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Problem:
We want a precise segmentation of glioma,

and a survival prediction...
...and we want it quick!

Why our approach is interesting:
It is simple, light, and versatile.

Conclusion:
A novel approach to segment 3D volumes

with 2D CNN [1, 2].
→ the “3D-like” approach

using several modalities.
Transfer learning works for medical image

segmentation.
Results... obtained in a few seconds.

Most important stuff

What people do:
3D patches at every voxel.
2,5D patches = 3 2D patches at every voxel.
→ that is heavy / slow.

A dedicated network.
→ a large dataset for training is required.

Classification from acquisition-dependant features.
→ not robust.

What we propose:
Input a FCNN network with a series of 2D images.
→ 3 slices of a 3D volume = 1 color 2D image.
↝ combination of two modalities (T1ce and T2).

Reuse a fast and pre-trained base network (VGG-16).
→ transfer learning.

Extract features only from segmentation.
→ no influence from the acquisition source.

And it’s generic:
Applied to MRI brain volumes for structures segmentation [1] (results on [3]) and for white matter hyperintensities segmentation [2].

Segmentation

Tools: GNU/Linux, Keras over Tensorflow, NVIDIA GPU

ADAM optimization procedure to minimize the loss.

Parameters: learning rate = 0.002, β1 = 0.9,β2 = 0.99, ε = 0.001
Images are normalized.

Network: trained in the 3 axis.

For each slice n, a multimodality image composed of slices n of T1ce, n − 1
and n + 1 of T2 is created as 2D RGB input image for the network.

Light post-processing: spacial regularization.

Survival prediction

10 defined features : patient age, relative size of
necrosis, edema and active tumor wrt brain, (x,y,z)-
normalized centroids of (necrosis+active tumor) and
most infected area in brain atlas.

Training phase
For each patient in training set :

1. Retrieve all 10 features per patient.

2. Apply/learn PCA transformation on
whole training set.

3. Train 50 RFs on scaled PCs.

Testing phase
For a patient to be tested :

1. Retrieve its 10 defined features.

2. Transform feature vector using learnt
PCA parameters and scale it.

3. Predict class using 50 RFs and assign
to most frequent class.
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