

Morphology-Based Hierarchical Representation with Application to Text Segmentation in Natural Images

Lê Duy Huỳnh, Yongchao Xu, Thierry Géraud EPITA Research and Development Laboratory (LRDE), France

firstname.lastname@lrde.epita.fr

At a Glance

Problem statement:

- Many **text segmentation** methods are too elaborate for real-time implementation.
- Need of robustness to noise, blur, or uneven illumination.

Why our approach is interesting:

• Simple morphological Laplacian but state-of-the-art results. • Linear time complexity.

Conclusion: our solution achieves

- A new hierarchical representation of images.
- A good trade-off between efficiency and quality.
- A robust method w.r.t contrast changes.
- A solution taking advantage of mathematical morphology.

Background	Some results			
Morphological Laplacian operator: $\Delta_{\mathcal{N}} = (\delta_{\mathcal{N}} - id) - (id - \varepsilon_{\mathcal{N}})$	Input	Labeling	Detection	

Tree of Shapes: a representation of the image contents by inclusion [1]

Proposed solution

Input

Step 1

Laplacian

Proposed pipeline:

Step 1: Convert to gray level;
Step 2: Compute the morphological laplacian and gradient;

Step 3: Label regions delimited by the 0-crossings and obtain the tree of shapes; **Step 4:** Group components together to form text boxes.

Quantitative results

Method	Recall	Precision	F-score	Consistency
SWT [3]	0.464192	0.8861	0.609232	0.505042
FR [4]	0 613059	0 892023	0 629221	0 726689

Text segmentation comparison

Evaluation based on coverage and accuracy [2].

Selected Bibliography

T. Géraud, E. Carlinet, S. Crozet, and L. Najman, "A quasi-linear algorithm to compute the tree of shapes of *n*-D images.," in *Proc of ISMM*. 2013, vol. 7883 of *LNCS*, pp. 98–110, Springer.
 S. Calarasanu, J. Fabrizio, and S. Dubuisson, "Using histogram representation and Earth Mover's Distance as an evaluation tool for text detection," in *Proc. of ICDAR*, 2015, pp. 221–225.
 B. Epshtein *et al.*, "Detecting text in natural scenes with stroke width transform," in *Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*, 2010, pp. 2963–2970.
 L. Neumann and J. Matas, "Real-time lexicon-free scene text localization and recognition," *IEEE Trans. on PAMI*, vol. 38, no. 9, pp. 1872–1885, 2016.
 J. Fabrizio, M. Robert-Seidowsky, S. Dubuisson, S. Calarasanu, and R. Boissel, "TextCatcher: A method to detect curved and challenging text in natural scenes," *IJDAR*, pp. 1–19, 2016.