

# **Context-Based Energy Estimator: Application to Object Segmentation on the Tree of Shapes**

Yongchao Xu<sup>1,2</sup>, Thierry Géraud<sup>1,2</sup>, Laurent Najman<sup>2</sup>



UNIVERSITÉ - PARIS-EST

**ESIEE** 

<sup>1</sup>EPITA Research and Development Laboratory (LRDE), France <sup>2</sup>Université Paris-Est, Laboratoire d'Informatique Gaspard-Monge (IGM), ESIEE Paris, France {yongchao.xu,thierry.geraud}@lrde.epita.fr, l.najman@esiee.fr

# Demo available at http://olena.lrde.epita.fr/ICIP2012

## Main Contributions

Novel efficient ratio-cut estimator: well suited to characterize object contours; integrates some contextual information.

Fully automated approach to retrieve the significant objects: no need for prior knowledge on the number of objects; produces a saliency map representing the meaningfulness of objects.

## Effective results









#### Context-based energy estimator

For a given image u and a curve  $\partial \tau$  (contour of a region  $\tau$ , composed of pixel edges e), the energy estimator is defined by:  $E(u,\partial au) = lpha E_{int}(u,\partial au) + E_{ext}(u,\partial au) + eta E_{con}(u,\partial au)$ 

Internal energy smoothness of the contour  $\partial \tau$ ,

$$egin{aligned} E_{int}(u,\partial au) &= \sum_{e\in\partial au} \left| curv(u)(e) 
ight| / L(\partial au) \end{aligned}$$

Constraint energy constraint to avoid small objects,

$$E_{con}(u,\partial au) ~=~ 1\,/\,L(\partial au)$$

External energy significance of the contour  $\partial \tau$  regarding to its context,  $E_{ext}(u,\partial au) \ = \ rac{Vig(u,\,\mathcal{R}^arepsilon_{in}(\partial au)ig) \,+\, Vig(u,\,\mathcal{R}^arepsilon_{out}(\partial au)ig)}{Vig(u,\,\mathcal{R}^arepsilon_{in}(\partial au)\cup\mathcal{R}^arepsilon_{out}(\partial au)ig)}$  $V(u,\mathcal{R}) \;=\; \sum ig(u(p) \;-\; \overline{u}(\mathcal{R})ig)^2$ 

- curv: curvature of u;
- L: length of  $\partial au$ ;
- $\mathbf{R}_{in}^{\varepsilon}(\partial \tau)$  and  $\mathcal{R}_{out}^{\varepsilon}(\partial \tau)$ : the sets of points of maximal distance  $\varepsilon$  from  $\partial \tau$ , respectively inside and outside of  $\partial au$ ;
- $V(u, \mathcal{R})$ : segmentation error for region  $\mathcal{R}$ .

 $E_{int}(u,\partial \tau)$  local to the curve  $\partial \tau$ , and invariant to scale.  $E_{ext}(u,\partial\tau)$  take into account some context along  $\partial\tau$  by looking at  $\mathcal{R}_{in}^{\varepsilon}(\partial\tau)$ and  $\mathcal{R}_{out}^{\varepsilon}(\partial \tau)$  around it.  $E_{con}(u, \partial \tau)$  discourage objects being too small.  $E(u, \partial \tau)$  minima correspond to contours of objects.

#### General schema of object segmentation on the tree of level lines





#### Qualitative comparison with other approaches







Energy on a branch

Filtered energy on a branch

Circle : node on the tree; Filled circle : local minima;

Double circle : the root (i.e. whole image); Colorized filled circle : resistant minima.

#### **Complete process:**

Tree construction [1]: quasi-linear complexity based on union-find process. Energy computation: incremental computation during the tree construction. **3** Morphological filtering on the tree [2]: tree with nodes weighted by energy  $\Leftrightarrow$ nodes weighted graph. Morphological closing removes meaningless minima. **4** Resistant minima  $\Leftrightarrow$  meaningful objects.

selection of segmented objects;

weight each minima (so the corresponding objects) by the filtering force at which this minimum vanishes  $\Rightarrow$  saliency map.

(d) Ballester [5],  $\lambda = 2k$ .

(e) Ballester [5],  $\lambda = 3k$ . (f) Our method.

#### References

- [1] P. Monasse and F. Guichard, "Fast computation of a contrast-invariant image representation," IEEE Trans. on Image Processing, vol. 9, no. 5, pp. 860–872, 2000.
- [2] Y. Xu, T. Géraud, and L. Najman, "Morphological filtering in shape spaces: Applications using tree-based image representations," to appear in ICPR, 2012. http://arxiv.org/abs/1204.4758.

[3] F. Cao, P. Musé, and F. Sur, "Extracting meaningful curves from images," JMIV, vol. 22, pp. 159–181, 2005.

[4] T. Chan and L. Vese, "Active contours without edges," IEEE Trans. on Image Proc., 2001.

[5] C. Ballester, V. Caselles, L. Igual, and L. Garrido, "Level lines selection with variational models for segmentation and encoding," JMIV, vol. 27, pp. 5–27, 2007.