

Intervertebral Disc Segmentation in less than 3s Using Mathematical Morphology

Edwin Carlinet, Thierry Géraud

EPITA Research and Development Laboratory (LRDE), France

firstname.lastname@lrde.epita.fr

At a glance

Problem:

- we want to segment intervertebral discs without using CNN...
- …and we want our method to be fast!
- Why our approach is interesting:
 - it is lightweight and simple

Conclusion:

- the morphological tree of shapes is a very useful structure [1, 2]
- mathematical morphology rocks [3, 4]
- we do not rely on parallelization [5]... think about .5 s per volume
- perspective: use the multivariate tree of shapes [6]

Morphological tree of shapes (ToS)

Tree-based object detection

Illustration:

2. Valuate an energy adapted to the object(s) to detect

3. Retrieve the shape(s) with minimal energy

mustration.

Smartphone document capture competition (SmartDoc) at the Intl. Conf. on Document Analysis and Recognition (ICDAR) 2015

input

selection

(winning method!)

Step 1: Extracting a prior knowledge about discs localization from a volume Step 2: Create a 3D input opp volume top-hat(opp) localization prior knowledge Image: Comparison of the prior knowledge Image: C

Bonus

Selected bibliography

- [1] T. Géraud, E. Carlinet, S. Crozet, and L. Najman, "A quasi-linear algorithm to compute the tree of shapes of nD images," in International Symposium on Mathematical Morphology (ISMM), pp. 98–110, vol. 7883 of LNCS, Springer, 2013.
- [2] E. Carlinet, T. Géraud, and S. Crozet, "The tree of shapes turned into a max-tree: A simple and efficient linear algorithm," in IEEE International Conference on Image Processing (ICIP), pp. 1488–1492, Oct 2018.
- [3] P. Soille, Morphological Image Analysis: Principles and Applications, 2nd ed., Springer, 2004.
- [4] L. Najman and H. Talbot Eds., Mathematical Morphology—From Theory to Applications, ISTE Ltd and John Wiley & Sons, 2010.
- [5] S. Crozet and T. Géraud, "A first parallel algorithm to compute the morphological tree of shapes of *n*D images," in *IEEE International Conference on Image Processing (ICIP)*, pp. 2933–2937, 2014.
- [6] E. Carlinet and T. Géraud, "MToS: A tree of shapes for multivariate images," IEEE Transactions on Image Processing, vol. 24, num. 12, pp. 5330–5342, 2015.