

A comparison of many max-tree computation algorithms

Edwin Carlinet, Thierry Géraud

EPITA Research and Development Laboratory (LRDE), France

 $edwin.\,carlinet@lrde.\,epita.fr,\ thierry.geraud@lrde.epita.fr$

At a Glance

- **Issue** Many max-tree algorithms, some of them being specific to a dedicated task (e.g. filtering)
- **Goal** Comparisons of max-tree algorithms have been attempted, but they are partial.

Contribution Provide a full and fair comparison of 5 max-tree algorithms and some variations in a common framework, i.e., same hardware, same language (C++) and same outputs.
Code & Demo http://www.lrde.epita.fr/Olena/maxtree

Max-tree representation

Max-tree of *ima*

Desired properties

We aim at providing a "usable" tree, i.e.:
(1) Direct access to parent: Access any node's parent in constant time.
(2) Direct access to nodes: Access any pixel's node in constant time.
(3) Downward and upward traversable: Get a processing order of the nodes. Many algorithms output a tree structure that does not satisfy (2) or (3).

Original image ima

Max-tree representation with a parent image and an array

- A node is represented by a single pixel (canonical element)
- A parent image encodes the parent relationship of the tree.
- Every pixel points to a canonical element (ensures properties (1) and (2))
- An S vector stores the pixels ordered *downward* (ensures property (3))

Competitors

Immersion algorithms. Methods based on Tarjan's Union-Find.

- **Competitors:** Berger et al. (2007), Najman and Couprie (2006), and 2 variations of the first one.
- Flooding algorithms. Methods based on a depth-first propagation using priority or hierarchical queues.
 - **Competitors:** Salembier et al. (1998), Nistér and Stewénius (2008), Wilkinson (2011)
- Merge-based algorithms. Methods that compute trees on sub-domains of the image and merge them in a map-reduce fashion. **Competitors:** Matas et al. (2008), + any of the above algorithms.

Time and space complexities

	Time complexity			Auxiliary space requirement		
Algorithm	Small int	Large int	Generic V	Small int	Large int	Generic V
Berger (Berger et al., 2007)	$O(n\log n)$	$O(n\log n)$	$O(n\log n)$	n+k+O(n)	2n + O(n)	n + O(n)
Berger + rank	O(n lpha(n))	$O(n\log\log n)$	$O(n\log n)$	3n+k+O(n)	4n + O(n)	3n + O(n)
Najman and Couprie (2006)	O(n lpha(n))	$O(n\log\log n)$	$O(n\log n)$	5n+k+O(n)	6n + O(n)	5n + O(n)
Salembier et al. (1998)	O(nk)	$O(nk)\simeq O(n^2)$	N/A	3k+n+O(n)	2k+n+O(n)	N/A
Nistér and Stewénius (2008)	O(nk)	$O(nk)\simeq O(n^2)$	N/A	2k+2n	2k+2n	N/A
Wilkinson (2011)	$O(n\log n)$	$O(n\log n)$	$O(n\log n)$	3n	3n	3n
Salembier non-recursive	O(nk)	$O(n\log\log n)$	$O(n\log n)$	2k+2n	3n	3n
Map-reduce	O(A(k,n))	O(A(k,n))+O	$(k\sqrt{n}\log n)$	$\dots + n$	$\ldots + n$	$\dots + n$
Matas et al. (2008)	O(n)	$O(n) + O(k\sqrt{2})$	$\overline{n}(\log n)^2)$	k+n	2n	2n

With n the number of pixels, k the number of values.

Comparison of sequential algorithms

References

Berger, C. et al. (2007). "Effective component tree computation with application to pattern recognition in astronomical imaging". In: *Proc. of ICIP*.

Comparison of parallel algorithms

Vol. 4, pp. IV–41.

Matas, P. et al. (2008). "Parallel algorithm for concurrent computation of connected component tree". In: *Adv. Concepts for Intelligent Vis. Sys.* Pp. 230–241.

Najman, L. and M. Couprie (2006). "Building the component tree in quasilinear time". In: *IEEE Transactions on Image Processing* 15.11, pp. 3531– 3539.

Nistér, D. and H. Stewénius (2008). "Linear time maximally stable extremal regions". In: *Proc. of European Conf. on Computer Vision*, pp. 183–196. Salembier, P. et al. (1998). "Antiextensive connected operators for image and sequence processing". In: *IEEE Transactions on Image Processing* 7.4, pp. 555–570.

Wilkinson, Michael H. F. (2011). "A fast component-tree algorithm for high dynamic-range images and second generation connectivity". In: *ICIP*, pp. 1021–1024.

Wall clock time (upper left) and speed up (upper right) of the parallelization w.r.t the number of threads. Bottom: algorithms comparison using 8 threads w.r.t the quantization.

ISMM 2013, Uppsala, Sweden, May 27-29, 2013