

Document Type Recognition Using Evidence Theory

Thierry Géraud¹, Geoffroy Fouquier¹, Quôc Peyrot¹,

Nicolas Lucas², Franck Signorile²

¹ EPITA Research and Development Laboratory, France

www.lrde.epita.fr

² SWT, France

www.swt.fr

Who's who?

EPITA Research and Development Laboratory:

- software engineering,
- scientific computing in C++, meta-programming
- 6 image processing, pattern recognition.

SWT:

- French company, editor of the "b-Wize" software product line
 "solutions to sort, index, read, retrieve and process contents from paper sources"
- 6 winner of the European IST Prize 2003

http://www.ist-prize.org/

Outline

- introduction —context and intentions
- 6 a running example
- 6 first solutions:
 - Boolean logic approach
 - fuzzy approach
- evidence theory:
 - basics
 - modeling
 - comparative results
- 6 conclusion and perspectives

Document type recognition:

- 6 document types are known —a type database/knowledge base exists
- 6 type = set of characteristics
- a characteristic can be featured by several document types
- \bigcirc evaluation "characteristic c / document d" \Rightarrow value $\in [0, 1]$
 - 1 means "d does feature c"
 - 0 means "*d* does not feature *c*"
 - 0.5 means "d more or less features c"

Example of characteristics:

- \bigcirc a flower-shaped logo is on top-left (W)
- \bigcirc document font is 12pt (F)
- 6 there is a bar code somewhere (B)
- 🧕 etc.

Intents

Within *this* context, we do *not* explain:

- 6 how to build such a knowledge base
- 6 how to select relevant features
- 6 how to valuate couples such as "a characteristic / a document".

We focus on how to handle information to proceed to document type recognition.

Keywords:

- 6 information management
 - fusion
 - imprecision
- o decision
 - uncertainty
 - conflict

evidence theory is not new but is not well-known \rightarrow let us be didactic...

Running example

characteristics	do	cument typ	es	documents		
	type 1	type 2	type 3	case 0	case 1	case 2
	(t_1)	(t_2)	(t_3)	(d_0)	(d_1)	(d_2)
flower logo (W)	yes	no	no	no	0.1	0.2
12pt fonts (F_1^2)	yes	no	yes	no	0.8	0.7
bar code (B)	no	yes	yes	no	0.7	0.5

This example is simple enough to be quickly solvable by a human.

Real applications are far more complicated:

- 6 many characteristics,
- 6 many document types,
- 6 most of the characteristics are featured by several document types

Boolean logic 1/2

	type 1	type 2	type 3	case 0
	(t_1)	(t_2)	(t_3)	(d_0)
flower logo (W)	true	false	false	false
12pt fonts (F_1^2)	true	false	true	false
bar code (B)	false	true	true	false

Notation:

6
$$1_{t_i}(d) = "d$$
 has type t_i "
6 $1_{t_i}(c_j) = "c_j$ is a characteristic of t_i "
6 $1_{c_j}(d) = "d$ features c_j "
 $1_{t_i}(d) = \bigwedge_j (1_{t_i}(c_j) = 1_{c_j}(d))$

Example:

 $1_{t_2}(d_0)$ is false since d_0 and t_2 does not perfectly match.

Boolean logic 2/2

Main drawbacks:

- 6 decisions are taken too early
- errors are propagated

No proper way to:

- bandle imprecision
- 5 measure ambiguity

Definitions:

- *Imprecision*: lack of precise knowledge (syn. inaccuracy).
- *Uncertainty*: incomplete knowledge.
- *Vagueness*: lack of clearness in contours or limits.
- *Fusion*: mixing several pieces of information.

Fuzzy approaches:

- 6 well suited to model these notions
- 6 decision is taken at the very end.

Fuzzy set theory

 $\mu_{S_{i}}(d) \in [0, 1]: \text{ membership degree}$ $\cup_{i} S_{i} = D \implies \sum_{i} \mu_{S_{i}}(d) = 1$ (normalization)

Fuzzy sets derived from characteristics:

$$\begin{cases} W = W_{yes} \cup W_{no} \\ F = F_{12} \cup \overline{F_{12}} \\ B = B_{yes} \cup B_{no} \end{cases} \Rightarrow \begin{cases} \text{scheme 1:} \\ D = W \times F \times B \Rightarrow t_1 = W_{yes} \times F_{12} \times B_{no} \\ \text{or} \\ \text{scheme 2:} \\ D = W = F = B \Rightarrow t_1 = W_{yes} \cap F_{12} \cap B_{no} \end{cases}$$

denoting c_i^j the subset of (characteristic) c^j corresponding to t_i :

when either
$$(t_i = X_j c_i^j)$$
 or $(t_i = \bigcap_j c_i^j)$, we have: $\mu_{t_i}(d) = \min_j \mu_{c_i^j}(d)$.

Fuzzy fusion

Generalization with a fuzzy fusion operator:

$$\mu_{t_i}(d) = \bigoplus_j \mu_{c_i^j}(d)$$

 \oplus can be conjunctive:

- ⁶ "deciding to assign *d* to t_i means that we simultaneously well recognize every features c_i^j in document *d*"
- 6 Conjunctive operators are T-norms and verify $\oplus \leq \min$.
- \oplus can be a compromise:
 - ⁶ "deciding to assign d to t_i means that we globally well recognize all features c_i^j in the document d"
 - 6 Compromise operators are means and verify $\min < \oplus < \max$ (between T-norms and T-conorms).

Fuzzy decision

Decision function:

$$\underline{\omega(d) = \arg \max_{i} \mu_{t_i}(d)}$$

2nd best decision:
$$\omega_2(d) = \arg \max_{i \neq \omega(d)} \mu_{t_i}(d)$$

No decision is taken when:

- \circ confidence is too low, i.e. $\mu_{t_{\omega(d)}} < h_1$
- 6 ambiguity is noticed, i.e.

$$\quad \mu_{t_{\omega(d)}} - \mu_{t_{\omega_2(d)}} < h_2$$

or

$$\quad \frac{\mu_t_{\omega(d)}}{\mu_t_{\omega_2(d)}} < h_3.$$

Fuzzy fusion results

d_1						
	t_1	t_2	t_3			
min	0.10	0.20	0.70			
mean	0.40	0.60	0.80			
μ	0.22	0.33	0.44			

d_2						
	t_1	t_2	t_3			
min	0.20	0.30	0.50			
mean	0.47	0.53	0.67			
μ	0.28	0.32	0.40			

where μ is the normalized arithmetical mean.

Temporary conclusion 1/2

When \oplus is conjunctive,

false estimations of feature presence can lead to false results;

⊕ should be a compromise but then
 a lot of false ambiguities appear...

Temporary conclusion 2/2

Main problem:

- o different types can have several characteristics in common;
- ountil now, each document type is handled separately;
- actually we valuate singletons...

A simple illustration:

- set of people = { Greg, Jack, Tom }
- statement = "I can't remember who's the biggest fool but I'm positive that it's either Greg or Tom."
 - Fuzzy modeling = 0.5/Greg + 0.5/Tom + 0/Jack
 - Drawback = 0.5 for Greg means "half a fool"
 - Proper translation = 1/(Greg or Tom) + 0/Jack.

Evidence theory 1/3

Hypothesis set: $\Theta = \{t_1, \ldots, t_n\}.$ Mass function:

$$\begin{cases} \forall A \subset \Theta, \ m(A) \in [0, 1] \\ \sum_{A \subset \Theta} m(A) = 1 \\ m(\emptyset) = 0. \end{cases}$$

 $A \subset \Theta$ is a focal element if $m(A) \neq 0$.

Several functions $A \subset \Theta \rightarrow [0, 1]$ are defined.

Belief function (amount of evidence which implies A):

$$bel(A) = \sum_{B \subset A} m(B).$$

Uncertainty about A:

interval [bel(A), pls(A)]

Ignorance: ign(A) = pls(A) - bel(A).

Plausibility function (amount of evidence that does not refute *A*):

$$pls(A) = 1 - bel(\overline{A}) = \sum_{B \cap A \neq \emptyset} m(B).$$

Doubt about A (amount of evidence that does refute A):

$$dou(A) = bel(\overline{A}).$$

Evidence theory 2/3

Measure of conflict between s sources (m_i , i = 1..s):

$$K = \sum_{\bigcap_{i=1}^{s} B_i = \emptyset} \left(\prod_{i=1}^{s} m_i(B_i) \right).$$

Mass combination (Dempsters's rule):

$$\left(\bigoplus_{i=1}^{s} m_i\right)(A) = \frac{1}{1-K} \sum_{\substack{\bigcap_{i=1}^{s} B_i = A}} \left(\prod_{i=1}^{s} m_i(B_i)\right).$$

Property:

$$m = \bigoplus_{i=1}^{s} m_i$$
 is a mass.

Finally, we compute from m:

$$\forall i, bel(\{t_i\}) \text{ and } pls(\{t_i\}).$$

Evidence theory 3/3

Decision rules

6 maximum of belief:

$$\omega_{bel}(d) = \arg \max_i bel(\{t_i\})(d)$$

6 maximum of plausibility:

$$\omega_{pls}(d) = \arg \max_{i} \ pls(\{t_i\})(d)$$

6 absolute decision rule = maximum of belief without overlapping of belief intervals:

$$\omega_{abs}(d) = \omega_{bel}(d) \quad \underline{\mathrm{if}} \quad \forall i \neq \omega_{bel}(d), \ pls(\{t_i\})(d) < bel(\{t_{\omega_{bel}(d)}\})(d)$$

6 compromise = maximum of (bel + pls)/2:

$$\omega_{cpm}(d) = \arg \max_{i} \ \frac{bel + pls}{2}(\{t_i\})(d)$$

Evidence modeling

With global uncertainty:

	type 1	type 2	type 3		
	(t_1)	(t_2)	(t_3)	focal elements	
flower logo (W)	yes	no	no	$m_W(\{t_1\})$	$m_W(\Theta)$ (*)
12pt fonts (F_1^2)	yes	no	yes	$m_{F_{12}}(\{t_1,t_3\})$	$m_{F_{12}}(\Theta)$
bar code (B)	no	yes	yes	$m_B(\{t_2,t_3\})$	$m_B(\Theta)$

^(*) this means: "according to W, when it is not t_1 , it is either t_1 , t_2 , or t_3 "; we then have: $m_W(\Theta) = 1 - m_W(\{t_1\})$.

Fusion step:

$$m_u = m_W \oplus m_{F_{12}} \oplus m_B.$$

Without global uncertainty:

means: "according to W, when it is not t_1 , it is either t_2 or t_3 ".

Results 1/2

Three different approaches

results having three different flavors.

d_1						
	$\{t_1\}$	$\{t_2\}$	$\{t_3\}$	$\{t_1,t_3\}$	$\{t_2,t_3\}$	$\{t_1,t_2,t_3\}$
m_u	0.03	0.00	0.54	0.23	0.14	0.06
m_{ψ}	0.04	0.19	0.77	0.00	0.00	0.00
μ	0.22	0.33	0.44	undef	undef	undef

 \Rightarrow

 d_2

	$\{t_1\}$	$\{t_2\}$	$\{t_3\}$	$\{t_1,t_3\}$	$\{t_2,t_3\}$	$\{t_1,t_2,t_3\}$
m_u	0.11	0.00	0.31	0.31	0.13	0.13
m_{y_t}	0.15	0.26	0.60	0.00	0.00	0.00
μ	0.28	0.32	0.40	undef	undef	undef

Comparison "fuzzy / evidence" (decision = compromise)

d_1					
	$\{t_1\}$	$\{t_2\}$	$\{t_3\}$		
bel	0.03	0.00	0.54		
pls	0.32	0.19	0.97		
evidence	0.18	0.10	0.75		
fuzzy	0.22	0.33	0.44		

 d_2

	~ <u>∠</u>		
	$\{t_1\}$	$\{t_2\}$	$\{t_3\}$
bel	0.11	0.00	0.31
pls	0.56	0.27	0.89
evidence	0.33	0.13	0.60
fuzzy	0.28	0.32	0.40

Evidence theory:

- is well-suited to handle both imprecision and uncertainty in document type recognition;
- 6 allows to describe document types by (fuzzy) characteristics.

Effective application:

- several thousand documents to be processed;
- 6 about one hundred different document types;
- ⁶ quasi-perfect recognition results.

Implementation

Thanks for your attention; any questions?