

Left Atrial Segmentation in a Few Seconds Using Fully Convolutional Network and Transfer Learning

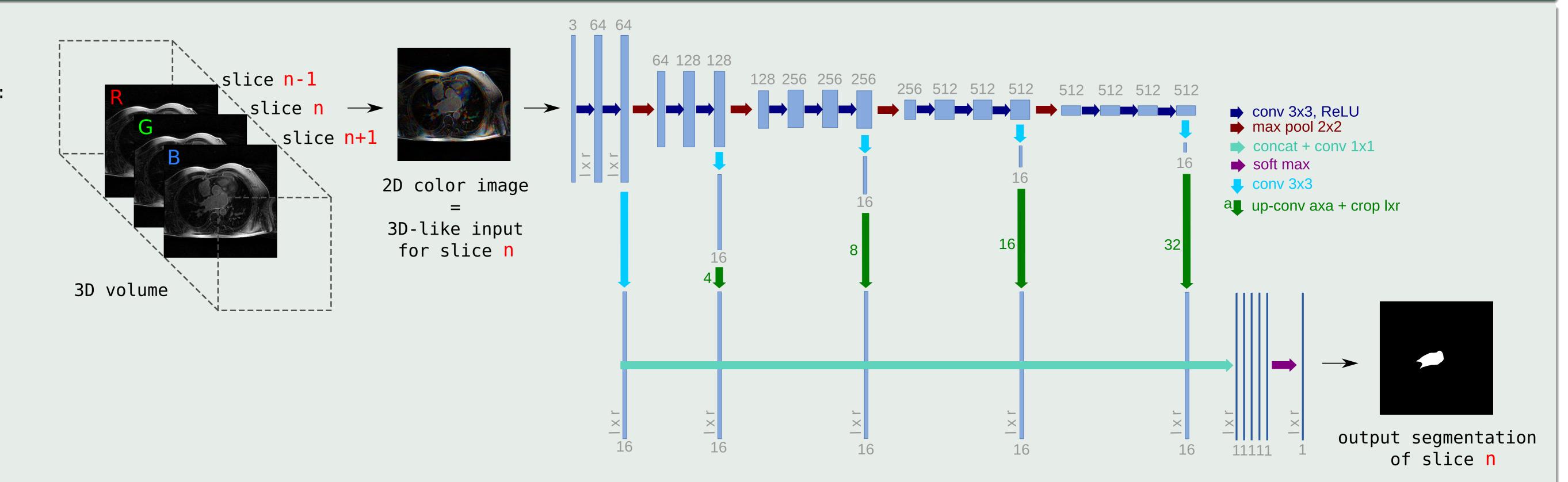
É. Puybareau¹, Z. Zhou², Y. Khoudli¹, E. Carlinet¹, Y. Xu^{1,2}, J. Lacotte³, T. Géraud¹

¹ EPITA Research and Development Laboratory (LRDE), France
 ² Huazhong University of Science and Technology, China
 ³ Institut Cardiovasculaire Paris Sud, Hôpital Privé Jacques Cartier, France

thierry.geraud@lrde.epita.fr

At a glance

for every slice **n** do:



Problem:

- We want a precise segmentation of left atrial in MRI heart volumes...
- …and we want it quick!

Why our approach is intersting:

it is simple, light, and versatile

Conclusion:

- a novel approach to handle 3D volumes with 2D CNN [1, 2]
 - \rightarrow the "3D-like" approach
- transfer learning works for medical image segmentation
- state-of-the-art results... obtained in a few seconds

Most important stuff

What people do:

- 3D patches at every voxel [6]
- 2,5 D patches = $3 \times 2D$ patches at every voxel [7]
- → that is heavy / slow
 a dedicated network [...]
 → a large dataset for training is required

What we propose:

- input a FCNN network with a series of 2D images
 - \rightarrow 3 slices of a 3D volume = 1 color 2D image
 - → these 2D images are 3D-like

reuse a fast and pre-trained base network (VGG-16 [3]) → transfer learning [5]

And it's generic:

applied to MRI brain volumes for structures segmentation [1] (results on [4]) and for white matter hyperintensities segmentation [2]

Training	Preliminary results
 Tools: GNU/Linux, Keras over Tensorflow, NVIDIA GPU ADAM optimization procedure to minimize the loss, 10 epochs Parameters: learning rate = 0.002, β₁ = 0.9, β₂ = 0.99, ε = 0.001 	 Light post-processing: spacial regularization using 1D and 2D median filters + largest component selection + hole fill-in Cross-validation with 5-fold procedure (80/20):
Images are cropped (red frame) and gray-levels are normalized wrt the center histogram (yellow)	basicwith normalization+ with regularizationDice0.860.910.92Qualitative results: in yellow: true positive, in green: false negative
 Training database is split: 80 volumes for training and 20 for validation Training time: 1 epoch takes less than 5 min 	

Inference lasts 1.8 second

- [1] Y. Xu, T. Géraud, and I. Bloch, "From neonatal to adult brain MR image segmentation in a few seconds using 3D-like fully convolutional network and transfer learning," in *ICIP*, pp. 4417–4421, 2017. A http://publications.lrde.epita.fr/xu.17.icip
- [2] Y. Xu, É. Puybareau, T. Géraud, and J. Chazalon, "White matter hyperintensities segmentation in a few seconds using fully convolutional network and transfer learning," in *BrainLes (MICCAI 2017 competition)*, pp. 501–514, vol. 10670 of LNCS, Springer, 2018.
- [3] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," CoRR, vol. abs/1409.1556, 2014.
- [4] A. M. Mendrik et al., "MRBrainS challenge: Online evaluation framework for brain image segmentation in 3T MRI scans," Computational Intelligence and Neuroscience, 2015. ~ http://mrbrains13.isi.uu.nl/results.php
- [5] J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in CVPR, pp. 3431-3440, 2015.
- [6] H. Chen et al., "VoxResNet: Deep voxelwise residual networks for volumetric brain segmentation," https://arxiv.org/abs/1608.05895, 2016.
- [7] K. Fritscher et al., "Deep neural networks for fast segmentation of 3D medical images," in MICCAI, vol. 2, pp. 158-165, 2016.