybareau et al. 2018), and Fully-CNNs (Long et al. 2015, Savioli et al. 2018, Xiong et al. 

2019) which have been widely used on the ImageNet database (Deng et al. 2009). 

We then evaluated 2D versus 3D approaches based on the 15 submitted CNN algorithms. Since the 

challenge data was 3D, 8 out of the 15 teams proposed 3D CNNs which simply performed direct 3D 

segmentation on each set of 3D LGE-MRIs. On the other hand, 2D CNNs used by seven teams segmented 

each image slice of the image volume along the z-axis and stacked the individual segmentations together to 

obtain the final 3D results. Summary statistics show that there is no significant difference between the 2D and 

3D CNN approaches when the CNN architecture and setup are not considered (92.1% vs 92.5% Dice score, p 

= 0.82, Figure 3D), even though the 3D CNNs were used by 4 of the top 5 teams. We also observed five 

teams utilizing a double, sequentially used CNNs in their pipeline to improve the segmentation performance 

compared to methods that only contain a single CNN (N = 10). Through this enhancement, the former 

approach achieved a significantly better average Dice score of ~92.8% compared to single CNN methods 

which obtained a Dice score of ~90.3% on average (Figure 3E). 

 



 
Figure 3: Comparative summaries of the 17 algorithms included in this benchmarking study, a well representative subset of the 27 

teams that participated in the 2018 Atrial Segmentation Challenge. A) The 15 methods utilizing convolutional neural networks (CNNs) 

outperformed the two traditional multi-atlas based methods with statistical significance. B) A range of deep learning libraries were 

used by the 15 teams to implement CNNs. C) The 12 teams using U-Net architectures in their CNN pipelines outperformed the 3 

teams using ResNet, VGGNet, and Fully-CNNs with statistical significance. D) Approximately an equal number of teams used 

methods consisting of 2D CNNs compared to methods consisting of 3D CNNs. However, there was no statistically significant 

difference in segmentation accuracy between the two groups. E) Participants using a double, sequentially used CNNs achieved 

significantly higher accuracy than those using a single CNN for segmentation. 

 

Of the methods discussed in our study, the double, sequentially used CNNs, termed as double CNN 

throughout this study, involved the first CNN automatically detecting the region of interest (ROI) from 

LGE-MRIs and the second CNN performing regional segmentation of the LA from the ROIs (Figure 4A). 

Alternatively, the single CNN method focused solely on using one CNN for direct segmentation of the LA 

from either the original dataset or ROIs cropped at a consistent location across all input images (Figure 4B-C). 

To further examine the 15 proposed CNN methodologies, we have regrouped the approaches into three 

categories: double 3D CNNs (N = 5), single 2D CNNs (N = 7), and single 3D CNNs (N = 3). It is noted that 

no team proposed a double 2D CNN method. The average accuracy of the three categories of CNN methods 

were evaluated with both technical and biological performance metrics: Double 3D CNN methods 

significantly outperformed single 2D and 3D CNN methods in terms of the Dice score (92.8% vs 91.1% and 

89.9%, p < 0.05), the surface to surface distance (0.75mm vs 0.85mm and 1.1mm, p < 0.05), LA diameter 

error (2.7% vs 3.2% and 4.3%, p < 0.05), and LA volume error (4.5% vs 4.9% and 6.2%, p < 0.05) (Figure 



4D-G). The success of the double CNN methodology can also be seen in the challenge rankings as this 

workflow was utilized by the top 2 teams as well as 4 of the top 6 teams which achieved over 92% Dice score. 

 

 
Figure 4: Detailed evaluations of the performance of the 15 convolutional neural network (CNN) pipelines submitted to the challenge 

grouped into three general categories depending on how the CNNs were applied to segment the left atrium (LA) from the late 

gadolinium-enhanced magnetic resonance imaging (LGE-MRI). A) Double 3D CNN methods consisted of one CNN to detect a 3D 

region of interest (ROI) from the LGE-MRIs and a second CNN to segment LA from the 3D ROI. B) Single 2D CNN methods 

consisted of one 2D CNN which performed slice-by-slice segmentation of each LGE-MRI. The 3D LA was then reconstructed by 

stacking slice-by-slice segmentation. C) Single 3D CNN methods consisted of a single 3D CNN to segment the LA from the 

LGE-MRI volume directly. Dice score (D), the average surface to surface distance (E), LA diameter error (F) and LA volume error 

comparisons (G) showed the superiority of 3D double CNN methods among the three different categories of CNN workflows. 

 



3.2. Top Performing CNN Methodologies 

 Methods involving double 3D CNNs were shown to have the best overall performance. Interestingly, all 

five of the double 3D CNN methods adopted U-Net as the baseline architecture, though significant 

improvements were added to the baseline approach by these participants. These included the addition of 

residual connections into the U-Net by Xia et al. (Xia et al. 2018) (Figure S1), Huang et al. (Huang 2018) 

(Figure S2), and Li et al. (Li et al. 2018) (Figure S3). Specifically, residual connections were added to each 

block of two to three sequential convolutional layers along the entire length of the networks to improve 

gradient flow during backpropagation when training the CNNs. The type of residual connections varied from 

a simple connection without any additional operations to more advanced connections containing convolutional 

and pooling layers. Dense connections were also seen in the method proposed by Huang et al. (Huang 2018) 

along with dilated convolutions to improve the receptive field of the CNN. On the other hand, Yang et al. 

(Yang et al. 2018) did not alter the U-Net architecture but instead elected for an improved dense supervision 

training scheme and a customized loss function (Figure S4). The proposed loss function was an ensemble of 

the Dice score, pixel thresholding to improve sensitivity, and an overlap metric for improving segmentations 

at boundary locations. Apart from the double 3D CNN methods, Bian et al. (Bian et al. 2018) and Vesal et al. 

(Vesal et al. 2018) also performed highly with single 3D CNN methods. The effectiveness of their CNNs 

could be potentially attributed to the use of dilated convolutions, allowing them to outperform all other single 

CNN methods. 

To gain further insights into the top performing CNN pipelines, control experiments were performed in 

this benchmarking study on the winning approach by Xia et al. (Xia et al. 2018) (p < 0.05 when comparing all 

technical metrics against other teams) to examine the factors contributing to their superior performance 

(Figure 5). It is noted that since most top-ranking algorithms utilized similar U-Net based designs, 

experimental observations derived from the approach by Xia et al. (Xia et al. 2018) would also apply to other 

methods with similar algorithm setups. For the purposes of analysis, the top algorithm was selected based on 

its simplicity and light-weight nature. A summary of the participants’ double 3D CNN pipeline is shown in 

Figure 5A and additional experiments were conducted to evaluate the efficacy of the second CNN network 

for performing segmentation. Hyper-parameter tuning experiments in Figure 5B revealed that the extra 

residual connections added to the U-Net architecture increased the Dice score by 0.7%. The increased 

receptive field using 5×5×5 convolutional kernels significantly improved the Dice score by 4% compared to 

the widely used 3×3×3 kernels. The use of the Dice loss improved the accuracy by 2.1% over the traditional 

cross-entropy loss which does not account for the major class imbalance present in the dataset. Although not 

statistically significant, dropout and parametric rectified linear unit (PReLU) further improved performance by 

approximately 0.5%. Color-intensity normalization or contrast limited adaptive histogram equalization 

(CLAHE), used by several teams improved the Dice score by 0.7% (Figure 5C). Expectedly, standard data 

augmentation techniques such as random rotation, elastic deformations, perspective scaling, and random 

flipping improved the performance by over 2% (Figure 5D), while other schemes such as blurring, affine 

transformations and sheering did not result in any significant improvements. We also observed that online data 

augmentation was potentially more effective than offline (Figure 5E), likely due to the larger variety of data 

generated on-the-fly during training. 

 



 
Figure 5: Post-challenge analysis of the winning method by Xia et al. (Xia et al. 2018) in the 2018 Left Atrium (LA) Segmentation 

Challenge demonstrates the optimality of their approach. A) Schematic summary of the 3D double convolutional neural network 

(CNN) approach. Both CNNs consisted of a U-Net architecture enhanced with batch-normalization in each layer and residual 

connections along the length of the network. The first CNN detected the centroid of the ROI from a down-sampled version of the 

initial late gadolinium-enhanced magnetic resonance imaging (LGE-MRI). A 240×160×96 region centered in the LA cavity was the 

output and was then processed by the second CNN to segment LA in 3D. The output was padded to obtain the original resolution of 

the input LGE-MRI. B) Hyper-parameter tuning of the U-Net architecture in the second CNN (red box) showed that all parameters 

used by the winning team were optimal through post-challenge analysis. C) The effect of contrast limited adaptive histogram 

equalization (CLAHE) for normalizing each LGE-MRI during pre-processing on the performance of the CNN. D) Data augmentation 

led to an incremental improvement as more augmentation methods were increasingly added, showing an increasing trend in accuracy. 

E) Comparisons of offline and online data augmentation schemes showing that online augmentation resulted in marginally higher 

performances. 

 

3.3. Key Factors Influencing the Performance of Double CNN Approaches 

 We performed further analyses to target the key factors contributing to the success of double CNN 

methods compared to single CNNs. Since the optimality of the second CNN was shown through 

experimentation in the previous subsection, we focused on analyzing the key factors of the first CNN for 

influencing the final segmentation accuracy (Figure 6). Firstly, it was observed that the ROI yielded as a 

result of the first CNN in a double CNN method was consistently centered on the LA (Figure 6A). Without 

the ROI detection procedure undergone by the first CNN, the center of the LA would potentially have a ~100 

pixel or ~17%, shift in position from that of the original input images. Our experiments show a decreasing 

trend in overall CNN performance as the LA (ROI) was purposely shifted away from the center of the image 



patch as an input for the second CNN, suggesting that centering the LA is extremely important to obtain 

superior accuracies (Figure 6B and C). Secondly, we observed that the smaller the image patch of ROI as the 

output of the first CNN, the higher final segmentation accuracy. This relationship was true for all ROI sizes 

that were greater than 240×160 (dashed cyan line in Figure 6D). The decreased input size of ROIs generated 

from the first CNN of the double CNN methods reduced the class imbalance as there were significantly fewer 

background pixels present in the original input images, resulting in better performances as seen in our 

experiments using input sizes with X/Y dimensions of 240×160 to 400×400. However, our experimentation 

also showed that the Dice accuracy of the CNN decreased when the size of the ROI was less than 240×160 

even though the LA was fully contained within the ROI. We postulate that the observed decrease in 

performance could be attributed to the boundary of the LA being too close to the edge of the ROI inputted into 

the CNN. Furthermore, U-Net is known to perform poorly when segmenting boundary regions (Ronneberger 

et al. 2015). 

 

 

Figure 6: Analysis of the key factors of the first convolutional neural network (CNN) in the double CNN methods in enhancing left 



atrium (LA) segmentation performance. A) Illustration of the region of interest (ROI) extracted from the double CNN methods 

centered on the LA (Top) and ROI extracted not centered on the LA (Bottom). The ROI not centered on the LA can be offset from the 

center of the LA by as much as 100 pixels in any direction (orange box). B) Displacing the LA by a distance in the ROI from the center 

of the patch reduced segmentation accuracy. A 100% offset implies the LA is pressed against the side of the patch without any loss of 

LA pixels. C) Performance summary comparing the methods proposed in the challenge which used double CNN pipelines to achieve 

an LA centered patch and the methods which had non-centered patches due to single CNN pipelines. D) To achieve the best accuracy, 

the size of the ROI should be sufficiently small. Effect of the input patch size of a CNN on the segmentation accuracy showing the 

peak accuracy at a patch size of 240×160 as proposed by the winners of the challenge. The percentage of background pixels is 

computed along the tested patch sizes to convey the degree of class imbalance in the CNN inputs where a higher percentage represents 

a more severe class imbalance. 

  



4. Discussion and Conclusions 

To our knowledge, this is the largest study of this kind to systematically benchmark various approaches 

submitted to a global challenge for LA segmentation from 3D LGE-MRIs. These approaches were developed 

based on the largest and highest quality 3D cardiac LGE-MRIs dataset and labels in the world provided by our 

2018 LA segmentation challenge. The benchmarking study includes the approaches developed by 17 groups, a 

well representative subset of the 27 teams participated. While prior efforts exist (Tobon-Gomez et al. 2015, 

Bernard et al. 2018, Karim et al. 2018), our benchmarking study makes several significant contributions. 

Firstly, our study is one of few that investigate methods of LA segmentation directly from LGE-MRIs, which 

is more challenging than segmenting non-contrast images due to the attenuated color contrast causing a lack 

of clarity between the atrial tissue and background pixels. Furthermore, we attracted more participants than 

prior studies and our dataset is multi-fold larger in comparison to previous challenges. In addition, our task of 

LA segmentation is significantly more difficult than prior established challenges which focused on other larger 

cardiac structures, given the relatively small LA chamber and thin wall (Peng et al. 2016). As a result, the 

methods proposed are more superior and robust as seen from the diversity of the proposed approaches and the 

various performance metric evaluations. Lastly, our study delves deeper into the key factors of CNN 

approaches that optimize segmentation performance through extensive post-challenge analyses on the 17 

submitted approaches. 

 

4.1. Characteristics of Top-Performing CNNs for Segmentation 

The key findings of this study are multifold. First of all, our study found that CNN approaches, notably 

those based on the U-Net architecture achieved better performance compared to traditional atlas-based 

methods and other CNN architectures, similar to previous studies (Bernard et al. 2018). Furthermore, by 

observing the methods proposed by the top five teams, we believe that additional residual connections and 

improved methods of optimization, such as custom loss functions, resulted in higher performance. Our 

post-challenge analysis also showed that data augmentation methods and color-intensity or contrast 

normalization enhanced feature learning improved accuracy. More interestingly, 2D and 3D CNN methods 

had comparable accuracies, showing that analyzing each LGE-MRI slice in 2D and ignoring the 3D continuity 

in the data achieves similar results while requiring significantly less computation and memory cost due to the 

smaller number of parameters. In particular, we discovered that a double, sequentially used CNN architecture 

achieved far superior segmentation results than a single CNN approach for both technical and biological 

performance metrics. The effectiveness of the double CNN methods relies on two key elements. Firstly, the 

first CNN automatically detects the location of the ROI resulting in the image patch extracted to be centered 

on the ROI and sufficiently small to include minimal background pixels. Secondly, the second CNN 

effectively performs detailed regional segmentation of the ROI from the extracted image patch. This pipeline 

can be trained end-to-end and is far more computationally efficient compared to the state-of-the-art ensemble 

methods that have won previous segmentation challenges (Bernard et al. 2018). We believe that the superior 

framework of the double CNN method can be applied to any problem with severe class imbalance such as the 

segmentation of small structures from larger input images. The fully data-driven nature of the double CNN 

approaches also means that they are widely adaptable to other image datasets such as 3D contrast-enhanced 

CTs and non-contrast medical images. 

 

4.2. Comparison of Evaluation Metrics 

While Figure 4 showed that 3D double CNNs achieved the highest performance on average regardless of 

the evaluation metric used, comparisons of individual algorithms showed a slight discrepancy in the overall 



rankings (Figure 7). Results showed that although the most widely used segmentation metrics consisting of 

the Dice score, Jaccard Index/IoU, and the surface to surface distance produced fairly consistent rankings 

amongst the top 5 contestants, the Hausdorff distance, sensitivity, and specificity produced significantly 

different rankings in comparison. A potential explanation of this discrepancy is that the Hausdorff distance 

measured the most extreme errors, while sensitivity and specificity do not consider both positive and negative 

pixels simultaneously, leading to biased measurements. This also likely explains why these metrics are not 

commonly used for evaluating segmentation accuracies. While the conclusions drawn from the study based on 

the experimental results were validated with multiple technical and biological metrics, these summary results 

still suggest the ongoing need for an improved global definition of the exact meaning of “high segmentation 

accuracy”. 

 

 

Figure 7: Summary of the rankings for all participants under different technical metrics. Metrics included the Dice score, Intersection 

over Union (IoU/Jaccard Index), sensitivity, specificity, Hausdorff distance (HD) and average surface to surface distance performance 

measures. The color intensities reflect the rankings of the teams such that darker colors represent teams with higher performances. 

P-values for the statistical significance of each team when comparing all technical metrics to other teams are shown in the last column, 

with statistically significant values marked with asterisks (*). 

 



4.3. Error Analysis and Future Work 

Error analysis of the top methods showed that although the 3D visualizations of the predicted LAs were 

similar to the ground truths, there are still potential improvements to be made. Slice-by-slice analysis of the 

3D predictions from the top team showed that the method performed poorly when segmenting the regions 

containing the PVs located at the superior slices of the 3D LGE-MRIs and the mitral valve at the bottom 

connecting the LA with the left ventricle (Figure 8). The errors at the mitral valve were attributed to the fact 

that there are no clear landmarks to separate the two chambers. This leads the experts to label this region with 

a flat plane which potentially contains large inter-observer variability, making it difficult to be reproduced by 

the CNNs. On the other hand, the errors at the PVs could be explained by the fact that these structures are 

often very small in size and vary greatly in shape between patients, making them difficult to detect. The 

inherently poor LGE-MRI qualities were also a factor which impacted the segmentation performance due to 

the low contrast of the images. Analyses showed that the average accuracy for each LGE-MRI was directly 

correlated to the quality of the particular LGE-MRI measured in the signal-to-noise ratio for all approaches 

(Figure 2D). 

In the future, these issues could potentially be mitigated with an increased number of LGE-MRIs and the 

use of multi-center LGE-MRIs to improve the robustness of the CNNs on a greater diversity of datasets. 

Further, we would also like to extend current methodologies in this study to a concurrent multi-label problem, 

such as the segmentation of both atrial chambers and cavities simultaneously. The concept of 2D double 

CNNs would also be another interesting direction for future research as it was not proposed by any of the 

teams, and may potentially be utilized to further improve segmentation accuracies on more difficult tasks such 

as bi-atrial chamber segmentation. 

 

 

Figure 8: Error analysis of predictions generated from the winning method by Xia et al.(Xia et al. 2018) in the 2018 Left Atrium (LA) 

Segmentation Challenge. a) Visualization of predicted 3D LA reconstructions with a high, medium, and low Dice scores. b) 

Slice-by-slice evaluation of the predicted LA reconstruction with a 3D Dice score of 92.61% in segmentation accuracy across each of 

the 88 slices in a 3D late gadolinium-enhanced magnetic resonance imaging (LGE-MRI). The most erroneous slices were at the bottom 

and top of the LA corresponding to the mitral valve and pulmonary veins, respectively. Slices 1 to 11 and 83 to 88 did not have any LA 

pixels; hence, did not have any accuracy values. Note that the 2D Dice score used does not average out to the overall 3D Dice score 

due to the different dimensionality of the accuracy assessment. 

 

4.4. Conclusions 



Segmentation of cardiac images, particularly LGE-MRIs widely used for visualizing diseased cardiac 

structures, is a crucial first step for clinical prognosis and treatment. This study describes the 2018 LA 

segmentation challenge which provides 154 3D LGE-MRIs, and elaborates on the subsequent analysis 

performed on the algorithms submitted for LA segmentation. Our study found U-Net CNNs achieved the best 

performance on average, and the use of additional residual connections and advanced methods of optimization 

such as custom loss functions resulted in higher performance. Analysis also showed that while 2D and 3D 

CNN methods had comparable accuracies, double, sequentially used CNNs achieved far superior 

segmentation results compared to single CNNs regardless of the input dimension. Detailed practical 

considerations when designing CNNs pipelines were also investigated through our extensive hyper-parameter 

tuning experiments, gaining insights into the process of obtaining state-of-the-art accuracies. We believe that 

findings from this study can potentially be extended to other imaging datasets and modalities, having an 

impact on the wider medical imaging community. This large-scale benchmarking study makes a significant 

step towards much-improved segmentation methods for cardiac LGE-MRIs, and will serve as an important 

benchmark for evaluating and comparing the future works in the field.  
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