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Abstract
In mathematical morphology, connected filters based on dynamics are used to filter the extrema of an image. Similarly,
persistence is a concept coming from persistent homology and Morse theory that represents the stability of the extrema of a
Morse function. Since these two concepts seem to be closely related, in this paper we examine their relationship, and we prove
that they are equal on n-D Morse functions, n ≥ 1. More exactly, pairing a minimum with a 1-saddle by dynamics or pairing
the same 1-saddle with a minimum by persistence leads exactly to the same pairing, assuming that the critical values of the
studied Morse function are unique. This result is a step further to show how much topological data analysis and mathematical
morphology are related, paving the way for a more in-depth study of the relations between these two research fields.

Keywords Mathematical morphology · Morse theory · Computational topology · Persistent homology · Dynamics ·
Persistence

1 Introduction

In Mathematical Morphology [43,47,48], dynamics [31,32,
51], defined in terms of continuous paths and optimization
problems, represents a very powerful tool to measure the
significance of extrema in a gray-level image (see Fig. 1).
Thanks to dynamics, we can efficiently select markers of
objects in an image. These markers (that do not depend on
the size or on the shape of objects) help to select relevant
components in an image; hence, this process is a way to fil-
ter objects depending on their contrast, whatever the scale of
the objects, and is often combinedwith thewatershed [42,52]
for image segmentation. This contrasts with convolution fil-
ters often used in digital signal processing or morphological
filters [43,47,48] where geometrical properties do matter.
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Note that there exists an interesting relation between
flooding algorithms and the computation of dynamics (see
Fig. 2). Indeed, when we flood the topographical view of a
function, at a given level, two basins merge, and the dynam-
ics of the highest minima of the two basins is the difference
between the current level of water and the altitude of this
highest minima.

Similarly, in Persistent Homology [21,25] well-known
in Computational Topology [22], we can find the same
paradigm: topological features whose persistence is high are
“true” when the ones whose persistence is low are consid-
ered as sampling artifacts, whatever their scale. An example
of application of persistence is the filtering of Morse-Smale
complexes [23,24,34] used in Morse Theory [28,40] where
pairs of extrema of low persistence are canceled for simpli-
fication purpose. This way, we obtain simplified topological
representations ofMorse functions. A discrete counterpart of
Morse theory, known asDiscrete Morse Theory can be found
in [26–28,35].

As detailed in [20], pairing by persistence of critical val-
ues can be extended in a more general setting to pairing by
interval persistence of critical points. The result is that it is
possible to perform function matching based on their critical
points, and then to pair all critical points of a given func-
tion (see Fig. 2 in [20]) where persistent homology does not
succeed. However, due to the modification of the definition

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10851-022-01104-z&domain=pdf
http://orcid.org/0000-0001-6278-4638


Journal of Mathematical Imaging and Vision

Fig. 1 Low sensibility of dynamics to noise (extracted from [32])

Fig. 2 Thedynamics of aminimumof a given function can be computed
thanks to a flooding algorithm (extracted from [32])

introduced in [20], this matching is not applicable when we
consider usual threshold sets.

In this paper, we prove that the relation between Math-
ematical Morphology and Persistent Homology is strong in
the sense that pairing (of minima) by dynamics and pairing
1-saddles by persistence is equivalent (and then dynamics
and persistence of the corresponding pair are equal) in n-D
(n ≥ 1), when we work with Morse functions. For n = 1,
the proof is much simpler (with some extra condition on the
limits of the domain), but contains the essence of the proof
for n ≥ 1, which is more technical. In order to ease the
reading, we provide the complete proofs for both cases, first
for the 1D case and then for the n-D case. This paper is the
extension of [6] (which contains the 1D case) and [7] (which
generalizes [6] to the n-D case, n ≥ 1).

The plan of the paper is the following: Section 2 recalls
the mathematical background needed in this paper, Sect. 3
provides sketches of the equivalence of pairing by dynamics
and by persistence in 1D and in n-D, Sect. 4 contains the
complete proof of the 1D equivalence, while Sect. 5 contains
the complete proof of the n-D equivalence. In Sect. 6, we
discuss several research directions opened by the results of
this paper. Sect. 7 concludes the paper.

2 Mathematical Pre-Requisites

We call path from x to x′ both in R
n a continuous map-

ping from [0, 1] to R
n . Let Π1, Π2 be two paths satisfying

Π1(1) = Π2(0), then we denote by Π1 <> Π2 the join
between these two paths. For any two points x1, x2 ∈ R

n ,
we denote by [x1, x2] the path:

λ ∈ [0, 1] → (1 − λ).x1 + λ.x2.

Also, we work withRn supplied with the Euclidean norm:

‖.‖2 : x → ‖x‖2 =
√
√
√
√

n
∑

i=1

x2i .

In the sequel, we use lower threshold sets coming from
cross-section topology [4,5,39] of a function f defined for
some real value λ ∈ R by:

[ f < λ] =
{

x ∈ R
n

∣
∣
∣ f (x) < λ

}

,

and

[ f ≤ λ] =
{

x ∈ R
n

∣
∣
∣ f (x) ≤ λ

}

.

2.1 Morse Functions

We callMorse functions the real functions in C∞(Rn)whose
Hessian is not degenerated at critical values, that is, where
their gradient vanishes. A strong property ofMorse functions
is that their critical values are isolated. In particular, we call
D-Morse functions the Morse functions which tend to ±∞
when the 2-norm of their argument tends to +∞. Note that
this last property will only be used to treat the 1D case in this
paper.

Lemma 1 (Morse Lemma [2]) Let f : C∞(Rn) → R be a
Morse function. When x∗ ∈ R

n is a critical point of f , then
there exists some neighborhood V of x∗ and some diffeomor-
phism ϕ : V → R

n such that f is equal to a second order
polynomial function of x = (x1, . . . , xn) on V : ∀ x ∈ V ,

f ◦ ϕ−1(x) = f (x∗) − x21 − x22 − · · · − x2k
+x2k+1 + · · · + x2n .

We call k-saddle of a Morse function a point x ∈ R
n

such that the Hessian matrix has exactly k strictly negative
eigenvalues (and then (n − k) strictly positive eigenvalues);
in this case, k is sometimes called the index of f at x . We
say that aMorse function has unique critical valueswhen for
any two different critical values x1, x2 ∈ R

n of f , we have
f (x1) �= f (x2). (See Appendix A for a discussion about this
hypothesis.)

2.2 Pairing by Dynamics (1D)

Let f : R → R be a D-Morse function with unique critical
values. For xmin ∈ R a local minimum of f , if there exists
at least one abscissa x′

min ∈ R of f such that f (x′
min) <

f (xmin), then we define the dynamics [32] of xmin by:

dyn(xmin) := min
γ∈C max

s∈[0,1] f (γ (s)) − f (xmin),
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where C is the set of paths γ : [0, 1] → R verifying γ (0) :=
xmin and verifying that there exists some s ∈]0, 1] such that
f (γ (s)) < f (xmin).
Let us now define γ ∗ as a path of C verifying:

max
s∈[0,1] f (γ

∗(s)) − f (xmin) = min
γ∈C max

s∈[0,1] f (γ (s)) − f (xmin),

then we say that this path is optimal. The real value xmax

paired by dynamics to xmin (relatively to f ) is the local max-
imum of f characterized by:

xmax := γ ∗(s∗),

with f (γ ∗(s∗)) = maxs∈[0,1] f (γ ∗(s)). We obtain then:

f (xmax) − f (xmin) = dyn(xmin).

Note that the localmaximum xmax of f does not depend on
the path γ ∗ (see Fig. 3), and its value is unique (by hypothesis
on f ), which shows that in some way xmax and xmin are
“naturally” paired by dynamics.

2.3 Pairing by Persistence (1D)

From now on, we denote by R := {+∞,−∞} ∪R the com-
plete real line, and by cl

R
(A) the closure in R of the set

A ⊆ R.

Fig. 3 Example of pairing by dynamics: the abscissa xmin of the red
point is paired by dynamics relatively to f with the abscissa xmax of
the green point on its left because the “effort” needed to reach a point
of lower height than f (xmin) (like the two black points) following the
graph of f is minimal on the left (Color figure online)

Let f : R → R be a D-Morse function with unique
critical values, and let xmax be a local maximum of f . Let
us recall the 1D procedure [21] which pairs (relatively to f )
local maxima to local minima (see Algorithm 1). Roughly
speaking, the representatives x−

min and x
+
min are the abscissas

where connected components of respectively

[ f ≤ ( f (x−
min)] and [ f ≤ ( f (x+

min)]

“emerge” (see Fig. 4), when xmax is the abscissa where two
connected components of [ f < f (xmax)] “merge” into a
single component of [ f ≤ f (xmax)]. Pairing by persis-
tence associates then xmax to the value xmin belonging to
{x−

min, x
+
min} which maximizes f (xmin). The persistence of

Fig. 4 Example of pairing by persistence: the abscissa xmax of the local
maximum in red is paired by persistence relatively to f with the abscissa
xmin of the local minimum in green, since its image by f is greater than
the image by f of the abscissa x2min of the local minimum drawn in pink
(Color figure online)
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xmax relatively to f is then equal to Per(xmax) := f (xmax)−
f (xmin).

2.4 Pairing by Dynamics (n-D)

From now on, f : Rn → R is a Morse function with unique
critical values.

Let xmin be a local minimum of f . Then we call set of
descending paths starting from xmin (shortly (Dxmin)) the set
of paths going from xmin to some element x< ∈ R

n satisfying
f (x<) < f (xmin).
The effort of a path Π : [0, 1] → R

n (relatively to f ) is
equal to:

Effort(Π) := max
�∈[0,1],�′∈[0,1]

( f (Π(�)) − f (Π(�′))).

A local minimum xmin of f is said to bematchable if there
exists some x< ∈ R

n such that f (x<) < f (xmin). We call
dynamics of a matchable local minimum xmin of f the value:

dyn(xmin) = min
Π∈(Dxmin )

max
�∈[0,1] ( f (Π(�)) − f (xmin)) ,

and we say that xmin is paired by dynamics (see Fig. 5) with
some 1-saddle xsad ∈ R

n of f when:

dyn(xmin) = f (xsad) − f (xmin).

An optimal path Πopt is an element of (Dxmin) whose
effort is equal to minΠ∈(Dxmin )(Effort(Π)). Note that for any
local minimum xmin of f , there always exists some optimal
path Πopt such that:

Fig. 5 Pairing by dynamics on aMorse function: the red and blue paths
are both in (Dxmin ), but only the blue one reaches a point x< whose
height is lower than f (xmin)with a minimal effort (Color figure online)

Effort(Πopt) = dyn(xmin).

Thanks to the uniqueness of critical values of f , there
exists only one critical point of f which can be paired with
xmin by dynamics.

Dynamics are always positive, and the dynamics of an
absolute minimum of f is set at +∞ (by convention).

2.5 Pairing by Persistence (n-D)

Let us denote by clo the closure operator, which adds to a
subset of Rn all its accumulation points, and by CC(X) the
connected components of a subset X of Rn . We also define
the representative of a subset X of Rn relatively to a Morse
function f the point which minimizes f on X :

rep(X) = argminx∈X f (x).

Definition 1 Let f be someMorse function with unique crit-
ical values, and let xsad be the abscissa of some 1-saddle point
of f . Now we define the following expressions. First,

Csad = CC([ f ≤ f (xsad)], xsad)

denotes the component of the set [ f ≤ f (xsad)] which con-
tains xsad. Second, we denote by:

{C I
i }i∈I = CC([ f < f (xsad)])

the connected components of the open set [ f < f (xsad)].
Third, we define

{Csad
i }i∈I sad =

{

C I
i | xsad ∈ clo(C I

i )
}

the subset of components C I
i whose closure contains xsad.

Fourth, for each i ∈ I sad, we denote

Fig. 6 Pairing by persistence on a Morse function: we compute the
plane whose height is reaching f (xsad) (see the left side), which allows
us to compute Csad, to deduce the components C I

i whose closure con-
tains xsad, and to decide which representative is paired with xsad by
persistence by choosing the one whose height is the greatest. We can
also observe (see the right side) themerge phasewhere the two compo-
nents merge and where the component whose representative is paired
with xsad dies (Color figure online)
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repi = argminx∈Csad
i

f (x)

the representative of Csad
i . Fifth, we define the abscissa

xmin = repipaired

with

ipaired = argmaxi∈I sad f (repi ),

thus xmin is the representative of the componentCsad
i of min-

imal depth. In this context, we say that xsad is paired by
persistence to xmin. Then, the persistence of xsad is equal to:

Per(xsad) = f (xsad) − f (xmin).

3 Sketches of the Proofs (1D vs. n-D)

3.1 Pairing by Dynamics Implies Pairing by
Persistence

Let us start from the 1D case (see Fig. 7). We assume (see
Table 1) that we have some Morse function f defined on the
real line and that the critical values are unique, that is, for
two different extrema x1, x2 of f , we have f (x1) �= f (x2).
Furthermore, we assume that the abscissas {xmin, xmax} with
xmax > xmin are paired by dynamics, that is, starting from
xmin and following the graph of f , the lower effort to reach
a lower value is on the right side. Using these properties, we
want to show that xmax and xmin are paired by persistence.

Fig. 7 Pairing by dynamics implies pairing by persistence in 1D:
when xmin (in black) is paired with xmax (in purple) by dynamics,
we observe easily that xmin is the representative of the basin where
it lies. Furthermore, the optimal path descending lower than f (xmin)

goes on the right side and goes through xmax (since we look for a min-
imal effort and f (x2max) is greater than f (xmax)). This implies that
the right basin contains a representative lower than f (xmin). Since
CC([ f ≤ f (xmax)], xmax) is made of the two described basins, we
obtain easily that xmax is paired with xmin by persistence

1D proof: Let us proceed in three steps. First, we want to
show that xmin is the representative of the basin [x−

max, xmax]
of level f (xmax) containing it. This is easily proven by con-
tradiction: if xmin is not the representative of this basin, there
exists some x∗ in it where f (x∗) < f (xmin), and then the
dynamics of xmin is lower than f (xmax) − f (xmin), which is
impossible by hypothesis.

Now that we know that xmin represents the basin
[x−

max, xmax], we can show that f (xmin) is greater than the
image by f of the representative of [xmax, x+

max] correspond-
ing also to the lower threshold set [ f ≤ f (xmax)]. By
assuming the contrary, we would imply that any descend-
ing path starting from xmin would go outside the component
[x−

max, x
+
max] = CC([ f ≤ f (xmax), xmax]), which means

that we would obtain a dynamics of xmin greater than
f (xmax) − f (xmin), which is impossible.
Since we have obtained that xmin is the representative of

the highest basin starting for the extrema xmax, we can con-
clude easily that xmax is paired with xmin by persistence.

n-D proof:The proof in n-D, n ≥ 2, is very similar, except
that we have more complex notations. Indeed, we study 1-
saddles instead ofmaxima; the path between the two points is
not “unique” anymore; and we do not have anymore a natural
order between two abscissas.

We cannot define x−
max and x

+
max, but instead we can define

the closed connected component CC([ f ≤ f (xmax)], xmax)

containing xmax. Also, we cannot define ]x−
max, xmax[ or

]xmax, x+
max[ but instead we can define the connected compo-

nents C I
i which are components of [ f < f (xsad)], and the

components Csad
i of [ f < f (xsad)] with the additional prop-

erty that their closure contains xsad. Last point, we do not
need anymore the condition that the studied function tends
to infinity when the norm of the abscissa tends to infinity, but
the consequence is that the proof is a little more complex.

After having introduced these notations, we can follow the
same three steps as before. We first prove that xmin, paired to
xsad by dynamics, is the representative of someC I

i (otherwise
we would obtain that the dynamics of xmin is lower than
f (xsad)− f (xmin) since we can reach a point on the graph of
f which is lower than f (xmin)). Then, the proof that this C I

i
is in fact one of theCsad

i follows from the fact that otherwise,
any descending path of xmin must go out of C I

i to reach a
lower value than f (xmin), and then the dynamics of xmin

would be greater than f (xsad) − f (xmin).
Now that we know that xmin belongs to some Csad

i , we
can use the property that there exists exactly two basins in
the component CC([ f ≤ f (xsad)], xsad) (since we work with
a Morse function). By assuming that xmin is not the highest
representative among the open components Csad

i , we obtain
one more time that any path starting from xmin must go out-
side

CC([ f ≤ f (xsad)], xsad)
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Table 1 Sketches of the 1D/n-D
proofs that pairing by dynamics
implies pairing by persistence

Hypotheses:

f is a D-Morse function f is a Morse function

f has unique critical values

xmin is a local minimum of f

xmin and xmax/sad are paired by dynamics

xmax > xmin xmin �= xsad

Notations

[x−
max,x

+
max] = cl

R
(CC([f ≤ f(xmax)],xmax)) Csad = CC([f ≤ f(xsad)],xsad)

{CI
i }i∈I = CC([f < f(xsad)])

{Csad
i }i∈Isad =

{
CI

i | xsad ∈ clo(CI
i )

}

Step 1:

∃ i ∈ I s.t. xmin ∈ CI
i

xmin represents [x−
max,xmax] with xmin representing CI

i

(otherwise dyn(xmin) < f(xmax/sad) − f(xmin) which leads to a contradiction)

CI
i belongs to {Csad

i }i∈Isad

then xmin represents some Csad
imin

Step 2:

f(rep([xmax,x+
max], f)) < f(xmin) ∀ i �= imin, f(rep(Csad

i , f) < f(xmin)

(otherwise dyn(xmin) > f(xmax/sad) − f(xmin) which leads to a contradiction)

Step 3:

xmin and xmax/sad are paired by persistence

to descend lower than f (xmin), which would lead to a greater
dynamics than f (xsad) − f (xmin). Thus, xmin is the highest
representative among the ones of the components {Csad

i }i .
We conclude one more time that xsad is paired to xmin by

persistence when xmin is paired to xsad by dynamics.

3.2 Pairing by Persistence Implies Pairing by
Dynamics

We assume as usual that f is a Morse function (see
Table 2), that its critical values are unique. Let us prove that
when some maximum of f in the 1D case (or some 1-saddle
of f in the n-D case) is paired by persistence to some min-
imum of this same function f , then this minimum is paired
with this maximum (resp. this 1-saddle) by dynamics.

1D proof: Let us start with the 1D case (see Fig. 8). By
considering that some maximum xmax is paired with some
minimum xmin by persistence (with xmin < xmax), we obtain
at the same time several properties (by definition of the pair-
ing by persistence):

– we can draw the threshold set [ f ≤ f (xmax)] at level
f (xmax),

– we know that it draws a connected component

CC([ f ≤ f (xmax)], xmax)

containing xmax that we can define as [x−
max, x

+
max] with

x−
max < xmax < x+

max,
– weknow then thatxmin is the representative of [x−

max, xmax]
and we can define some x∀

min as being the representative
of [xmax, x+

max], with f (xmin) > f (x∀
min).

Now let us prove that xmin is paired by dynamics to xmax

in four steps. First, we know that there exists some path γ :
[0, 1] → [xmin, x∀

min] : λ → (1 − λ)xmin + λx∀
min] joining

xmin to x∀
min with f (x∀

min) < f (xmin), then xmin is matchable.
Then, the second step is straightforward: since γ reaches

some x∀
min with an altitude lower than the one of xmin, it

is a descending path. Furthermore, the effort associated to
γ is equal to f (xmax) − f (xmin), since we have to reach
(xmax, f (xmax)) when we start from (xmin, f (xmin)) to be
able to go down to

(x∀
min, f (x∀

min)).
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Table 2 Sketches of the 1D/n-D
proofs that pairing by
persistence implies pairing by
dynamics

Hypotheses:

f is a D-Morse function f is a Morse function

f has unique critical values

xmax/sad is a local maximum/1-saddle of f

xmax/sad and xmin are paired by persistence

xmax > xmin xmin �= xsad

Notations:

[x−
max,x

+
max] = CC([f ≤ f(xmax)],xmax) Csad = CC([f ≤ f(xsad)],xsad)

x∀
min = rep([x−

max,x
+
max], f) {CI

i }i∈I = CC([f < f(xsad)])

{Csad
i }i∈Isad =

{
CI

i | xsad ∈ clo(CI
i )

}

imin ∈ Isad s.t. xmin represents Csad
imin

Step 1:

γ := [xmin, x
∀
min] Card(Isad) > 1

with f(x∀
min) < f(xmin) ⇒ ∃ i< ∈ Isad, ∃ x< ∈ Csad

i< ,
s.t. f(x<) < f(xmin)

xmin is matchable

Step 2:

γ is a descending path ∃ γ1 from xmin to xsad in Csad
imin

∀ i ∈ Isad \ {imin},∃ γ2 from xsad to x<

⇒ γ := γ1 <> γ2 is a descending path

the dynamics of γ is equal to f(xmax) − f(xmin)
⇒ dyn(xmin) ≤ f(xmax/sad) − f(xmin)

Step 3:

If xmin is paired by dynamics with x∗ dyn(xmin) < f(xsad) − f(xmin) (H)
Then x∗ > xmin ⇒ ∃ a descending γ from xmin in Csad

imin

x< := inf{x > xmin ; f(x) < f(xmin)} ⇒ xmin does not represent Csad
imin

x< > xmax ⇒ (H) is false
γ optimal path ⇒ {xmin,xmax,x<} ∈ γ

dyn(xmin) ≥ f(xmax/sad) − f(xmin)

Step 4:

dyn(xmin) = f(xmax/sad) − f(xmin)

xmax/sad and xmin are paired by dynamics

Then the optimal effort associated to xmin, that is the dynam-
ics of xmin, is lower than or equal to f (xmax) − f (xmin).

Now, for the third step, we assume that xmin is paired
with some x∗ < xmin, which is clearly impossible: otherwise
dynamics of xmin would be greater than f (xmax) − f (xmin)

(we would need to go outside the connected component
[x−

max, x
+
max] to reach some altitude lower than f (xmin)).

Then xmin is paired with some maximum x∗ greater than
xmin. Now, we define x< as the “first” abscissa of altitude
lower than f (xmin) on the right side of xmin; obviously this
abscissa is greater than xmax since xmin is the representa-

tive of the basin [x−
max, xmax]. Since any optimal descending

path starting from xmin goes through the abscissas xmin, xmax

and then x<, its associated effort is greater than or equal to
f (xmax) − f (xmin).
The fourth step combines the previous properties and

leads to the conclusion that the dynamics of xmin is equal
to f (xmax) − f (xmin), which means that the maxima asso-
ciated to xmin by dynamics is xmax (by uniqueness of the
critical values).

n-D proof: The main steps of the n-D proof are very simi-
lar to the 1D case. However, the notations are very different,
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Fig. 8 Pairing by persistence implies pairing by dynamics in 1D: start-
ing from the local maximum xmax (in black), we define the component
[x−

max, x
+
max] of the lower threshold set of f which contains xmax. By def-

inition of pairing by persistence, we know that the representative of the
component [x−

max, xmax] is xmin drawn in purple (since xmin < xmax)
and we call x∀

min (drawn in red) the representative of the component
[xmax, x+

max]. From these facts, we deduce easily that xmin is matchable
since f (x∀

min) < f (xmin). We also deduce that there exists a descending
path from xmin to xmax to x∀

min which lies inside [x−
max, x

+
max] and then

its associated effort is equal to f (xmax)− f (xmin), whichmeans that the
dynamics of xmin is lower than or equal to this same value. Additionally,
we can show that every optimal path connects xmin to xmax and thus the
dynamics of xmin is greater than or equal to f (xmax)− f (xmin). It is then
easy to conclude that the dynamics ofxmin is equal to f (xmax)− f (xmin),
and then by uniqueness of the critical values, xmin is paired with xmax
by dynamics

due to the fact that the number of path from one point to
another in R

n is infinite (and there is no “left” nor “right”).
Starting from the 1-saddle xsad paired by persistence to xmin,
we have to use the following notations:

– we define the closed component Csad = CC([ f ≤
f (xsad)], xsad),

– we define also the open components {Cimin}i of [ f <

f (xsad)], whose subset {Csad
i }i corresponds to these com-

ponents whose closure contains xsad,
– we call imin the index of the component Csad

imin
that xmin

represents.

The first step consists of recalling that the number of com-
ponents of Csad

i is equal to two, then greater than one, and
thus there exists some index i< and some abscissa x< ∈ Csad

i<
such that f (x<) < f (xsad) (since pairing by persistence
associates xsad to the local minimum of the highest altitude).
Thus, xmin is matchable.

As a second step, we construct a path γ1 from xmin to xsad
inCsad

imin
and another path γ2 from xsad to x< in the component

Csad
i containing it, from which we deduce a descending path

γ := γ1 <> γ2 associated toxmin. Thus, the effort associated
to γ is lower than or equal to f (xsad) − f (xmin) (since this
path has not yet been shown to be optimal).

The third step uses a proof by contradiction. We assume
that the dynamics of xmin is lower than f (xsad)− f (xmin); we
call this hypothesisHYP. Then,HYP implies that there exists
a descending path inside the componentCsad

imin
, which implies

that xmin does not represent Csad
imin

, which is impossible (it
contradicts the hypotheses). Then, the dynamics of xmin is
greater than or equal to f (xsad) − f (xmin).

As for the 1D case, the fourth steps concludes: since the
dynamics of xmin is equal to f (xsad)− f (xmin) thanks to the
combination of the previous steps, the only possible local
maximum paired by dynamics to xmin is xsad.

4 Pairings by Dynamics and by Persistence
are Equivalent in 1D

In this section,we prove that under some constraints, pairings
by dynamics and by persistence are equivalent in the 1D case.

Proposition 1 Let f : R → R be a D-Morse function with
unique critical values. Now, let us assume that a local min-
imum xmin ∈ R of f is paired with a local maximum xmax

of f by dynamics. We assume without loss of generality that
xmin < xmax (the reasoning is the same for the opposite

assumption). Also, we denote by (x−
max, x

+
max) ∈ R

2
the two

values verifying:

[x−
max, x

+
max] = cl

R
(CC([ f ≤ f (xmax)], xmax)).

Then the following properties are true:

(P1) xmin = rep([x−
max, xmax], f ),

(P2) Whenx+
max is finite,x

2
min := rep([xmax, x+

max], f ) satisfies
f (x2min) < f (xmin),

(P3) xmax and xmin are paired by persistence.

Proof Figure 9 depicts an example of D-Morse function
where xmin and xmax are paired by dynamics.

Let us prove (P1); we proceed by reductio ad absurdum.
When xmin is not the lowest local minimum of f on the
interval [x−

max, xmax], then there exists another local mini-
mum x∗ ∈ [x−

max, xmax] of f (see Fig. 10) which satisfies
f (x∗) < f (xmin) (x∗ and xmin being distinct local extrema
of f , their images by f are not equal). Then, because the path
joining xmin and x∗ belongs to C (defined in Subsect. 2.2),
we have:

dyn(xmin) ≤ max{ f (x) − f (xmin) ; x ∈ iv(x∗, xmin)}.

Let us call x∗∗ := argmaxx∈[iv(xmin,x∗)] f (x), we can deduce
that f (x∗∗) < f (xmax) since x∗∗ ∈ iv(x∗, xmin) ⊆
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Fig. 9 AD-Morse function where the local extrema xmin and xmax are
paired by dynamics

Fig. 10 Proof of (P1)

]x−
max, xmax[. In this way,

dyn(xmin) ≤ f (x∗∗) − f (xmin),

which is lower than f (xmax)− f (xmin); this is a contradiction
since xmin and xmax are paired by dynamics. (P1) is then
proved.

Now let us prove (P2). Let us assume that x+
max is finite

and let x2min be the representative of [xmax, x+
max] relatively

to f . Let us assume that f (x2min) > f (xmin). Note that we
cannot have equality of f (x2min) and f (xmin), since xmin and
x2min are both local extrema of f . Then we obtain Fig. 11.
Since with x ∈ [xmax, x+

max], we have f (x) ≥ f (x2min) >

f (xmin), and because xmin is paired with xmax by dynamics

Fig. 11 Proof of (P2) in the case where x+
max is finite

with xmin < xmax, then there exists a value x on the right of
xmax where f (x) is lower than f (xmin). In other words, there
exists:

x< := inf{x ∈ [xmax,+∞[ ; f (x) < f (xmin)}

such that for some arbitrarily small value ε > 0, f (x<+ε) <

f (xmin). Since x< > x+
max, any path γ joining xmin to x<

goes through a local maximum x2max defined by

x2max := arg max
x∈[x+

max,x<]
f (x)

which satisfies f (x2max) > f (x+
max). Then the dynamics of

xmin is greater than or equal to f (x2max) − f (xmin) which is
greater than f (xmax) − f (xmin). We obtain a contradiction.
Thenwe have f (x2min) < f (xmin). The proof of (P2) is done.

Thanks to (P1) and (P2), we obtain directly (P3) by
applying Algorithm 1. ��

Proposition 2 Let f : R → R be a D-Morse function with
unique critical values. Now, let us assume that a local min-
imum xmin ∈ R of f is paired with a local maximum xmax

of f by persistence. We assume without loss of generality
that xmin < xmax (the reasoning is the same for the opposite
assumption). Then, xmax and xmin are paired by dynamics.

Proof We denote by (x−
max, x

+
max) ∈ R

2
the two values veri-

fying:

[x−
max, x

+
max] = cl

R
(CC([ f ≤ f (xmax)], xmax)).
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Fig. 12 AD-Morse function f : R → R where the local extrema xmin
and xmax are paired by persistence relatively to f

Since xmin is paired by persistence to xmax with xmin <

xmax (see Fig. 12), then:

xmin = rep([x−
max, xmax], f ) ∈ R,

and, by Algorithm 1, we know that x−
max > −∞ (then x−

max
is finite).

When x+
max < +∞ (Case 1), the representative x∀

min of
[xmax, x+

max] relatively to f is exists in ]xmax, x+
max[ and is

unique, and its image by f is lower than f (xmin). When
x+
max = +∞ (Case 2), limx→+∞ f (x) = −∞, and then
there exists one more time an abscissa x∀

min ∈ R whose
image by f is lower than f (xmin). So, in both cases, there
exists a (finite) value x∀

min ∈]xmax, x+
max[verifying f (x∀

min) <

f (xmin). This way, we know that xmin is paired with some
abscissa in R by dynamics.

In Case 1, we know that the path defined as:

γ : λ ∈ [0, 1] → γ (λ) := (1 − λ)xmin + λx∀
min

belongs to the set of paths C defining the dynamics of xmin

(see Sect. 2.2). Then,

dyn(xmin) ≤ max{ f (x) − f (xmin) ; x ∈ γ ([0, 1])},

which is lower than or equal to f (xmax)− f (xmin) since f is
maximal at xmax on [x−

max, x
+
max]. Thenwe have the following

property:

dyn(xmin) ≤ f (xmax) − f (xmin).

In Case 2, since f (x) is lower than f (xmax) for x ∈
]xmax,+∞[, then one more time we get dyn(xmin) ≤
f (xmax) − f (xmin). Let us call this property (P).
Even if we know that there exists some local maximum of

f which is paired with xmin by dynamics, we do not know
whether the abscissa of this local maximum is lower than or
greater than xmin. Then, let us assume that there exists a local
maximum x∗ < xmin (lower case) which is associated to xmin

by dynamics. We denote this property (H) and we depict it
in Fig. 13. Since f (x) is greater than or equal to f (xmin) for
x ∈ [x−

max, xmin], (H) implies that x∗ < x−
max. Then, we can

observe that the local maximum x1 of f of maximal abscissa
in [x∗, x−

max] satisfies f (x1) > f (xmax), which implies that
dyn(xmin) ≥ f (x1) − f (xmin) > f (xmax) − f (xmin) (since
we go through x1 to reach x∗), which contradicts (P). (H) is
then false. In other words, we are in the upper case: the local
maximumpairedbydynamics toxmin belongs to ]xmin,+∞[,
let us call this property (P ′).

Now let us define:

x< := inf{x > xmin ; f (x) < f (xmin)},

(see again Fig. 12) and let us remark that x< > xmax (because
xmin is the representative of f on [x−

max, xmax]). Since we
know by (P ′) that a local maximum x > xmin of f is paired
by dynamics with xmin, then the image of every optimal path
belonging to C contains {x<}, and then contains [xmin, x<].
Indeed, an optimal path inC whose image would not contain
{x<} would then contain an abscissa x < x−

max and then we
would obtain dyn(xmin) > f (xmax)− f (xmin), which would
contradict (P).

Now, the maximal value of f on [xmin, x<] is equal to
f (xmax), then dyn(xmin) = f (xmax) − f (xmin). The only
local maximum of f whose value is f (xmax) is xmax, then
xmax is paired with xmin by dynamics relatively to f . ��

Theorem 1 Let f : R → R be a D-Morse function with a
finite number of local extrema and unique critical values. A
local minimum xmin ∈ R of f is paired by dynamics to a local
maximum xmax ∈ R of f iff xmax is paired by persistence to
xmin. In otherwords, pairings by dynamics andby persistence
lead to the same result. Furthermore, we obtain Per(xmax) =
dyn(xmin).

Proof This theorem results from Propositions 1 and 2. ��

Note that pairing by persistence has been proved to be
symmetric in [13] for Morse functions defined on manifolds:
the pairing is the same for a Morse function and its negative.
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Fig. 13 The proof that it is impossible to obtain a local maximum
x∗ < xmin paired with xmin by dynamics when xmin is paired with
xmax > xmin by persistence

Fig. 14 Every optimal descending path goes through a 1-saddle.
Observe the path in blue coming from the left side and decreasing when
following the topographical view of the Morse function f . The effort
of this path to reach the minimum of f is minimal thanks to the fact
that it goes through the saddle point at the middle of the image

5 The n-D Equivalence

Let us make two important remarks that will help us in the
sequel.

Lemma 2 Let f : R
n → R be a Morse function and let

xmin be a local minimum of f . Then for any optimal path
Πopt in (Dxmin), there exists some �∗ ∈]0, 1[ such that it is a
maximum of f ◦ Πopt and at the same time Πopt(�∗) is the
abscissa of a 1-saddle point of f .

Proof This proof is depicted in Fig. 14. Let us proceed by
counterposition, and let us prove that when a path Π in
(Dxmin) does not go through a 1-saddle of f , it cannot be
optimal.

Let Π be a path in (Dxmin). Let us define �∗ ∈ [0, 1] as
one of the positions where the mapping f ◦ Π is maximal:

�∗ ∈ argmax�∈[0,1] f (Π(�)),

and x∗ = Π(�∗). Let us prove that we can find another path
Π ′ in (Dxmin) whose effort is lower than the one of Π .

At x∗, f can satisfy three possibilities:

• When we have ∇ f (x∗) �= 0 (see the left side of Fig. 15),
then locally f is a plane of slope ‖∇ f (x∗)‖, and then we
can easily find somepathΠ ′ in (Dxmin)with a lower effort
than Effort(Π). More precisely, let us fix some arbitrary
small value ε > 0 and draw the closed topological ball
B̄(x∗, ε), we can define three points:

�min = min{� | Π(�) ∈ B̄(x∗, ε)},
�max = max{� | Π(�) ∈ B̄(x∗, ε)},
xB = x∗ − ε.

∇ f (x∗)
‖∇ f (x∗)‖ .

Thanks to these points, we can define a new path Π ′:

Π |[0,�min] <> [Π(�min), xB] <> [xB,Π(�max )]
<> Π |[�max ,1].

By doing this procedure at every point in [0, 1] where
f ◦ Π reaches its maximal value, we obtain a new path
whose effort is lower than the one of Π .

• Whenwe have∇ f (x∗) = 0, thenwe are at a critical point
of f . It cannot be a 0-saddle, that is, a local minimum,
due to the existence of the descending path going through
x∗. It cannot be a 1-saddle neither (by hypothesis). It is
then a k-saddle point with k ∈ [2, n] (see the right side of
Fig. 15). Using Lemma 1, f is locally equal to a second

Fig. 15 How to compute descending paths of lower efforts. The initial
path going through x∗ (the little gray ball) is in red, the new path of
lower effort is in green (the non-zero gradient case is on the left side,
the zero-gradient case is on the right side)
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order polynomial function (up to a change of coordinates
ϕ s.t. ϕ(x∗) = 0):

f ◦ ϕ−1(x) = f (x∗) − x21 − x22 − · · · − x2k
+x2k+1 + · · · + x2n .

Now, let us define for some arbitrary small value ε > 0:

�min = min{� | Π(�) ∈ B̄(0, ε)},
�max = max{� | Π(�) ∈ B̄(0, ε)},

and

B

=
⎧

⎨

⎩
x

∣
∣
∣

∑

i∈[1,k]
x2i ≤ ε2 and ∀ j ∈ [k + 1, n], x j = 0

⎫

⎬

⎭
\{0}.

This last set is connected since it is equal to a k-manifold
(with k ≥ 2) minus a point. Let us assumewithout loss of
generality that Π(�min) and Π(�max ) belong to B (oth-
erwise we can consider their orthogonal projections on
the hyperplane of lower dimension containingB but the
reasoning is the same). Thus, there exists some path ΠB

joining Π(�min) to Π(�max ) in B, from which we can
deduce the pathΠ ′ = Π |[0,�min] <> ΠB <> Π |[�max ,1]
whose effort is lower than the one of Π since its image
is inside [ f < f (x∗)].

Since we have seen that, in any possible case, Π is not
optimal, it concludes the proof. ��

Proposition 3 Let f be a Morse function from R
n to R with

n ≥ 1. When x∗ is a critical point of index 1, then there exists
ε > 0 such that:

Card
(CC(B(x∗, ε) ∩ [ f < f (x∗)])) = 2,

where Card is the cardinality operator.

Proof The case n = 1 is obvious, let us then treat the case
n ≥ 2 (see Fig. 16). Thanks to Lemma 1 and thanks to the
fact that xsad is the abscissa of a 1-saddle, we can say that
(up to a change of coordinates and in a small neighborhood
around xsad) for any x:

f (x) = f (xsad) + xT .

[−1 0
0 In−1

]

.x,

where In−1 is the identity matrix of dimension (n − 1) ×
(n − 1). In other words, around xsad, we obtain that:

[ f < f (xsad)] =
{

x
∣
∣
∣ − x21 +

n
∑

i=2

x2i < 0

}

= C+ ∪ C−,

Fig. 16 A 1-saddle point leads to two open connected components. At
a 1-saddle point whose abscissa is xsad (at the center of the image),
the component [ f ≤ f (xsad)] is locally the merge of the closure of two
connected components (in orange) of [ f < f (xsad)]when f is a Morse
function

with:

C+ =
⎧

⎨

⎩
x

∣
∣
∣ x1 >

√
√
√
√

n
∑

i=2

x2i

⎫

⎬

⎭
,

and

C− =
⎧

⎨

⎩
x

∣
∣
∣ x1 < −

√
√
√
√

n
∑

i=2

x2i

⎫

⎬

⎭
,

where C+ and C− are two open connected compo-
nents of Rn . Indeed, for any pair (M, M ′) of C+, we have

xM1 >

√
∑n

i=2(x
M
i )2 and xM

′
1 >

√
∑n

i=2(x
M ′
i )2, from

which we define N = (xM1 , 0, . . . , 0)T ∈ C+ and N ′ =
(xM

′
1 , 0, . . . , 0)T ∈ C+ from which we deduce the path

[M, N ] <> [N , N ′] <> [N ′, M ′] joining M to M ′ in C+.
The reasoning with C− is the same. Since C+ and C− are
two connected (separated) disjoint sets, the proof is done. ��

5.1 Pairing by Persistence Implies Pairing by
Dynamics in n-D

Theorem 2 Let f be a Morse function from R
n to R. We

assume that the 1-saddle point of f whose abscissa is xsad
is paired by persistence to a local minimum xmin of f . Then,
xmin is paired by dynamics to xsad.

Proof Let us assume that xsad is paired by persistence to xmin,
then we have the hypotheses described in Definition 1. Let
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us denote by Cmin the connected component in {Ci }i∈I sad
satisfying that xmin = rep(Cimin).

Since xsad is the abscissa of a 1-saddle, by Proposi-
tion 3, we know that Card(I sad) = 2, then there exists:
x< = rep(C<)withC< the componentCi with i ∈ I \{imin},
then xmin is matchable. Let us assume that the dynamics of
xmin satisfies:

dyn(xmin) < f (xsad) − f (xmin). (HYP)

This means that there exists a path Π< in (Dxmin) such that:

max
�∈[0,1] f (Π<(�)) − f (xmin) < f (xsad) − f (xmin),

that is, for any � ∈ [0, 1], f (Π<(�)) < f (xsad), and then
by continuity in space of Π<, the image of [0, 1] by Π<

is in Cmin. Because Π< belongs to (Dxmin), there exists
then some x< ∈ Cmin satisfying f (x<) < f (xmin). We
obtain a contradiction, (HYP) is then false. Then, we have
dyn(xmin) ≥ f (xsad) − f (xmin).

Because for any i ∈ I sad, xsad is an accumulation point of
Ci in Rn , there exist a path Πm from xmin to xsad such that:

∀� ∈ [0, 1],Πm(�) ∈ Csad,

∀� ∈ [0, 1[,Πm(�) ∈ Cmin.

In the same way, there exists a path ΠM from x< to xsad
such that:

∀� ∈ [0, 1],ΠM (�) ∈ Csad,

∀� ∈ [0, 1[,ΠM (�) ∈ C<.

We can then build a path Π which is the concatenation of
Πm and � → ΠM (1 − �), which goes from xmin to x< and
goes through xsad. Since this path stays insideCsad, we know
that Effort(Π) ≤ f (xsad) − f (xmin), and then dyn(xmin) ≤
f (xsad) − f (xmin).
By grouping the two inequalities, we obtain that dyn(xmin)

= f (xsad) − f (xmin), and then by uniqueness of the critical
values of f , xmin is then paired by dynamics to xsad. ��

5.2 Pairing by dynamics implies pairing by
persistence in n-D

Theorem 3 Let f be a Morse function from R
n to R. We

assume that the local minimum xmin of f is paired by dynam-
ics to a 1-saddle of f of abscissa xsad. Then, xsad is paired
by persistence to xmin.

Proof Let us assume that xmin is paired to xsad by dynamics.
Let us recall the usual framework relative to persistence:

Csad = CC([ f ≤ f (xsad)], xsad),

{C I
i }i∈I = CC([ f < f (xsad)]),

{Csad
i }i∈I sad =

{

C I
i |xsad ∈ clo(C I

i )
}

,

∀i ∈ I sad, repi = argminx∈Csad
i

f (x).

��
By Definition 1, xsad is paired to the representative repi of

Csad
i which maximizes f (repi ).

1. Let us show that there exists some index imin such
that xmin is the representative of a component Csad

imin
of

{Csad
i }i∈I sad .

(a) First, xmin is paired by dynamics with xsad and
dyn(xmin) is greater than zero, then f (xsad) >

f (xmin), then xmin belongs to [ f < f (xsad)], then
there exists some imin ∈ I such that xmin ∈ Cimin (see
Equation (2) above).

(b) Now, if we assume that xmin is not the representative
of Cimin , there exists then some x< in Cimin satisfying
that f (x<) < f (xmin), and then there exists some Π

in (Dxmin)whose image is contained inCimin . In other
words,

dyn(xmin) ≤ Effort(Π) < f (xsad) − f (xmin),

which contradicts the hypothesis that xmin is paired
with xsad by dynamics.

(c) Let us show that imin belongs to I sad, that is, xsad ∈
clo(Cimin). Let us assume that:

xsad /∈ clo(Cimin). (HYP2)

Every path in (Dxmin) goes outside of Cimin to reach
some point whose image by f is lower than f (xmin)

since xmin has been proven to be the representative
of Cimin . Then this path intersects the boundary ∂

of Cimin . Since by (HYP2), xsad does not belong
to the boundary ∂ of Cimin , any optimal path Π∗
in (Dxmin) goes through one 1-saddle xsad 2 =
argmax�∈[0,1] f (Π∗(�)) (byLemma2) different from
xsad and satisfying then f (xsad 2) > f (xsad). Thus,
dyn(xmin) > f (xsad) − f (xmin), which contradicts
the hypothesis that xmin is paired with xsad by dynam-
ics. Then, we have:

xsad ∈ clo(Cimin).

2. Now let us show that f (xmin) > f (rep(Csad
i )) for any

i ∈ I sad \ {imin}. For this aim, we prove that there exists
some i ∈ I sad such that f (rep(Csad

i )) < f (xmin) and
we conclude with Proposition 3. Let us assume that the
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representative r of each componentCsad
i exceptCmin sat-

isfies f (r) > f (xmin), then any path Π of (Dxmin) has
to go outside Csad to reach some point whose image by
f is lower than f (xmin). We obtain the same situation
as before (see (1.c)), and then we obtain that the effort
of Π is greater than f (xsad) − f (xmin), which leads to a
contradiction with the hypothesis that xmin is paired with
xsad by dynamics. We have then that there exists i ∈ I sad

such that f (rep(Csad
i )) < f (xmin). Thanks to Proposi-

tion 3, we know then that xmin is the representative of the
components of [ f < f (xsad)] whose image by f is the
greatest.

3. It follows that xsad is paired with xmin by persistence.

6 Perspectives: A Research Program Linking
Topological Data Analysis andMM

This paper is a step towards exploring the possible interac-
tions between Topological Data Analysis (TDA) and MM.
In this section, we detail some ideas for a research program
linking these two fields.

As a very first example, let us look at Fig.17, which pro-
vides an illustration of an image analysis pipeline originally
performed in the context of topological data analysis using
the library called Topology Toolkit [37,49] (shortly TTK). In
the original publication [36], the steps are the following

1. The original data (microscopy image of cells and their
nuclei) are simplified with a small threshold of persis-
tence (Fig. 17a)

2. TheMorse-Smale complex leads to an oversegmentation
((Fig. 17b)

3. The persistence curve (Fig. 17c) is the number of persis-
tent pairs as a function of their persistence. The vertical
dashed line on the left corresponds to the level of simplifi-
cation of Fig. 17a, b. The vertical dashed line on the right
corresponds to the level of simplification of Fig. 17e, f.

4. The diagram of persistence (Fig. 17d)
5. The image is simplified (Fig. 17e) with a threshold cor-

responding to the vertical dashed line on the right of
Fig. 17c.

6. The Morse-Smale complex separatrices of Fig. 17e pro-
vides 1 maximum per nuclei, while the nuclei are the
maxima of the same image (Fig. 17f).

Thanks to the result of this paper and some previous work,
we can translate this process in mathematical morphology.
The filtering by persistence belong to a class of morpho-
logical filters called connected filters [46], with a criterion
named dynamics. The Morse-Smale complexe is replaced
by the watershed [14,15]. The persistence curve is called a
granulometric curve [38]. Hence, from a morphological per-

spective, the same example can be done using Higra [44], a
(morphological) library that computes the various steps, and
this leads to the following description.

1. A connected filter with a small dynamics threshold is first
applied on the original data (Fig. 17a)

2. ThewatershedofFig. 17a is oversegmented (seeFig. 17b)
3. The granulometric curve (Fig. 17c) provides the number

of maximum as a function of the dynamics
4. A connected filter of Fig. 17a with a dynamics threshold

corresponding to the vertical dashed line on the right of
Fig. 17c leads to Fig. 17e.

5. Thewatershed of Fig. 17e gives one region per cell, while
the nuclei are the maxima of the same image (Fig. 17f).

It is worthwhile to explore the differences between the two
approaches. In mathematical morphology, there is no persis-
tence diagram. On the other hand, there exist saliency maps
[18,41,42]. Intuitively, a saliency map can be obtained by fil-
tering the original image/data for all values of the criterion
(here, dynamics), and stacking (summing) the watersheds of
all the filtered images. A contour that is persistent is present
many times in the stack, and has a high value in the resulting
saliency map. Fig. 18 shows the saliency map of the original
data of Fig. 17 for the dynamics criterion.

In TDA, only a few criteria other than dynamics have
been studied [11] but MM has many more, see [1] for a few
of them. There exist also several ways to simplify using non-
increasing criteria [45,50,53].

The links between Morse-Smale Complex and watershed
[14,15] need to be explored, specifically in the context of
Discrete Morse Theory [27]. We envision doing such a study
based on watershed cuts [17], see also [16] that highlights
some links between the watershed and topology.

Many other comparisons should be done. To mention one
of those, the contour tree [29] from TDA is closely related to
the tree of shapes [12] fromMM. Comparing those trees and
the algorithms for computing them from TDA [10,33] and
from MM [8,19,30] would be rewarding. In particular, the
morphological algorithms for computing the tree of shapes,
which are quasi-linear whatever the dimension of the space,
are based on the ones for computing the tree of upper or
lower level sets, called the component trees [9], and seem
more efficient than the ones from TDA.

7 Conclusion

In this paper, we have proved that persistence and dynamics
lead to the same pairings in n-D, n ≥ 1, which implies that
they are equalwhatever the dimension. Concerning the future
works, we propose to investigate the relationship between
persistence and dynamics in the discrete case [27] (that is,
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Fig. 17 An example of segmentation of a microscopy image of cells and their nuclei [36] with the topological data analysis framework. The very
same example can be seen as an application of the morphological data analysis framework (see text)

Fig. 18 Saliency map corresponding to Fig.17. In this image, the contours that are the more persistent are darker than the others (see text for
details.)

on complexes). We will also check under which conditions
pairings by persistence and by dynamics are equivalent for
functions that are not Morse. Furthermore, we will examine
if the fast algorithms used in MM like watershed cuts, Betti
numbers computations or attribute-based filtering are appli-
cable to PH. Conversely, we will study if some PH concepts
can be seen as the generalization of some MM concepts (for
example, dynamics seems to be a particular case of persis-
tence).

More generally, we believe that exploring the links and
differences between TDA and MM would benefit to the two
communities.

Acknowledgements The authors would like to thank Julien Tierny for
many interesting discussions and for providing us Fig. 17.

AAmbiguitiesOccurringWhenValuesarenot
Unique

As depicted in Fig. 19, the abscissa of the blue point can be
paired by persistence to the abscissas of the orange and/or
the red points. The same thing appears when we want to pair
the abscissa of the pink point to the abscissas of the green
and/or blue points. This shows how much it is important to
have unique critical values on Morse functions. This point
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Fig. 19 Ambiguities can occur when critical values are not unique for
pairing by dynamics and for pairing by persistence

is discussed in detail in [3], where it is shown that a strict
total order relation on the set of minima allows for a good
definition of the dynamics.
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