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At a Glance

Problem statement:

● digital topology ⇒ using a pair of connectivities (cα, cβ) is required,
● actually self-duality is impure (see below), so we want to fix this.

Why it is interesting:

● values can be independant from the underlying graph structure,
● we can have a really pure self-dual representation.

What our solution achieves:

● a new representation of images,
● some interesting (?) theoretical results.

What follows from our solution:

● the companion paper [4] has nice extra results,
● and we are happy \o/

Self-dual operators

process the same way the image contents whatever the contrast...

...except for their connectivity:

u
ϕÐÐÐÐÐÐ→ ϕ(cα,cβ)(u)

complementation
×××Ö

×××Ö
complementation

∁u
ψ ≠ ϕÐÐÐÐÐÐ→ ∁ ϕ (cα,cβ)(u) = ϕ (cβ,cα)(∁u)

Tree of shapes [2]

a representation of the image contents which is self-dual...

...except for the connectivity:

S(<, cα )(∁u) = S(<, cβ )(u)

Flaws in self-duality
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Asymmetry (<, c4) so (>, c8)

The paradigm “foreground v. background”
should be reconsidered ——————▶

A gray-level image

woman as foreground

child as foreground so...
woman as background

Proposed solution (Evangelization from the Church of Mathematical Morphology)

From Boutry et al. [3, 4]:

Blocks of Z3 and antagonist points (in red)

A critical configuration is either a set of two antagonist
points {p,p′} of a block S or a set S ∖ {p,p′}.

A set is digitally well-composed (DWC)
iff it does not contain any critical configuration.

If a set is DWC, then its 2n-components are identical
to its (3n − 1)-components.

so all connectivities are equivalent!

A gray-level image is said DWC
iff all its threshold sets are DWC.

Our proposal: making an image DWC
by interpolation

u =

9 11 15

7 1 13

3 5 3 ↦ uDWC =
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where u ∶D ⊂ Zn Ð→ Z and uDWC is defined on (Z
2
)n.

The HOW-TO

Turning a self-dual operator ϕ into a pure self-dual one ϕ∗

u
interpolationÐÐÐÐÐÐÐÐÐÐÐÐ→ uDWC

ϕ∗ ×××Ö
×××Ö
ϕ

ϕ∗(u) = ϕ(uDWC)∣D
un−interpolation←ÐÐÐÐÐÐÐÐÐÐÐÐÐ ϕ(uDWC)

Actually it is as if we had this purely self-dual representation for u:

9 11 15

7 1 13

3 5 3

(the components of the threshold sets of u are the ones of uDWC restricted to D).

Quizz

Name these grids:

Extra results from this paper

Theorem. If a gray-level nD image u is digitally well-composed, then the
components of S(<, c2n)(u) form a purely self-dual tree of shapes.

Proposition. The only “morphological” digitally well-composed self-dual 2D
interpolation is based on the median operator.

The proofs are provided in the paper at no extra charge...
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