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Local Intensity Order Transformation for Robust
Curvilinear Object Segmentation

Tianyi Shi, Nicolas Boutry, Yongchao Xu, Thierry Géraud

Abstract—Segmentation of curvilinear structures is important
in many applications, such as retinal blood vessel segmenta-
tion for early detection of vessel diseases and pavement crack
segmentation for road condition evaluation and maintenance.
Currently, deep learning-based methods have achieved impressive
performance on these tasks. Yet, most of them mainly focus
on finding powerful deep architectures but ignore capturing
the inherent curvilinear structure feature (e.g., the curvilinear
structure is darker than the context) for a more robust represen-
tation. In consequence, the performance usually drops a lot on
cross-datasets, which poses great challenges in practice. In this
paper, we aim to improve the generalizability by introducing a
novel local intensity order transformation (LIOT). Specifically,
we transfer a gray-scale image into a contrast-invariant four-
channel image based on the intensity order between each pixel
and its nearby pixels along with the four (horizontal and vertical)
directions. This results in a representation that preserves the
inherent characteristic of the curvilinear structure while being
robust to contrast changes. Cross-dataset evaluation on three reti-
nal blood vessel segmentation datasets demonstrates that LIOT
improves the generalizability of some state-of-the-art methods.
Additionally, the cross-dataset evaluation between retinal blood
vessel segmentation and pavement crack segmentation shows that
LIOT is able to preserve the inherent characteristic of curvilinear
structure with large appearance gaps. An implementation of the
proposed method is available at https://github.com/TY-Shi/LIOT.

Index Terms—Curvilinear structure, segmentation, local inten-
sity order, deep learning, generalizability

I. INTRODUCTION

Curvilinear structures often appear in biomedical analysis.
Their segmentation is very important in applications like reti-
nal fundus disease screening [1], [2], early detection of vessel
diseases, and in biometric authentication systems [3]–[5]. In
parallel, curvilinear structures also appear in pavement crack
segmentation, which is useful for road condition evaluation
and road maintenance [6].

Compared to general object segmentation, curvilinear struc-
ture segmentation faces some particular challenges [7]: 1) thin,
long, and tortuosity shapes; 2) inadequate contrast between
curvilinear structures and the surrounding background; 3)
uneven background illumination; 4) various image appear-
ances. To cope with these challenges, classical curvilinear
object segmentation methods [6], [8]–[22] mainly focus on

T. Shi is with the School of EIC, Huazhong University of Science and Tech-
nology (HUST), Wuhan, 430074, China (E-mail: shitianyihust@hust.edu.cn).
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Fig. 1: An example of segmentation results on an image and
the same image with changed contrast. Top row: segmentation
on the original image by IterNet [23]; Bottom row: segmenta-
tion on contrast changed image. Different from direct segmen-
tation on the original image, the proposed LIOT is invariant to
contrast changes and thus yields robust segmentation results.

designing specifically engineered features. They usually adopt
filters or some morphological tools to capture one or more
specific features from images. Such hand-crafted feature-based
methods usually require careful parameter tuning, which is
difficult to handle a wide variety of complex curvilinear
structure segmentation.

Most recent methods [24]–[40] leverage deep learning [41]–
[44] for curvilinear object segmentation and have achieved
significant improvement over previous methods. These meth-
ods mainly focus on designing various network architectures
or loss functions to improve the segmentation performance.
Despite the high in-dataset accuracy for the state-of-the-art
methods, they usually do not generalize well to images with
different image appearances. For instance, as illustrated in
Fig. 1, one may achieve good results on the image similar
to the training dataset. The segmentation accuracy greatly
drops on the same image with slightly changed contrast. Yet,
the inherent characteristic of curvilinear structure (e.g., darker
than the context) holds for both images. This implies that the
generalizability of curvilinear object segmentation methods
still remains challenging. Designing a robust method that
captures the inherent property of curvilinear structure is of
great interest.

In this paper, we aim to address the above issue and focus on
improving the generalizability of current deep learning-based
methods in segmenting curvilinear objects. Instead of directly
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operating on the original image, we introduce a novel image
transformation called Local Intensity Order Transformation
(LIOT), which is a representation dedicated to curvilinear
structure and invariant to the increasing change of image
contrast. Specifically, we compare the intensity order of a
given pixel to the values of its nearby neighbors (e.g. along
with the four horizontal and vertical directions within a certain
distance). In this way, we transform the original image into a
new four-channel one, which does not depend on the absolute
intensity value but the relative intensity order to capture the
inherent characteristic of the curvilinear structure. An example
of segmentation on LIOT is illustrated in Fig. 1. LIOT is robust
to contrast changes, yielding very similar segmentation result
for the original image and the one with contrast change.

The main property of the proposed LIOT is the robustness
to curvilinear characteristic and contrast change. LIOT simply
changes the input and can be plugged into any deep learning-
based method. Since the main goal of this paper is not to
develop a powerful pipeline that outperforms all other methods
in segmenting curvilinear objects, we simply apply LIOT
to the recent method IterNet [23] and conduct cross-dataset
experiments on four datasets: DRIVE [45], STARE [46],
CHASEDB1 [47], and CrackTree [6]. These cross-dataset
experiments demonstrate that the proposed contrast-insensitive
LIOT is simple yet effective to help deep learning-based meth-
ods to capture the characteristic of the curvilinear structure,
and improves the generalizability of existing methods.

The main contribution of this paper is as follows: 1) We
propose a novel image transform method that captures the
inherent characteristic of curvilinear structures and is invariant
to the increasing change of image contrast; 2) The spirit of
using LIOT as input to the deep learning-based method enables
the model to express a better generalization and to be more
robust to non-targeted universal adversarial perturbations.

The rest of this paper is organized as follows. We shortly
review some related works in Section II. The proposed method
is then detailed in Section III, followed by extensive experi-
mental results in Section IV. Finally, we conclude and give
some perspectives in Section V.

II. RELATED WORK

Curvilinear structure segmentation has been widely ex-
ploited recently. We first review some representative classical
and deep learning-based methods for curvilinear object seg-
mentation in Section II-A. A review of some related works
on leveraging intensity order-based information, in particular
variants of census transform and intensity order-based feature
description, are discussed in Section II-B. The comparison of
the proposed LIOT with some related works is depicted in
Section II-C.

A. Curvilinear object segmentation

Before the era of deep learning, curvilinear object segmenta-
tion pipelines [6], [8]–[22] are usually based on different tech-
niques ranging from hand-crafted filters to machine learning
approaches. Most recent methods shift to deep neural networks

to directly learn effective features from the training data. Some
of these methods are categorized and detailed in the following.

Classical methods: Classical curvilinear object segmentation
methods mainly rely on extracting engineered features. For
instance, Koller et al. [8] introduce a method based on a non-
linear combination of linear filters, with an edge-detection
approach. Carlotto et al. [9] combine directional filter to
enhance low-contrast curvilinear. In [10], the authors leverage
pixel intensity and 2D Gabor wavelet transform for retinal
blood vessel segmentation. In [11], the authors develop the
line operator to construct a feature vector for supervised
classification using the support vector machine. AI-Diri et
al. [12] segment vessels in retinal images with a related active
contour model. Marı̀n et al. [13] utilize a 7-D vector for
pixel representation. Xiao et al. [15] propose to replace the
low-level Gaussian kernel with a bi-Gaussian to detect curvi-
linear structures. The orientation analysis of gradient vector
fields has been proposed for retinal blood vessel segmentation
in [47]. Obara et al. [14] propose a contrast-independent
approach to identify curvilinear structures based on oriented
phase congruency. Krylov et al. [16] develop a stochastic
approach for line segment extraction. Vicas et al. [18] use
a structure tensor to extract meaningful low-level information
for curvilinear structures. In [19], the authors rely on graph-
based representations for reconstructing curvilinear networks.
Merveille et al. [20] and [48] segment curvilinear structures
by ranking the orientation responses of operators. Strisciuglio
et al. [21] propose a novel operator for the delineation of
curvilinear structures in images. Merveille et al. [22] propose
a mixed gradient operator for segmentation task.

Deep learning-based methods: Deep learning-based methods
learn features from the training data and significantly improve
the performance of curvilinear object segmentation. For ex-
ample, the neural network is used for retinal blood vessel
segmentation in [24], which does not depend on the carefully
engineered feature. Maninis et al. [25] propose a unified
framework of retinal image analysis that jointly performs both
retinal blood vessel and optic disc segmentation. In [27], Yan
et al. propose a joint segment-level and pixel-wise loss for
retinal blood vessel segmentation. Luan et al. [28] develop
the Gabor convolution networks to reinforce the robustness
of learned features against orientation and scale changes. Guo
et al. [32] present a multi-scale deeply supervised network
with short connections, achieving good cross-dataset results.
In [33], Cherukuri et al. propose a deep model with regular-
ization under geometric priors. Mosinska et al. [29] propose a
multi-task learning of curvilinear structure segmentation and
path classification. Wang et al. [30] propose a context-aware
spatio-recurrent network for segmenting curvilinear structure.
Lei et al. [31], [35] propose a channel and spatial attention
network based on U-Net, effectively extracting curvilinear
structures from three biomedical imaging modalities. Ma et
al. [49] introduce a novel coarse-to-fine vessel segmentation
network with the ability to separately detect thick and thin
vessels. Dey [34] introduces a subpixel convolution and a
feature fusion technique for retinal blood vessel segmentation.
The distance field of tubular objects [50], [51] has been
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(a) CT [57] (b) SP-CT [58] (c) SCT [59] (d) LIOT

Fig. 2: Comparison of LIOT with variants of census transform,
which compare the intensity order between white pixels and
the red one in the center for CT and Sparse CT (SP-CT).

proposed to improve the segmentation performance. Some
recent methods [26], [52]–[55] aim to improve the topological
mistakes by proposing topology-aware loss for curvilinear
object segmentation. The method in [56] focuses on devel-
oping powerful network architecture for curvilinear object
segmentation by leveraging boundary as a geometric constraint
to refine feature.

B. Census transform and intensity order-based feature de-
scription

Census Transform (CT) [57] is a non-parametric local
transform, which is originally defined as an ordered set of
comparisons of pixel intensity in local 3 × 3 neighborhood.
Froba et al. [60] propose the MeanCT that leverages the
mean intensity of the neighborhood to increase the robustness.
Ambrosch et al. [61] propose a SparseCT which uses a subset
of pixels within the region of a larger neighborhood. Chang et
al. [58] also propose a sparse CT Mini-census. In [62], Fife
et al. propose generalized census transform (GCT) to define a
family of masks in a 5× 5 neighborhood with different levels
of sparsity. Similarly, the center symmetric CT (CSCT) [63]
compares a pair of pixels within the census window. The star
census transform (SCT) [59] extends GCT by defining masks
of symmetrical sequences of connected edges, of equal length,
forming star-shaped scan-patterns around the center. Ahlberg
et al. [64] propose a genetic algorithm to find a new and
powerful Census Transform method. Yu et al. [65] adopt the
census transform to calculate the illumination characteristics
for tree reconstruction optimization. Lai et al. [66] also use
census transform in medical imaging. Ramı́rez et al. [67]
apply the census transform operator for audio-visual emotion
recognition, owing to its robustness to monotonic changes.

Apart from the variants of census transform, some
works [68]–[73] also share the similar idea with the proposed
LIOT on leveraging the local intensity order information, but
with different purposes (local feature description [68]–[70] and
image classification [71]–[73]).

C. Comparison with related works

LIOT Versus Classical methods: Classical methods rely on
engineered features to extract curvilinear structure. Therefore,
these methods usually require careful parameter tuning and
are hard to generate good performance in a wide variety of
complex curvilinear object segmentation. The proposed LIOT
can leverage a deep convolutional neural network (CNN) to

Fig. 3: Overview of the proposed LIOT for curvilinear object
segmentation. We transform an input image to a 4-channel
intensity-order-based image, which is then fed into a segmen-
tation network.

learn more effective features. LIOT can be plugged into any
CNN architecture for curvilinear object segmentation.

LIOT Versus Deep learning-based methods: Most deep
learning-based methods for curvilinear object segmentation
are mainly inspired by recent CNN-based object/image seg-
mentation methods. They usually focus on improving the in-
dataset segmentation accuracy by improving feature learning,
and ignore the limited cross-dataset performance due to the
appearance gap between different datasets. This hinders the
transferability to other similar curvilinear object segmentation.
The proposed LIOT aims to capture the inherent characteristic
of curvilinear objects, and thus to improve the generalization
performance in various curvilinear object segmentation for
deep learning-based methods.

LIOT Versus Census transform and intensity order-
based feature description: The proposed LIOT is in spirit
similar to the census transform, which is a non-parametric
transform that depends on the relative intensity ordering in-
stead of absolute intensity values. This makes them invariant
to increasing contrast changes. As shown in Fig. 2, compared
with variants of census transform, the proposed LIOT is
specifically designed for the curvilinear object that captures
the curvilinear structure from four directions. Compared with
the simple intensity order comparison between the center pixel
and its surrounding neighborhood pixels for census transform,
the horizontal and vertical long-range pixels capture better the
inherent property of curvilinear objects having usually thin and
long structures. The LIOT also differs with the intensity order-
based feature description methods in how to define the pairs
of pixels for intensity order comparison. Besides, to the best
of our knowledge, we are the first to combine intensity order
information and deep-learning for robust curvilinear structure
segmentation, which enables the model to express a better
generalization and to be more robust to non-targeted universal
adversarial perturbations.

III. PROPOSED METHOD

A. Overview

Curvilinear objects have entirely different color distributions
and backgrounds for different application scenarios. Such
an appearance gap makes it difficult for the algorithm to
accurately segment different curvilinear objects in different
images. Thus, a general method to improve the generalizability
for curvilinear segmentation algorithms is required. For that,
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Fig. 4: Illustration of LIOT. For each pixel p, we compare its intensity with the value of every group of 8 neighboring pixels
lying perpendicular with p, resulting in a 4-channel image with values in each channel ranging from 0 to 255 (8 bits).

we introduce a novel image transformation LIOT based on
the relative intensity order between each pixel and its perpen-
dicular neighbors. Such a transformation does not depend on
the absolute value of each pixel, and is thus more robust to
contrast changes. The overall pipeline of the proposed method
is depicted in Fig. 3. We first convert the given image into a
gray-scale one. Then we rely on the local intensity order to
compute four directional binary codes, forming a 4-channel
image that captures the curvilinear structure characteristic.
We then feed this contrast invariant 4-channel image into a
segmentation network.

B. Local intensity order transformation

Though different curvilinear object images may have vari-
ous contrast and intensity distribution, the curvilinear structure
is always darker (without loss of generality, we can invert
the image when the curvilinear structure is brighter) than the
context. Based on this property, we propose a novel and robust
representation called LIOT that converts an input gray-scale
image into a 4-channel intensity-order-based image. More
precisely, as illustrated in Fig. 4, for each pixel p in the
domain Ω of an image f , we compare the value of f(p)
with each group of 8 neighboring pixels {ni

s | i = 1, . . . , 8}
(with Euclidean distance to p ranging from 1 to 8) lying
perpendicular to p, where s ∈ {l, r, t, b} denotes left, right,
top, and bottom side of p, respectively. This results in four 2D
8-bit images, where the i-th bit of each converted 2D image
f ′s on p corresponds to the binary code given by the intensity
order between f(p) and f(ni

s). These four 2D images of
directional binary codes are concatenated together, composing
a 4-channel intensity-order-based image F = [f ′l , f

′
r, f
′
t , f
′
b].

Formally, for each direction side s ∈ {l, r, t, b}, we compute
the corresponding image f ′s of directional binary codes on each
pixel p as follows:

f ′s(p) =

8∑
i=1

[f(p) > f(ni
s)]× 2i−1, (1)

where [f(p) > f(ni
s)] is 1 if the value f(p) is larger than

f(ni
s), otherwise 0.

As depicted in Eq. (1), the proposed transformation is
irrespective of absolute intensity values, and only depends
on the relative intensity order. LIOT captures the “darker
than” property of curvilinear structure and is invariant to
increasing change of contrast. This makes LIOT more robust to

appearance differences for images from different applications.
Therefore, LIOT can improve the generalizability of curvilin-
ear object segmentation methods.

C. Network architecture

Since the major goal is to improve the generalizability of
existing CNN-based methods, we do not aim to develop a
powerful network that outperforms other methods. Instead, we
simply apply LIOT with the recent IterNet [23] by changing
its input channel to the 4-channel image given by LIOT. Iternet
is a U-Net like encoder-decoder model that adopts U-Net
as the base module and combines three mini U-Nets. Each
mini U-Net uses feature maps from its precedent module
with fewer parameters than U-Net. IterNet also adds skip-
connections from the base U-Net to all mini U-Nets and
the connections among the mini U-Nets. We simply change
the first convolution layer channel from 3 to 4-channel for
adapting LIOT inputs, and keep the following layers the same
as the original IterNet [23].

D. Training objective

We leverage the network depicted in Section III-C to
segment the curvilinear object. The loss is the same as that in
IterNet [23]. The network parameters are optimized with the
sigmoid cross-entropy loss, defined as:

L =
∑
i

(
− yilog(pi)− (1− yi)log(1− pi)

)
, (2)

where yi represents the binary indicator (0 or 1) whether the
pixel i belongs to the ground-truth curvilinear object, and pi is
the predicted probability that the pixel i is a foreground pixel.

During the testing phase, we convert the original gray-scale
image to a 4-channel LIOT image, and feed LIOT into the
segmentation network to compute the final probability map.

IV. EXPERIMENTS

We evaluate the proposed method on four widely adopted
datasets: DRIVE [45], STARE [46], CHASEDB1 [47], and
CrackTree [6]. A short description of these datasets and
adopted evaluation protocol are given in Section IV-A. Some
implementation details are then depicted in Section IV-B. To
demonstrate the generalizability of the proposed LIOT, we
conduct four types of evaluations: 1) In-dataset evaluation
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in Section IV-C to demonstrate that the proposed LIOT does
not significantly decrease the performance on original images;
2) In-dataset evaluation on images with universal adversarial
perturbations (see Section IV-D) to show that LIOT is more
robust to universal adversarial attacks; 3) Cross retinal dataset
evaluation in Section IV-E, showing that LIOT generalizes
better to images with small domain gap; 4) Evaluation on
cross-dataset between Retinal and CrackTree dataset (see
Section IV-F), proving that LIOT is more robust to large
domain changes. In Section IV-G, we also show some results
of applying LIOT trained on the retinal dataset to images
with very different types of curvilinear structures, further
demonstrating the generalizability of LIOT.

A. Datasets and evaluation protocol

DRIVE [45]: The DRIVE dataset contains the curvilinear-
shaped vessel. This dataset consists of 40 565 × 584 color
retinal images, which are split into 20 training images and 20
test images.

STARE [46]: The STARE dataset consists of 20 700 × 605
color retina images divided into 10 training and 10 test images.

CHASEDB1 [47]: The CHASEDB1 dataset is composed of
28 999 × 960 color retinal images, which are split into 20
training images and 8 test images.

CrackTree [6]: The CrackTree dataset contains 206 800×600
pavement images with different kinds of cracks having curvi-
linear structure. The whole dataset is split into 160 training
and 46 test images. Following [26], we dilate the annotated
centerlines by 4 pixels to form the ground-truth segmentation.
As shown in Fig. 10, the multiple shadows and cluttered
background make the segmentation a challenging task.

Images with curvilinear objects may have different image
resolutions, and thus have varied thickness (in terms of pixels)
of curvilinear structure. To cope with such a scale gap, for the
retinal images, we first resize each image to a similar scale
based on the size of the field of view (FOV) and image size.
Specifically, we keep the image size of DRIVE unchanged,
and resize the images in STARE, CHASEDB1 accordingly.
Precisely, we resize STARE images from 700× 605 to 554×
479, and CHASEDB1 images from 999× 960 to 584× 561.
The images in the CrackTree dataset are resized to 512×512.
These size settings are used for both baseline methods and the
proposed method. For retinal images, since LIOT requires a
total order between pixel values, we thus convert the resized
color image to a gray-scale one by selecting its green channel.

Evaluation protocol: Following the classical evaluation pro-
tocol for curvilinear object segmentation, we first compute
the true positives (TPs), false positives (FPs), false nega-
tives (FNs), and true negatives (TNs) for the segmentation
result. Then, the classical accuracy (Acc), sensitivity (Se),
specificity (Sp), area under the receiver operating character-
istics curve (AUC), and F1-score are used to evaluate the
performance. Besides, we also adopt the connectivity [74]:
1−min

(
1, |#C(SG)−#C(S)|/#(SG)

)
, where #C(SG) and

#C(S) denotes the number of connected components in the

ground-truth and segmented result, respectively. #(SG) stands
for the number of pixels in the ground-truth segmentation. This
connectivity metric reflects the curvilinear structural continuity
and is useful for branching analysis, further assessing the
effectiveness of the proposed LIOT. We compute the metrics
in the field of view area for retinal datasets: DRIVE, STARE
, and CHASEDB1. For the CrackTree dataset, the metrics
are computed on the whole image. For all methods on all
involved datasets, we report the results by using the optimal
segmentation threshold based on the F1-score.

B. Implementation details

We adopt classical data augmentation strategy to increase
the training data and avoid over-fitting. Specifically, we ran-
domly rotate images from -180 to 180 degrees, and shear from
-0.1 to 0.1. We also flip images with the horizontal and vertical
direction. Then, images are randomly shifted from -0.1 to 0.1,
and randomly zoomed from 0.8 to 1.2. Finally, we randomly
crop the augmented images to 128× 128.

Since the major goal is not to develop a powerful network
that outperforms other methods, we simply apply LIOT with
the recent IterNet [23]. Following [23], we employ a batch
size of 32 to train the network using cross-entropy loss for
1000 epochs. To further demonstrate the usefulness of the
proposed LIOT, we also conduct experiments by using the
topological loss (Topo) [52]. We adopt Adam [75] with a
learning rate of 0.001 to optimize the network. For Topo [52]
method, we set different optimal weights for the topological
loss term on different datasets: 0.005 for DRIVE, 0.001
for CHASEDB1 and STARE, and 0.01 for CrackTree. For
census [57] method, we choose the window size 3×3 as the
original census definition and do not set any other parameters
because the census is a non-parametric local transformation.
During inference, overlapping image patches are extracted
with a stride equal to 8.

C. In-Dataset evaluation

The proposed LIOT converts the original image into a
relative order-based representation, which may lose some
information on the image content. From this point of view,
though the proposed LIOT mainly focus on improving the
generalization performance for deep learning-based methods,
we first conduct experiments on in-datasets: DRIVE, STARE,
CHASEDB1, and CrackTree to show that the proposed LIOT
does not significantly decrease the performance for the ability
of model itself.

Some qualitative results are illustrated in Fig. 5. LIOT per-
forms similarly with the baseline model, but usually has more
false positives, which can find evidence in the original image,
but are ignored in the ground-truth annotation. This is because
that LIOT mainly focuses on the inherent characteristic (e.g.,
darker than the context) of curvilinear structure, and thus
captures more objects having curvilinear structure. This may
also explain why LIOT achieves slightly worse results than
the baseline model on retinal images in terms of quantitative
evaluation depicted in Table I. On the retinal datasets, LIOT
is slightly worse than the baseline model, but performs much
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(a) In-dataset validation on DRIVE

(b) In-dataset validation on STARE

(c) In-dataset validation on CHASEDB1

(d) In-dataset validation on Cracktree

Fig. 5: Some segmentation results under in-dataset validation. Green pixels: TPs; Red pixels: FNs; Blue pixels: FPs. Some
FPs achieved by LIOT can find evidence in the original image, which might be TPs ignored in the manual annotation. Best
viewed by zooming in the electronic version.

better than the variant of classical census transform. On the
CrackTree, LIOT is very competitive with the baseline model.
On average, LIOT is still comparable with the baseline model.

D. In-dataset evaluation on images with perturbation

It is well known that deep learning-based models are highly
vulnerable to adversarial perturbations, which may pose secu-
rity problems for deep learning-based curvilinear object seg-
mentation methods. In this section, we evaluate the robustness
of the proposed LIOT against such adversarial perturbations.

For that, we adopt the non-targeted universal perturbations by
GAP [76] to generate adversarial perturbations. As shown in
Fig. 6, these perturbed images resemble the original images.
We apply LIOT on the perturbed images and feed it to the
trained model. Some qualitative results are given in Fig. 6.
Though the perturbed images mislead both the trained baseline
model and the model trained on LIOT, LIOT is more robust.

The quantitative evaluation is depicted in Table II. The
proposed LIOT outperforms the baseline model by a large
margin (up to 47.8%) in terms of all metrics. The proposed
LIOT can effectively retain the inherent characteristic of curvi-
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TABLE I: Quantitative in-dataset evaluation of LIOT com-
pared with the baseline model and Census transform.

In-Dataset Methods Se Sp Acc AUC F1 Connectivity

CrackTree
⇒

CrackTree

Baseline [23] 0.813 0.995 0.992 0.994 0.754 0.851
Census [57] 0.493 0.996 0.989 0.898 0.566 0.563

LIOT 0.780 0.997 0.994 0.990 0.790 0.916
Topo [52] 0.848 0.995 0.993 0.996 0.769 0.870

Topo+LIOT 0.802 0.997 0.994 0.988 0.801 0.917

DRIVE
⇒

DRIVE

Baseline [23] 0.828 0.973 0.954 0.978 0.821 0.875
Census [57] 0.783 0.972 0.948 0.962 0.794 0.831

LIOT 0.811 0.974 0.953 0.976 0.814 0.763
Topo [52] 0.828 0.973 0.954 0.980 0.822 0.878

Topo+LIOT 0.819 0.972 0.953 0.977 0.815 0.777

STARE
⇒

STARE

Baseline [23] 0.812 0.982 0.964 0.984 0.826 0.886
Census [57] 0.763 0.975 0.953 0.964 0.771 0.641

LIOT 0.816 0.977 0.960 0.983 0.810 0.803
Topo [52] 0.836 0.979 0.964 0.985 0.829 0.887

Topo+LIOT 0.817 0.976 0.959 0.982 0.807 0.803

CHASEDB1
⇒

CHASEDB1

Baseline [23] 0.833 0.978 0.965 0.986 0.811 0.715
Census [57] 0.738 0.979 0.957 0.963 0.756 0.682

LIOT 0.816 0.976 0.961 0.983 0.792 0.803
Topo [52] 0.838 0.978 0.965 0.986 0.812 0.735

Topo+LIOT 0.819 0.977 0.963 0.983 0.799 0.829

Average

Baseline [23] 0.822 0.982 0.969 0.986 0.803 0.832
Census [57] 0.694 0.980 0.962 0.947 0.722 0.679

LIOT 0.807 0.981 0.967 0.983 0.801 0.821
Topo [52] 0.838 0.981 0.969 0.987 0.808 0.843

Topo+LIOT 0.814 0.981 0.967 0.983 0.806 0.832

TABLE II: Quantitative in-dataset evaluation on images with
non-targeted universal adversarial perturbation [76] of LIOT
compared with the baseline model.

In-Dataset Methods Se Sp Acc AUC F1 Connectivity

CrackTree
⇒

CrackTree

Baseline [23] 0.453 0.993 0.985 0.963 0.474 0.342
Census [57] 0.564 0.996 0.990 0.952 0.613 0.677

LIOT 0.668 0.996 0.992 0.976 0.699 0.788
Topo [52] 0.439 0.995 0.987 0.950 0.496 0.270

Topo+LIOT 0.625 0.995 0.990 0.971 0.641 0.748

DRIVE
⇒

DRIVE

Baseline [23] 0.729 0.842 0.828 0.871 0.518 0.611
Census [57] 0.591 0.778 0.755 0.762 0.380 0.621

LIOT 0.752 0.967 0.940 0.952 0.761 0.714
Topo [52] 0.715 0.863 0.844 0.876 0.538 0.574

Topo+LIOT 0.738 0.958 0.930 0.942 0.728 0.705

STARE
⇒

STARE

Baseline [23] 0.429 0.880 0.833 0.754 0.389 0.373
Census [57] 0.420 0.976 0.918 0.842 0.518 0.283

LIOT 0.461 0.965 0.912 0.827 0.523 0.396
Topo [52] 0.363 0.909 0.852 0.740 0.338 0.318

Topo+LIOT 0.447 0.966 0.912 0.813 0.514 0.345

CHASEDB1
⇒

CHASEDB1

Baseline [23] 0.633 0.899 0.875 0.867 0.477 0.322
Census [57] 0.781 0.977 0.960 0.973 0.778 0.763

LIOT 0.788 0.977 0.960 0.978 0.779 0.776
Topo [52] 0.682 0.876 0.859 0.873 0.466 0.428

Topo+LIOT 0.778 0.978 0.960 0.978 0.779 0.776

Average

Baseline [23] 0.561 0.904 0.880 0.864 0.455 0.412
Census [57] 0.589 0.932 0.906 0.882 0.572 0.586

LIOT 0.667 0.976 0.951 0.933 0.691 0.668
Topo [52] 0.550 0.911 0.885 0.860 0.460 0.398

Topo+LIOT 0.647 0.974 0.948 0.926 0.665 0.644

linear structure from the images with non-targeted universal
adversarial perturbations, demonstrating the robustness of the
proposed LIOT.

E. Cross retinal datasets evaluation

We now evaluate the proposed LIOT by conducting cross-
retinal dataset validation between the DRIVE, STARE, and
CHASEDB1 dataset.

(a) In-dataset adversarial perturbation validation on DRIVE

(b) In-dataset adversarial perturbation validation on STARE

(c) In-dataset adversarial perturbation validation on CHASEDB1

(d) In-dataset adversarial perturbation validation on Cracktree

Fig. 6: Some segmentation results under in-dataset valida-
tion with non-targeted universal adversarial perturbation [76].
Green pixels: TPs; Red pixels: FNs; Blue pixels: FPs. Best
viewed by zooming in the electronic version.

Some qualitative illustrations are shown in Fig. 7. As
depicted in this figure, LIOT is able to correctly segment most
retinal blood vessels, especially those of low contrast. The
direct segmentation on the original image fails to retrieve those
thin and low contrast retinal blood vessels. For instance, as
depicted in Fig. 7(b), the model trained on DRIVE, using LIOT
can accurately segment most retinal blood vessels, including
the segments (blue pixels in the cropped region on the right
side) of very low contrast and ignored even by the manual
annotation. In fact, though these segments have very low
contrast, we can still find cues in the original image and
they are indeed retinal blood vessels. This demonstrates that
LIOT is more robust to contrast changes. Indeed, as depicted
in Fig. 1, the baseline method poorly segments the retinal
blood vessels for the contrast changed image, on which LIOT
still performs similarly with the original image. Thus, LIOT
can improve the generalizability of some deep learning-based
methods in segmenting retinal blood vessels.

The quantitative cross retinal dataset evaluation of LIOT is
depicted in Table III. We randomly divide three times DRIVE,
STARE, and CHASEDB datasets into train/test images, and
we train the corresponding model three times. The mean
and standard errors are reported. Compared with the baseline
method of IterNet [23] which directly operates on the original
image, LIOT outperforms or is on par with the baseline model
in terms of classical pixel-level metrics: Se, Acc, AUC, and
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(a) Cross-dataset validation from CHASEDB1 to DRIVE

(b) Cross-dataset validation from DRIVE to STARE

(c) Cross-dataset validation from STARE to CHASEDB1

Fig. 7: Some segmentation results under cross-dataset validation. Green pixels: TPs; Red pixels: FNs; Blue pixels: FPs. Some
FPs achieved by LIOT can find evidence in the original image, which might be TPs ignored in the manual annotation.

F1-score for all set of cross-dataset evaluation. LIOT has better
mean values and smaller standard errors in most cases. LIOT is
also competitive with other state-of-the-art methods [24], [27],
[32], [33], [77] dedicated for cross-retinal dataset evaluation.
On average, LIOT performs much better than the baseline
model and census transform based on all metrics except Sp.
In particular, LIOT features a high sensitivity regime, which
is important in clinical usage. Some “false positives” that
are retinal blood vessels of low contrast and ignored by the
manual annotation (described above) may degrade a bit the
other classical metrics, such as the Sp. Therefore, LIOT may
even perform slightly better in practice.

It is noteworthy that LIOT not only improves the pixel-
level metrics, but also boosts the segmentation performance on
the vessel network level. Specifically, as shown in Table III,
LIOT consistently outperforms the baseline models in terms
of connectivity metric. This implies that LIOT improves
the integrity of the segmentation effect because connectivity

assesses the fragmentation degree between the segmentation
result and the ground truth. Besides, the connectivity is also an
important clue for clinicians to calculate the complexity and
density of branching of the retinal vascular tree to measure
patient’s condition [78]. Therefore, LIOT is also potentially
useful for clinical disease diagnosis.

Though the goal is not to demonstrate that simply changing
the input image by the proposed LIOT on a baseline method
can outperform all other methods, as depicted in Table III,
the experimental results show that the proposed method is
competitive with all other methods [24], [27], [32], [33], [77]
under cross-dataset validation, demonstrating the potential of
the proposed LIOT in segmenting retinal blood vessels for a
wide daily clinical usage.

F. Cross CrackTree and retinal datasets evaluation
In addition to cross retinal dataset (with small domain gaps)

validation depicted in Section IV-E, We also evaluate the
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TABLE III: Quantitative comparison of LIOT and some other methods under cross-dataset evaluation on retinal images. The
results obtained from re-implementation are marked with †, and ∗ indicates the reported results from the original papers.

Cross-dataset Methods Se Sp Acc AUC F1 Connectivity

STARE
⇒

DRIVE

[24]∗ 0.727 0.981 0.949 0.968 – –
[77]∗ 0.671 0.992 0.951 0.975 – –
[27]∗ 0.729 0.982 0.949 0.960 – –
[33]∗ 0.772 0.983 0.956 0.977 – –
[32]∗ 0.745 0.978 0.950 0.971 – –

Baseline [23]† 0.781±0.003 0.967±0.004 0.943±0.003 0.959±0.003 0.779±0.013 0.779±0.004
Census [57]† 0.724±0.013 0.955±0.006 0.926±0.007 0.932±0.009 0.716±0.022 0.721±0.020

LIOT† 0.791±0.004 0.963±0.006 0.941±0.004 0.962±0.002 0.775±0.015 0.788±0.009
Topo [52]† 0.770±0.004 0.969±0.001 0.944±0.001 0.954±0.002 0.776±0.006 0.772±0.004

Topo+LIOT† 0.790±0.006 0.957±0.002 0.936±0.001 0.950±0.007 0.759±0.001 0.792±0.006

CHASEDB1
⇒

DRIVE

[24]∗ 0.731 0.981 0.948 0.961 – –
[32]∗ 0.696 0.970 0.938 0.952 – –

Baseline [23]† 0.763±0.030 0.971±0.001 0.945±0.005 0.956±0.011 0.779±0.023 0.762±0.025
Census [57]† 0.719±0.024 0.966±0.007 0.935±0.003 0.943±0.005 0.738±0.007 0.724±0.024

LIOT† 0.799±0.007 0.963±0.005 0.942±0.005 0.966±0.003 0.779±0.019 0.798±0.003
Topo [52]† 0.750±0.036 0.968±0.002 0.941±0.006 0.933±0.026 0.762±0.027 0.753±0.036

Topo+LIOT† 0.781±0.010 0.965±0.001 0.942±0.001 0.960±0.005 0.773±0.006 0.784±0.010

DRIVE
⇒

STARE

[24]∗ 0.703 0.983 0.955 0.967 – –
[77]∗ 0.845 0.973 0.960 0.985 – –
[27]∗ 0.721 0.984 0.957 0.971 – –
[33]∗ 0.778 0.986 0.971 0.982 – –
[32]∗ 0.719 0.982 0.955 0.969 – –

Baseline [23]† 0.760±0.038 0.978±0.002 0.956±0.003 0.962±0.010 0.782±0.018 0.731±0.052
Census [57]† 0.766±0.011 0.970±0.005 0.949±0.005 0.966±0.003 0.759±0.020 0.720±0.058

LIOT† 0.812±0.007 0.975±0.001 0.958±0.001 0.981±0.002 0.800±0.006 0.806±0.010
Topo [52]† 0.713±0.031 0.977±0.002 0.949±0.004 0.915±0.034 0.745±0.023 0.673±0.046

Topo+LIOT† 0.799±0.005 0.972±0.001 0.955±0.001 0.977±0.003 0.785±0.006 0.796±0.006

CHASEDB1
⇒

STARE

[24]∗ 0.694 0.983 0.954 0.962 – –
[32]∗ 0.680 0.981 0.950 0.952 – –

Baseline [23]† 0.722±0.020 0.976±0.002 0.950±0.001 0.942±0.014 0.750±0.011 0.704±0.018
Census [57]† 0.764±0.009 0.968±0.002 0.947±0.001 0.964±0.004 0.751±0.003 0.727±0.061

LIOT† 0.807±0.008 0.971±0.001 0.954±0.001 0.978±0.001 0.784±0.007 0.804±0.004
Topo [52]† 0.727±0.026 0.974±0.002 0.948±0.004 0.917±0.030 0.743±0.022 0.710±0.026

Topo+LIOT† 0.796±0.016 0.974±0.002 0.956±0.001 0.976±0.003 0.788±0.020 0.795±0.015

DRIVE
⇒

CHASEDB1

[24]∗ 0.712 0.979 0.943 0.963 – –
[32]∗ 0.698 0.972 0.944 0.957 – –

Baseline [23]† 0.702±0.036 0.963±0.005 0.939±0.007 0.937±0.013 0.682±0.044 0.697±0.041
Census [57]† 0.682±0.005 0.958±0.003 0.933±0.003 0.939±0.004 0.650±0.012 0.634±0.071

LIOT† 0.784±0.011 0.968±0.002 0.951±0.002 0.973±0.002 0.749±0.020 0.780±0.005
Topo [52]† 0.682±0.077 0.957±0.005 0.932±0.010 0.912±0.042 0.649±0.065 0.676±0.084

Topo+LIOT† 0.769±0.011 0.962±0.002 0.944±0.002 0.966±0.001 0.720±0.002 0.772±0.012

STARE
⇒

CHASEDB1

[24]∗ 0.724 0.977 0.942 0.955 – –
[32]∗ 0.673 0.971 0.941 0.951 – –

Baseline [23]† 0.653±0.101 0.956±0.003 0.926±0.012 0.908±0.048 0.635±0.075 0.654±0.097
Census [57]† 0.595±0.049 0.951±0.004 0.918±0.006 0.891±0.023 0.568±0.036 0.552±0.094

LIOT† 0.764±0.008 0.959±0.003 0.939±0.004 0.961±0.003 0.717±0.016 0.760±0.007
Topo [52]† 0.630±0.106 0.961±0.004 0.929±0.010 0.872±0.078 0.633±0.073 0.631±0.103

Topo+LIOT† 0.759±0.011 0.960±0.003 0.940±0.002 0.954±0.006 0.716±0.003 0.761±0.013

Average

Baseline [23]† 0.730±0.038 0.969±0.003 0.943±0.005 0.944±0.017 0.735±0.031 0.721±0.040
Census [57]† 0.708±0.019 0.962±0.005 0.935±0.004 0.939±0.008 0.697±0.017 0.680±0.055

LIOT† 0.793±0.008 0.966±0.003 0.947±0.003 0.970±0.002 0.767±0.014 0.789±0.006
Topo [52]† 0.712±0.047 0.968±0.003 0.940±0.006 0.917±0.035 0.718±0.036 0.702±0.050

Topo+LIOT† 0.782±0.010 0.965±0.002 0.945±0.001 0.964±0.004 0.757±0.004 0.783±0.010

proposed LIOT by conducting cross-dataset validation between
the retinal datasets and CrackTree dataset. To the best of our
knowledge, no previous research has investigated capturing the
inherent characteristic of curvilinear structure for such large
appearance gaps.

Cross-dataset validation from CrackTree to retinal
datasets: As shown in Fig. 10, the CrackTree dataset has
a great appearance gap with retinal images. We first apply
the model trained on the CrackTree dataset to segment retinal
blood vessels. Some qualitative retinal blood vessel segmenta-

tion results using the model trained on the CrackTree dataset
are given in Fig. 8. The proposed LIOT roughly segment the
curvilinear structure in retinal images. From this figure, we
can observe that LIOT preserves the inherent characteristic
of curvilinear structure in retinal images. LIOT is also able
to segment the curvilinear structure from various contexts.
On the contrary, the baseline method can not capture the
curvilinear structure of such large appearance gaps. The direct
segmentation on the original image fails to retrieve most retinal
blood vessels. These are common results as most deep-learning
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TABLE IV: Cross retinal and crack dataset evaluation of LIOT.

Cross-dataset Methods Se Sp Acc AUC F1 Connectivity

CrackTree
⇒

DRIVE

Baseline [23] 0.131 0.965 0.859 0.646 0.191 0.008
Census [57] 0.532 0.896 0.850 0.812 0.474 0.487

LIOT 0.712 0.895 0.872 0.899 0.585 0.675
Topo [52] 0.013 0.974 0.852 0.504 0.023 0.014

Topo+LIOT 0.655 0.902 0.871 0.860 0.563 0.656

CrackTree
⇒

STARE

Baseline [23] 0.130 0.969 0.882 0.626 0.185 0.006
Census [57] 0.436 0.892 0.845 0.750 0.366 0.239

LIOT 0.640 0.911 0.883 0.898 0.530 0.505
Topo [52] 0.004 0.991 0.889 0.489 0.007 0.004

Topo+LIOT 0.539 0.928 0.888 0.814 0.497 0.541

CrackTree
⇒

CHASEDB1

Baseline [23] 0.044 0.981 0.897 0.573 0.071 0.010
Census [57] 0.369 0.922 0.872 0.753 0.342 0.334

LIOT 0.650 0.890 0.877 0.895 0.489 0.580
Topo [52] 0.003 0.990 0.892 0.486 0.005 0.003

Topo+LIOT 0.623 0.908 0.879 0.853 0.507 0.617

DRIVE
⇒

CrackTree

Baseline [23] 0.037 0.997 0.984 0.643 0.061 0.015
Census [57] 0.349 0.995 0.985 0.828 0.408 0.409

LIOT 0.485 0.994 0.987 0.911 0.515 0.527
Topo [52] 0.212 0.752 0.744 0.425 0.023 0.229

Topo+LIOT 0.389 0.995 0.986 0.905 0.444 0.383

STARE
⇒

CrackTree

Baseline [23] 0.022 0.988 0.974 0.371 0.024 0.004
Census [57] 0.040 0.999 0.986 0.696 0.075 0.103

LIOT 0.290 0.995 0.985 0.865 0.360 0.400
Topo [52] 0.042 0.970 0.957 0.505 0.027 0.040

Topo+LIOT 0.209 0.997 0.985 0.784 0.289 0.207

CHASEDB1
⇒

CrackTree

Baseline [23] 0.099 0.994 0.981 0.684 0.129 0.028
Census [57] 0.178 0.998 0.986 0.726 0.272 0.254

LIOT 0.452 0.996 0.988 0.909 0.516 0.518
Topo [52] 0.150 0.977 0.965 0.733 0.110 0.147

Topo+LIOT 0.454 0.994 0.987 0.888 0.493 0.456

Average

Baseline [23] 0.077 0.982 0.930 0.591 0.110 0.012
Census [57] 0.317 0.950 0.921 0.761 0.323 0.304

LIOT 0.538 0.947 0.932 0.896 0.499 0.534
Topo [52] 0.160 0.942 0.883 0.524 0.033 0.073

Topo+LIOT 0.479 0.954 0.933 0.851 0.466 0.477

methods struggle for large image appearance gaps.
More precisely, as depicted in Fig. 9, for the model trained

on CrackTree, using LIOT can accurately capture most retinal
blood vessels, including those blue pixels which are of very
low contrast and ignored by the manual annotation. Such an
effect is difficult to achieve by general methods, especially
in a simple way like LIOT. This demonstrates that LIOT is
robust to contrast changes and is able to capture the inherent
curvilinear structure.

The quantitative evaluation is shown in Table. IV. Compared
with the baseline method, our proposed LIOT outperforms
them by a large margin in terms of Se, AUC, and F1-score.
Specifically, the proposed LIOT improves the baseline method
by 34.5% to 54.0% in F1-score, significantly outperforming
the baseline method. From the quantitative results given in
Table V, the proposed LIOT makes the gap between Crack-
Tree and the retinal dataset much smaller than the baseline
method. Thus, LIOT significantly improves the generalization
performance of the baseline method, especially for the dataset
that has curvilinear structures with great appearance gaps.

Cross-dataset validation from retinal to CrackTree dataset:
We also evaluate the proposed LIOT on CrackTree using the
model trained on the retinal datasets. The CrackTree dataset
has a great appearance gap compared with the retinal datasets,
and also has multiple shadows in the context. Though this
makes such cross-dataset segmentation a challenging task, the
proposed LIOT still successfully segments most curvilinear

(a) Cross-dataset validation from CrackTree to DRIVE

(b) Cross-dataset validation from CrackTree to STARE

(c) Cross-dataset validation from CrackTree to CHASEDB1

Fig. 8: Visualization of the segmentation results under cross-
dataset validation between CrackTree and retinal dataset.

(a) Cross-dataset validation from CrackTree to DRIVE

(b) Cross-dataset validation from CrackTree to STARE

(c) Cross-dataset validation from CrackTree to CHASEDB1

Fig. 9: Visualization of some segmentation detail under cross-
dataset validation between CrackTree and retinal datasets.
Green pixels: TPs; Red pixels: FNs; Blue pixels: FPs. Some
FPs achieved by LIOT can find evidence in the original image,
which might be TPs ignored in the manual annotation.

structures in the CrackTree dataset. Some qualitative results
are illustrated in Fig. 10. As shown in Fig. 10(b), LIOT
is also able to extract curvilinear structure with the shadow
influence. The quantitative compassion with the baseline
method under this cross-dataset setting is given in Table. IV.
LIOT achieves very competitive performance with the baseline
method. Specifically, compared with the baseline model, LIOT
achieves significant improvements, ranging from 26.2% to
45.4% in terms of F1-score. From the quantitative result given
in Table V, the proposed LIOT makes the gap between retinal
and crack images much smaller than the baseline method.

From the qualitative results shown in Fig. 8 and Fig. 10, and
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(a) Cross-dataset validation from DRIVE to CrackTree

(b) Cross-dataset validation from STARE to CrackTree

(c) Cross-dataset validation from CHASEDB1 to CrackTree

Fig. 10: Visualization of the segmentation results under cross-
dataset validation between retinal and CrackTree datasets.

TABLE V: Quantitative F1-score gap between in-dataset
(Tab. I) and cross-dataset results (Tab. IV).

Cross-dataset Baseline LIOT Topo Topo+LIOT
CrackTree⇒ DRIVE 0.563 0.205 0.746 0.238
CrackTree⇒ STARE 0.569 0.260 0.762 0.304

CrackTree ⇒ CHASEDB1 0.683 0.301 0.764 0.294
DRIVE⇒ CrackTree 0.760 0.299 0.799 0.371
STARE⇒ CrackTree 0.802 0.450 0.802 0.518

CHASEDB1 ⇒ CrackTree 0.682 0.276 0.702 0.306

quantitative evaluations depicted in Table. IV and Table. V, the
proposed LIOT is capable to capture the curvilinear structure
in various curvilinear object datasets. This demonstrates the
generalization ability of the proposed LIOT. Simply changing
the original input images with LIOT can help deep learning-
based methods express a better generalization in various
curvilinear object segmentation.

G. Generalization to images with different curvilinear objects

To further demonstrate the generalizability of the proposed
LIOT, we also apply the model trained on the DRIVE dataset
to images with different types of curvilinear structures: mate-
rial grains, ceiling grids, table lines, tree’s growth rings, and
hair. As illustrated in Fig. 11, though the adopted model is
trained on the retinal images having very different appearances
from these test images, LIOT can still successfully segment
these curvilinear structures of different types. Whereas, the
baseline model trained on the original images fails to extract
many curvilinear structures and has many false positives. This
illustrative experiment further implies that LIOT is able to
capture the inherent characteristic of curvilinear objects, and
can thus improve the generalizability of existing deep learning-
based models for curvilinear object segmentation.

Fig. 11: Some segmentation results on different types of
curvilinear images using the model trained on DRIVE dataset.
From left to right: input image, segmentation on the original
image using the baseline model, segmentation result by LIOT.
Best viewed by zooming in the electronic version.

V. CONCLUSION

In this paper, we aim to improve the generalization ability
of current deep learning-based curvilinear object segmentation
methods. For that, we propose the LIOT that converts a gray-
scale image to a novel representation that is invariant to
increasing contrast changes. LIOT is built on the intensity
order between pairs of pixels, and thus does not depend
on the absolute intensity values. Such intensity-order based
representation captures the inherent property of curvilinear
objects (e.g., curvilinear structure darker than the context).
Despite its simplicity, LIOT is rather robust to non-targeted
universal adversarial perturbations. Besides, extensive cross-
dataset experiments on three widely adopted retinal blood ves-
sel segmentation datasets and CrackTree dataset demonstrate
that LIOT can improve the classical segmentation pipeline
that directly operates on the original image. Therefore, LIOT
forms a simple yet effective way to improve the generalization
performance of different models. To the best of our knowledge,
LIOT is a first simple attempt to improve the generalizability
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of curvilinear object segmentation from the aspect of image
transformation. More sophisticated image transformation is
worthy of further investigation for robust curvilinear object
segmentation.
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