A First Parallel Algorithm to Compute the Morphological Tree of Shapes of $n \mathrm{D}$ Images

Sébastien Crozet Thierry Géraud*
EPITA Research and Development Laboratory (LRDE), France thierry.geraud@lrde.epita.fr

* also with Université Paris-Est, Laboratoire d'Informatique Gaspard-Monge (LIGM), Équipe A3SI, ESIEE Paris, France

The Tree of Shapes [1,4] as a Versatile Tool

Object Detection (ICIP 2012)

Energy-Driven Simplification (ICIP 2013)

Hierarchy of Segmentations (ISMM 2013)

Shape Filtering (ICPR 2012) All those results are from Yongchao $X u$: http://www.lrde.epita.fr/wiki/User:Xu

At a Glance

Problem statement

- tree of shapes $=$ self-dual morphological tree-based image representation
- a quasi-linear algorithm exists [5], yet it is sequential

Why is it interesting

- tree $=$ easy structure to deal with
- nice properties: invariance to contrast changes and inversion
- numerous and powerful applications (see the banner above)

What our solution achieves

- a 1st parallel version of the quasi-linear algorithm, and ready for $\boldsymbol{n D}$
- increasing size of data to process \leadsto no problemo :)

What follows from our solution

- soon, processing 3D images with powerful self-dual morphological tools.

Algorithmic Scheme of the Sequential Version [5]

```
function ComputeTree(f, 跡)
    F}\leftarrow\mp@code{Immerse(f)
    (\mathcal{R},\mp@subsup{\mathcal{F}}{}{\bullet})\leftarrow\operatorname{SORT}(\mathcal{F},\mp@subsup{p}{\infty}{})
    par}\leftarrow\operatorname{UnIONFIND(reverse(\mathcal{R}))
    return Canonicalize(par, \mathcal{R},\mp@subsup{\mathcal{F}}{}{\natural})
end function
```

```
Algorithmic Scheme of the Parallel Version NEW!
```

function $\operatorname{ComputeTree}\left(\boldsymbol{f}, \boldsymbol{p}_{\infty}\right)$
$\mathcal{F} \leftarrow \operatorname{Parallel} \operatorname{Immerse}(\boldsymbol{f}) \quad \triangleright$ trivial
$\lambda \leftarrow \operatorname{mean}\left(\mathcal{F}\left(p_{\infty}\right)\right)$
$Q[\lambda] \leftarrow p_{\infty}$
\mathcal{F} ord $\leftarrow \operatorname{ParalLeLSort}(\mathcal{F}, \boldsymbol{Q}, \boldsymbol{\lambda}, 0)$
$p a r \leftarrow \operatorname{ParallelMaxTree}\left(\mathcal{F}^{\text {ord }}\right) \quad \triangleright$ see [2] and [3]
return Canonicalize(par, $\mathcal{F}^{\text {ord }}$)
end function

Parallel Sort NEW!

procedure $\operatorname{ParallelSort}\left(\mathcal{F}, \boldsymbol{Q}, \mathcal{F}^{\text {ord }}, \boldsymbol{\lambda}\right.$, ord $)$
$Q[\lambda] \leftarrow p_{\infty}$
while any queue of Q is not empty do while $Q[\lambda]$ is not empty do
$p \leftarrow \operatorname{Pop}(Q[\lambda]), \quad \mathcal{F}^{\text {ord }}(p) \leftarrow$ ord
for all $n \in \mathcal{N}_{4}(p)$ that has not been visited yet do if $\lambda \in \mathcal{F}(n)$ then $\operatorname{Push}(Q[\lambda], n)$ else if $\boldsymbol{\lambda}<\min (\mathcal{F}(n))$ then $\operatorname{Push}(Q[\min (\mathcal{F}(n))], n)$ else $\operatorname{Push}(Q[\max (\mathcal{F}(n))], n)$ end if

end for

end while
ord \leftarrow ord +1
$S_{\lambda}^{-} \leftarrow Q[0 . . \lambda], \quad S_{\lambda}^{+} \leftarrow Q[\lambda$. .max value $]$
$\lambda^{\prime} \leftarrow$ highest level having faces on S_{λ}^{-}
Run ParallelSort $\left(\mathcal{F}, S_{\lambda^{\prime}}^{-}, \mathcal{F}^{\text {ord }}{ }^{\boldsymbol{\lambda}}, \boldsymbol{\lambda}^{\prime}\right.$, ord $)$ on another thread. \triangleright This thread continues with S_{λ}^{+}
$Q \leftarrow S_{\lambda}^{+}$
$\lambda \leftarrow$ smallest level having faces on S_{λ}^{+}
end while
Wait for all child processes.
end procedure

An image and its tree of shapes. The nodes \boldsymbol{O} and \boldsymbol{A} have already been visited. The hierarchical queue contains the interior contour of \boldsymbol{B} and \boldsymbol{C}. It is partitioned in two sets $S_{\lambda}^{+}=\partial B$ and $S_{\lambda}^{-}=\partial C$.

Reproducible Research Evangelization from the Church of Mathematical Morphology

our C++ image processing library "Milena" \rightarrow http://olena.lrde.epita.fr
full source code of our method \rightarrow http://publis.lrde.epita.fr/crozet.14.icip \rightarrow

Comparison

Computation times (in seconds) on a classical image test set of the following algorithms: FLLT [1], FLST [4], Géraud et al. [5], and this paper proposal.

Bibliography

[1] P. Monasse and F. Guichard, "Fast Computation of a Contrast-Invariant Image Representation," in IEEE Trans. on Image Processing, vol. 9, no. 5, pp. 860-872, 2000
[2] P. Matas et al., "Parallel Algorithm for Concurrent Computation of Connected Component Tree," Adv. Concepts for Intelligent Vision Systems, pp. 230-241, 2008.
[3] M.H.F. Wilkinson et al., "Concurrent Computation of Attribute Filters on Shared Memory Parallel Machines," IEEE Trans. on PAMI, vol. 30, no. 10, pp. 1800-1813, 2008.
[4] V. Caselles and P. Monasse, "Geometric Description of Images as Topographic Maps," in Lecture Notes in Computer Science ser., vol. 1984, Springer, 2009.
[5] T. Géraud and E. Carlinet and S. Crozet and L. Najman, "A Quasi-Linear Algorithm to Compute the Tree of Shapes of n-D Images," in Proc. of the Intl. Symposium on Mathematical Morphology (ISMM), vol. 7883 of LNCS, Springer, pp. 98-110, 2013.

