

Brain MRI Segmentation in a Few Seconds Using Fully Convolutional Network and Transfer Learning

Yongchao Xu^{1,2,3}, Thierry Géraud¹, Élodie Puybareau¹, Isabelle Bloch²

EPITA Research and Development Laboratory, France

² Télécom ParisTech, Université Paris-Saclay, France

³ Huazhong University of Science and Technology, China

theo@lrde.epita.fr

MICCAI iSeg Challenge, Poster ID W263

At a glance

Problem:

- Structures in 6-mth infant brain MRI: lack of tissue contrast and difficult to segment.
- Data are inhomogeneous.

Why our approach is interesting:

- It is simple, light, fast, and versatile.
- It is fully automated.

Conclusion: Our method is fast, robust, and can be applied for several purpose (such as lesion detection).

Pre-processing

Steps:

- Centering the histogram on its maximal value...
- …and requantization on 8bit, with saturation.
- Input RGB image =
 - T1 slice n 1 (red), T2 slice n (green), T1 slice n + 1 (blue).

Results

Data:

Combination of T1 and T2 images.

Training/test datasets:

- 9/1 patients, switched (classical LOSO experiment).
- Training data expanded with scale variation and rotations.
- Input images: a series, of 2D color images.

For the challenge:

- Model trained on all the 10 patients with *expansion*.
- For each patient ∈ test dataset: pre-processing, inference, and reconstruction are fully automated.
- Runtime on a 3D volume is 1.8 second on average.

Learning and model

Network:

- From the 16 layers VGG network, pre-trained on millions of natural images of ImageNet for image classification.
- Each stage = convolutional layers, Rectified Linear Unit (ReLU) layers, and max pooling layers
- 4 first stages only are needed!

Quantitative results:

	WM	GM	CSF
Dice	0.861	0.887	0.928
MHD	6.607	5.852	9.875
	rank 2nd/21	rank 1st/21	
ASD	0.523	0.458	0.201

Qualitative results:

Parameters:

- Total number of iterations: 150k.
- Learning rate: $lr = 10^{-8}$ for the first 50k iterations, $lr = 10^{-10}$ otherwise • momentum = 0.99 for the first 50k iterations, 0.999 otherwise • $weight_decay = 0.0005$

Main reference: http://publications.lrde.epita.fr/xu.17.icip

Y. Xu, T. Géraud, I. Bloch, "From Neonatal to Adult Brain MR Image Segmentation in a Few Seconds Using 3D-Like Fully Convolutional Network and Transfer Learning," to appear in Proc. of IEEE International Conference on Image Processing (ICIP), 2017.

Orange: CSF; purple: grey matter; black: white matter.