

Salient Level Lines Selection Using the Mumford-Shah Functional

Yongchao Xu^{1,2}, Thierry Géraud^{1,2}, Laurent Najman²

¹EPITA Research and Development Laboratory (LRDE), France ²Université Paris-Est, Laboratoire d'Informatique Gaspard-Monge (IGM), ESIEE Paris, France {yongchao.xu,thierry.geraud}@lrde.epita.fr, l.najman@esiee.fr

Main Contributions

- An efficient image simplification method: minimizing the Mumford-Shah functional on the tree of shapes [1]; a fast greedy algorithm providing a local optimal solution.
- A hierarchical image simplification: a variant of morphological shaping [2]; a saliency map representing a hierarchical image simplification.

Effective results: color images pre-segmentation

Effective results: hierarchical image simplification

Input color image.

133 regions.

Input color image.

84 regions.

Less simplified.

More simplified.

Basic idea

Tree of

wł

Minimize the piecewise-constant Mumford-Shah functional [3]... \dots subordinated to the tree of shapes [1, 4] of an image f. Piecewise-constant Mumford-Shah functional *E*:

Fast algorithm

Removing a node τ impacts its relatives \Rightarrow the removal order is critical. 1) Algorithm of Ballester et al. [5] : remove the node τ that decreases the most E

Saliency map.

$$E(f,\partial R) = \iint_R (ilde f|_R - f)^2 \, dx dy \, + \,
u \, |\partial R|$$
 of shapes $\mathcal T$: inclusion tree of level lines

Basic operation: level lines removal \Rightarrow region merging

Removing $au \Rightarrow R'_{ au_p} = R_{ au_p} \cup R_{ au}$, iff

$$\Delta E_{ au} = rac{S^2(f,R_{ au})}{|R_{ au}|} + rac{S^2(f,R_{ au_p})}{|R_{ au_p}|} - rac{S^2(f,R'_{ au_p})}{|R'_{ au_p}|} -
u |\partial au| \ < \ 0,$$
here $S(f,R) \ = \ \int_R f \, dx dy.$

Comparison with the approach of Ballester et al. [5]

\rightarrow prohibitive $O(N^2)$ time complexity.

2) Our proposed algorithm :

the removal order is based on a meaningfulness criterion...

- ... used meaningfulness: average of gradient magnitude along $\partial \tau$.
- Input: tree \mathcal{T} of image f; Output: simplified tree \mathcal{T}'
- Initialization: set $\mathcal{T}' = \mathcal{T}$.
- Step 1: sort $\{\tau | \tau \in \mathcal{T}\}$ in increasing order \mathcal{O} of shape meaningfulness.
- Step 2: propagate $\{\tau\}$ following the order \mathcal{O} , remove τ , if $\Delta E_{\tau} < 0$.
- \mathcal{T}' : a locally optimal solution of $\min_{\mathcal{T}'} E(f, \partial \mathcal{T}')$.
- 2 or 3 iterations of step 2 might be desired \Rightarrow quasi-linear complexity

3) A variant of the proposed algorithm : compute $u_{\min}(\tau)$ instead of a fixed u

- $\mathbf{\nu}_{\min}$: a non-increasing attribute,
- Attribute filtering \Rightarrow morphological shaping [2],
- Saliency map [2].

One application to autophagosome counting

Sequence of images

10

12

(a) Input image. (b) Ballester, $\nu = 1$ k, (t = 4s). (c) Our, $\nu = 1$ k, (t = 0.2s).

(a): $E = 1.24 \times 10^8$; (b): $E = 1.28 \times 10^7$, PSNR = 27.3; (c): $E = 1.15 \times 10^7$, PSNR = 28.7.

Autophagosome counting. Benchmark on a sequence of images. Autophagosome in cellular images: small, round, bright objects.

of

ž

40

20

References

[1] P. Monasse and F. Guichard, "Fast computation of a contrast-invariant image representation," IEEE Trans. on Image Processing, vol. 9, no. 5, pp. 860–872, 2000.

[2] Y. Xu, T. Géraud, and L. Najman, "Morphological Filtering in Shape Spaces: Applications Using Tree-Based Image Representations," in ICPR, pp. 485–488, 2012.

- [3] D. Mumford and J. Shah, "Optimal approximations by piecewise smooth functions and associated variational problems," Communications on Pure and Applied Mathematics, vol. 42, no. 5, pp. 577–685, 1989.
- [4] T. Géraud, E. Carlinet, S. Crozet, and L. Najman, "A quasi-linear algorithm to compute the tree of shapes of *I*d images," in *ISMM*, pp. 98–110, 2013.

[5] C. Ballester, V. Caselles, L. Igual, and L. Garrido, "Level lines selection with variational models for segmentation and encoding," JMIV, vol. 27, pp. 5–27, 2007.